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le I N T R O D U C T I O N 

In this paper we investigate sums of the form 
k 

to the generating function 
i f i / i I X I rxxr Q T \ r i l t n ? i i r f 4" h£s a 

' dx 
For any given n, such a sum can be determined [3] by applying the x-f- operator n times 

Jb>l 
9 3 

• x ~ xz 

then evaluating the resulting expression at x = 1/2. This leads to O,Q = 1, a\ = 53«2 = 47, and 
so on. These sums may be used to determine the expected value and higher moments of the 
number of flips needed of a fair coin until two consecutive heads appear [3]. In this article, 
we pursue the reverse strategy of using probability to derive an and develop an exponential 
generating function for an in Section 3. In Section 4, we present a method for finding an exact, 
non-recursive, formula for an. 

2. P R O B A B I L I S T I C I N T E R P R E T A T I O N 

Consider an infinitely long binary sequence of independent random variables 61,62? 63, • - • 
where P(6» = 0) = P(hi = 1) = 1/2. Let Y denote the random variable denoting the 
beginning of the first GO substring. That is, by = by+i — 0 and no 00 occurs before then, 
Thus P(Y = 1) = 1/4. For k > 2, we have P(Y = k) is equal to the probability that our 
sequence begins 61,62, • •., &jfe-231,0, 0, where no 00 occurs among the first k — 2 terms* Since 
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the probability of occurence of each such string is ( l /2 ) & + 1 , and it is well known [1] that there 
are exactly Fk binary strings of length k - 2 with no consecutive O's, we have for jfe > 1, 

Since Y is finite with probability 1, it follows that 

E ^ r = E ^ = *) = i-
fc>l fc>l 

For n > 0, the expected value of Yn is 

2 /c+i 
fc>l 

Thus a0 = 1. For n > 1, we use conditional expectation to find a recursive formula for an. We 
illustrate our argument with n — 1 and n = 2 before proceeding with the general case. 

For a random sequence 61,62, •••, we compute E(Y) by conditioning on 6i and 62- If 
hx = b2 = 0, then Y = 1. If 61 = 1, then we have wasted a flip, and we are back to the drawing 
board; let Y' denote the number of remaining flips needed. If 61 = 0 and 62 = 1, then we 
have wasted two flips, and we are back to the drawing board; let Y;/ denote the number of 
remaining flips needed in this case. Now by conditional expectation we have 

E(Y)=1-(l)+1-E(l + Y') + ^E(2 + Y") 

= \ + \ + IE(Y')+
1- + \E(Y») 

since E(Y') = E(Y") = E(Y). Solving for E{Y) gives us E(Y) = 5. Hence, 

fc>l 
Conditioning on the first two outcomes again allows us to compute 

E(Y2) = \{l2) + l-E [(1 + Y')2] + \E [(2 + Y")2} 

= I + \E{\ + 2Y + Y2) + \E(4 + 4Y + Y2) 
4 2 4 

= 7- + 2E(Y) + 3-E(Y2). 

Since E{Y) = 5, it follows that E{Y2) = 47. Thus, 

V^ k2Fk 47 
°2 = E 2 W = 4 7 ' 

fc>l 
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Following the same logic for higher moments, we derive for n > 1, 

E(Yn) = i ( l " ) + \E [(1 + Y)n] + \E [(2 + Y)n] 

= \ + \mn) + \ E (t) E(yk)+\ E (f) T~kE^ 

Consequently, we have the following recursive equation: 
n - l 

fc=0 
Thus for all n > 1, 

n - l 

w—x / \ 
£ ( y n ) = I + E ( J [2 + 2"~fc]^(yfc) 

fc=n W 

an = l + E ( ! ) [ 2 + 2 "~ f c K- (3) 

Using equation (3), one can easily derive as = 665, a^ = 12,551, and so on. 

3. G E N E R A T I N G F U N C T I O N A N D A S Y M P T O T I C S 

For n > 0, define the exponential generating function 
a(x) = Y ^x\ 

n>0 
It follows from equation (3) that 

a(z) = 1 + E ~{ " * " 
n>l 

= ex+ 2a(x)(ex - 1) + a(x)(e2x - 1). 

Consequently, 

«(*> = 4 - 2 e ^ - e ^ - ( 4 ) 

For the asymptotic growth of an, one need only look at the leading term of the Laurent 
series expansion [4] of a(x). This leads to 

10 
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4* C L O S E D F O R M 

While the recurrence (3), generating function (4), and asymptotic result (5) are satisfying, 
a closed form for an might also be desired. For the sake of completeness, we demonstrate such 
a closed form here. 

To calculate 

an~ 2^ 2k+1 5 
fc>i 

we first recall the Binet formula for Ft [3]: 

(6) 

Then (6) implies that (1) can be rewritten as 

2\/5 ^M-^rM *n = ^rr(1-±^\ - ^ » " ( ^ ^ l • (7) 

Next, we remember the formula for the geometric series: 

fc>o l x 

This holds for all real numbers x such that \x\ < 1. We now apply the 
^cfr operator n times 

to (8). It Is clear that the left-hand side of (8) will then become 
Yknxk. 
k>i 

The right-hand side of (8) Is transformed Into the rational function 
1 \ 

x\]e(nj)xj, (9) (1 - x)"*1 . 
3 = 1 

where the coefficients e(n,j) are the Eulerian numbers [2, Sequence A008292], defined by 

e(nj) =j-e(n- l,j) + (n-j + l) - e ( n - l , j - 1) with e ( l , l ) = 1. 

(The fact that these are Indeed the coefficients of the polynomial In the numerator of (9) can 
be proved quickly by Induction.) From the Information found In [2, Sequence A008292], we 
know 

ein^^ti-iru-ir^1). 
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Therefore, 

£kn*k = o 4 ) ^ x t [B-D'(; - o- (n 1x) 
k>i u z ' j=i lt=o \ * / 

(10) 

Thus the two sums 

zw^y^^h^y 
fc>l V / k>l \ / 

that appear in (7) can be determined explicity using (10) since 
1 + V5 < 1 and y/% < 1. 

Hence, an exact, non-recursive, formula for an can be developed. 
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