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Abstract

The Hirsch Conjecture states that for a d-dimensional polytope with n facets,
the diameter of the graph of the polytope is at most n−d. This conjecturewas
disproven in 2010 by Francisco Santos Leal. However, a polynomial bound in
n and d on the diameter of a polytope may still exist. Finding a polynomial
bound would provide a worst-case scenario runtime for the Simplex Method
of Linear Programming. However working only with polytopes in higher
dimensions can prove challenging, so other approaches are welcome. There
are many equivalent formulations of the Hirsch Conjecture, one of which is
the Combinatorial Polynomial Hirsch Conjecture, which turns the problem
into a matter of counting sets.

This thesis explores the Combinatorial Polynomial Hirsch Conjecture.
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An Introduction to the Hirsch
Conjecture



2 An Introduction to the Hirsch Conjecture

In his 1963 book "Linear Programming and Extensions," Dantzig (1963)
George Dantzig noted that:

"While the simplex method appears a natural one to try in the n-
dimensional space of the variables, it might be expected a priori, to be
inefficient, as there could be considerable wandering on the outside edges
of the convex set of solutions before an optimal extreme point is reached.
This certainly appears to be true when n − m � k is small..."

He then proceeded to quote Warren Hirsch on a possible worst case
scenario.

• It has been conjectured that, by proper choice of variables to enter the
basic set, it is possible to pass from any basic feasible solution to any
other in m or less pivot steps, where each basic solution generated
along the way must be feasible. For the cases m ≤ 4 the conjecture is
known to be true. [W.M. Hirsch, 1957, verbal communication]

The conjecture is restated later on in geometric terms:

Conjecture 1.0.1. Hirsch Conjecture
Does there exist a sequence of m or less pivot operations, each generating
a new basic feasible solution which starts with some given basic feasible
solution and ends at some other basic feasible solution, where m is the
number of equations? Expressed geometricall y: in a convex region in
n − m dimensional space defined by n halfplanes, is m an upper bound
for the minimum length chain of the adjacent vertices joining two given
vertices?

Ziegler (2012)
Thus the Hirsch Conjecture was born. Of course to understand the

motivations and implications of the Hirsch conjecture, we need to dissect
what Dantzig is saying.

The Simplex Method, originally created by Dantzig, is an optimization
algorithm used in linear programming, a field of mathematics and computer
science involving optimizing linear functions subject to linear constraints.
Suppose we want to optimize a linear equation f with d variables (so we
are working in d-dimensional space). Additionally, we have n constraint
equations, which when combined, form a d-dimensional polytope. Then,
it can be shown that the maximum value of f occurs at one of the vertices
of the polyhedron formed, so long as there is an optimum. It can also be
shown that if a vertex does not contain the maximum value of f , then an



3

edge exists such that the adjacent vertex contains a larger value of f . The
Simplex Method follows edges until the maximum vertex is found. Dantzig
(1963)

The Hirsch Conjecture essentially states that in considering the vertex-
edge graph of a polytope, the graph’s diameter should be bounded by n − d.
The conjecture would have provided an upper bound in the number of steps,
or as Hirsch calls it, "pivot operations." The bound would have been not
only polynomial time, but linear with respect to the number of facets and
dimension of a polytope. There are certain situations where the Hirsch
conjecture has been proven to be true - for example, when d ≤ 3, and as
stated above, when n − d ≤ 4. Ziegler (2012) Dantzig (1963)

Unfortunately in 2010, the conjecture as stated by Hirsch was proven
to be untrue by Francisco Santos Leal, who provided a 43-dimensional
counterexample. While this is a setback on finding a worst-case bound
on the Simplex Method, the possibility that the Simplex Method is still
polynomial time has not been ruled out, and a polynomial bound is still
being searched for. The ultimate question the Hirsch Conjecture now asks is
if a polynomial bound on the maximum diameter exists. Santos (2012)

Now we come to a different, but equivalent formulation of the Hirsch
Conjecture, the Combinatorial Polynomial Hirsch Conjecture:

Conjecture 1.0.2. Combinatorial Polynomial Hirsch Conjecture: Consider
t non-empty families of subsets F1 , ..., Ft of {1, ..., n} that are disjoint (i.e.
no set S can belong to two of the families Fi , F j). Suppose that for every
i < j < k and every S ∈ Fi and T ∈ Fk , then there exists R ∈ F j such that
S ∩ T ⊂ R. Let f (n) be the largest value of t for which this is possible. Then
f (n) is of polynomial size in n.

Kalai (2010a)
Though this may initially seem relatively unrelated to the Hirsch Con-

jecture, the next section shall demonstrate how the two are connected, and
ultimately equivalent.





Chapter 2

Base Abstractions and
Connected Layer Families



6 Base Abstractions and Connected Layer Families

2.1 Base Abstractions

In this section, we will build up some definitions which will allow us to
demonstrate that the Combinatorial Polynomial Hirsch Conjecture implies
the Hirsch Conjecture.

Definition 2.1.1. Fix a finite set S of cardinality n, called the symbol set. Let
A ⊆

(S
d

)
where

(S
d

)
is the set of all d-element subsets of S. We consider

connected graphs of the form � (A , E) with vertex set A and edge set E
satisfying:

• for each A,A′ ⊆ A, there is a path from A to A′ in the graph G using
only vertices that contain A ∩ A′.

If this occurs, we say that G is a d-dimensional base abstraction ofA on
the symbol set S. The diameter of the base abstraction is the diameter of the
graph G.

Kim (2012)

Example. Note that base abstractions are not necessarily well defined from
the vertex set! For example, if we define S � {1, 2, 3, 4, 5}, d � 3, and
A � {{1, 2, 3}{1, 2, 4}{1, 2, 5}}, the following are valid base abstractions
derived from the same vertex set.

{1,2,3} {1,2,4}

{1,2,5}

{1,2,3} {1,2,4}

{1,2,5}
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Example. Note that graphs of simple d-dimensional polyhedra with n facets
can be represented as base abstractions, with proper choice of (A , E). For
example, the cube can be realized as a base abstraction as follows:

{3,4,6}

{1,3,4}

{4,5,6}

{2,3,6}

{1,4,5}

{1,2,3}

{2,5,6}

{1,2,5}

In general for d-dimensional polyhedra with n facets and vertices with
degree d, we may create a base abstraction by the following algorithm. Let
S � {1, 2, ..., n}. Assign each i ∈ S to a facet, and for each vertex vk , let its
corresponding set Ak ∈ A, be defined as such: Ak contains i ∈ S if and only
if v is on the border of facet i. Note then thatA ⊆

(S
d

)
.

2.2 Connected Layer Families

We now come to a new definition of a family of sets, which have similar
properties to the properties outlined in the Combinatorial Polynomial Hirsch
Conjecture.

Definition 2.2.1. A d-dimensional connected layer family ofA ⊆
(S
d

)
on a set

of n � |S | symbols is a familyV � {V0 , ...,Vt} of non-empty sets such that:

• partition property: A �V0 ∪ ... ∪Vt

• disjointness property: Vi ∩Vj � ∅ if i , j

• connectivity property: for all i < j < k and A ∈ Vi ,A′ ∈ Vk , there is
an A′′ ∈ Vj such that A ∩ A′ ⊆ A′′.
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Each individualVi is called a layer. The diameter of the connected layer
familyV � {V0 , ...,Vt} is t.

Kim (2012)

Example. A straightforward example of a connected layer family is:

• V0 � {{1, 2, 5}}

• V1 � {{1, 4, 5}, {1, 2, 3}, {2, 5, 6}}

• V2 � {{1, 3, 4}.{4, 5, 6}, {2, 3, 6}}

• V3 � {{3, 4, 6}}

It is clear here that the partition property and disjointness property are held.
An example of the connectivity is setting i � 1, j � 2, k � 3. Then note that
for A ∈ V1 and A′ ∈ V3, A ∩ A′ is only ever 3, 4, or 6, all of which are in sets
inV2.

This connected layer family was obtained from the cube in the previous
example: we tookV0 to be one vertex, and placed each other subset in a layer
corresponding its distance from the initial subset. In general, this process
can be used to obtain a connected layer family from a base abstraction. This
will be proved later.

Base abstractions and connected layer families are linked. Let B(n , d)
represent the maximum diameter of a d-dimensional base abstraction gener-
ated from a symbol set of size n, and C(n , d) represent the maximum size of
V of a d-dimensional connected layer family generated from a symbol set of
size n.

Theorem 2.2.1. Let G � (A , E) be a d-dimensional base abstraction and fix a
particular d-subset Z ∈ A. Then, letVi :� {A ∈ A : distG(A, Z) � i}. Then
V � {V0 , ...,Vt} is a connected layer family.

Proof. The partition property and disjointness properties ofV follow from
our construction: each d-subset has a unique distance away from Z, and thus
falls into one and only one setVi . ThusA �V0 ∪ ... ∪Vt andVi ∩Vj � ∅
if i , j.

To prove the connectivity property, we will begin with the case where
i � 0. Any set Z′ ∈ Vk must be distance k away from Z in G. By the base
abstraction property, any vertex Z′′ ∈ A on a path P connecting Z and Z′
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must contain Z ∪ Z′. Since P contains vertices in all Vl for 0 ≤ l ≤ k, we
have demonstrated the connectivity property for i � 0.

For i > 0 the proof follows similarly. Given any A ∈ Vi ,A′ ∈ Vk , by
the base abstraction property, every v ∈ A on a path P connecting A and
A′ contains A ∩ A′. We may show P must move through a point in every
Vj , ...,Vk . Suppose to the contrary that P does not contain a vertex inVl for
j < l < k. In that case, P must jump at some point from a vertex v ∈ Vm to a
vertex v′ ∈ Vn for m < l < n. However, this would imply that v′ has distance
m + 1 from Z and thus v′ ∈ Vm+1. Therefore m + 1 � n, a contradiction since
m < l < n and thus |m − n | > 1. Thus P passes through eachVl for i < l < k
and we have demonstrated the connectivity property for i > 0.

Thus the layering process forms a connected layer family from a base
abstraction. �

Corollary 2.2.1.1. B(n , d) � C(n , d).

Proof. The proof comes from the fact that we may generate a connected layer
family from a base abstraction’sA-set, and vice versa, based on the distances
of the subsets inA. To show B(n , d) ≤ C(n , d), we use the previous theorem,
thus demonstrating that the diameter of a base abstraction is less than or
equal to the maximum size ofV.

To show C(n , d) ≤ B(n , d), we use a reverse process: if A ∈ Vi and
A′ ∈ Vj , then connect A and A′ if and only if |i − j | ≤ 1. It is clear that this
will produce a base abstraction, from the connectivity property of connected
layer families, and thus the maximum size ofV is less than or equal to the
diameter of a base abstraction generated from the same set.

�

So we note that given any simple polytope, we can generate not only a
base abstraction, but a connected layer family corresponding to it as well!
Then, if the Combinatorial Polynomial Hirsch Conjecture is true, the Hirsch
Conjecture will be as well. Additionally, Connected Layer Families and
Base Abstractions are considerably easier to work with than d-dimension
polytopes, so we have a nicer environment to work with in an attempt to
prove (or disprove) the Hirsch Conjecture.

It is worth noting that we can slighlty weaken the definition of Connected
Layer Families and Base Abstractions to apply them to non-simple poly-
nomials, polynomials where vertices have variable degrees. To do so, we
remove the restriction thatA ⊆

(S
d

)
, and instead letA ⊆ 2S. In other words,
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the subsets of S may have variable size. The properties we have proven still
hold, as none of our proofs utilized the fact that the subsets all had size d.

However, additional properties must be considered if we are to attempt to
equivocate the conjectures, as not every Connected Layer Family belonging to
C(n , d)may correspond directly to a d-dimensional polytopes with n facets,
that is, the Connected Layer Family may not have polygonal representations.
We may introduce a generalized form of connected layer families to work
with instead, and introduce restrictions which may help us find a direct
bĳection between the two conjectures.



Chapter 3

Subset Partition Graphs
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Now that we have motivated the connection between the Hirsch Con-
jecture and the Combinatorial Polynomial variant, we may introduce a
generalization of base abstractions, subset partition graphs.

Definition 3.0.1. Fix a finite set S of cardinality n and a set A ⊆
(S
d

)
of

subsets. Let G � (V , E) be a connected graph with vertex setV � {V0, ...,
Vt}. IfV is a partition ofA in the sense that:

• A �V0 ∪ ... ∪Vt ,

• Vi ∩Vj � ∅ if i , j, and

• Vi , ∅ for all i.

Then we say that G is a d-dimensional subset partition graph of A on the
symbol set S.

Kim (2012)

Example. Recall the cube from before:

{3,4,6}

{1,3,4}

{4,5,6}

{2,3,6}

{1,4,5}

{1,2,3}

{2,5,6}

{1,2,5}

Assign each vertex to a uniqueVi , then we have a 3-dimensional subset
partition graph.

We may note that subset partition graphs are a weaker version of con-
nected layer families - though they share the same structure, the subset
partition graph contains no connectivity property, other than requiring that
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the graph be connected. However, wemay also note that a d-dimensional sub-
set partition graph is a combinatorial abstraction of a simple d-dimensional
polyhedra with n facets. Each of the n facets of a d-dimensional polyhedron
P corresponds to a symbol s ∈ S and a vertex of P corresponds to a d-set
A ∈ A given by the incident facets. However note that subset partition
graphs alone do not yield much interesting information - we must define
additional properties.

3.1 Restriction

Definition 3.1.1. (Restriction) Let G � (V , E) be a subset partition graph of
A on the symbol set S, and let F ⊆ S be a collection of symbols. We define a
new subset partition graph GF � (VF , EF) ofAF on the symbol set S′ :� S.

We define AF :� {A ∈ A : F ⊆ A}. That is to say, AF is obtained from
deleting fromA (and the containingVi) any d-set A which does not contain
F. This deletion from the vertices inV which are still non-empty, and two
vertices inVF are connected by an edge in EF exactly when the associated
vertices were connected in E. The subset partition graph GF is called the
restriction of G with respect to F.

Kim (2012)

Example. For example, let us consider the cube from before, but restricted
with F � {1, 2, 3}. Then, GF appears as such:

{3}

{1,3}

{2,3}

{1}

{1,2,3}

{2}

{1,2}
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In terms of polytopes, we can think of restriction as removing certain
faces, and the corresponding edges and vertices from the vertex-edge graph.
This gives us an interesting method of observing only certain aspects of
polytopes or sets, and potentially allows us to reduce dimensions. If we were
to let F � {1} in the previous example, we would have returned a square.

3.2 Applicable Properties to Subset Partition Graphs

Edward Kim outlines four main properties which can be considered for
subset partition graphs which may produce interesting results:

• dimension reduction: if F ⊆ S such that |F | ≤ d then the underlying
graph of the trestriction GF is a connected graph.

• adjacency: if A,A′ ∈ A and |A ∩ A′ | � d − 1, then A and A′ are in the
same or adjacent vertices of G.

• strong adjacency: adjacency holds and if two verticesVi andVj are
adjacent in G then there are d-sets A ∈ Vi and A′ ∈ Vj such that
|A ∩ A′ | � d − 1.

• endpoint-count: if F ∈
( S
d−1,

)
then |{A ∈ A : F ⊂ A}| ≤ 2.

Kim (2012)
Kim states that these properties are defined in a manner such that we

may flip these properties "on" and "off" as we want a flexible framework
where we consider certain collections of properties at a time. Each one of
these properties has its own set of implications.

Example. Note that the cube follows the dimension reduction property!
There are only two unique ways (up to symmetry) to remove three faces,
one such instance is demonstrated in the previous example, and the other
can be seen as a rectangle bent along two lines.
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{3}

{1,3}

{5}

{3}

{1,5}

{1,3}

{5}

{1,5}

However in this reduction, since no vertices have been omitted, all
edges are still present; some have been removed in the diagram simply to
demonstrate the full structure of the reduction.

Example. We may note as well that our cube follows all four properties.
Endpoint-count is satisfied in that the intersection of d − 1 facets is an edge,
which connects two vertices, the only two which touch all of those facets. In
the case of a cube, the intersection of 2 faces is an edge, which corresponds
to the two vertices connected by the edge. Adjacency and strong adjacency
follow similarly.

Note that the class of subset partition graphs with the dimension reduc-
tion property with the additional condition that the underlying graph of G
is a path is exactly the class of connected layer families.

There are a few additional combinatorial properties of polytopes which
translate into natural properties to consider for subset partition graphs.

• d-connectedness: the graph G is d-connected.

• d-regularity: the graph G is d-regular.

• d-neighbors: for every A ∈ A , |{A′ ∈ A\{A} : |A ∩ A′ | � d − 1}| � d.

• one-subset: |Vi | � 1 for each i � 0, ..., t .

Example. Again, note that the cube obeys all of these properties. The cube is
3-connected, that is, we must remove a minimum of 3 vertices to disconnect
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the graph. It is 3-regular, that is, each vertex has degree three, also showing
the d-neighbors property. Lastly, we construct the cube graph by putting
each A in its ownV-set, so the one-subset property is fulfilled.

Note that the d-connectedness property for subset partition graphs is
desirable, since the graph of a d-dimensional polytope is d-connected by
Balinski’s Theorem. It may be observed that d-regularity and d-neighbors
hold for simple d-polytopes (where each vertex has the same degree).
However, note that these properties do not hold for unbounded polyhedra.
THe one-subset property holds for the graphs of polytopes, as each vertex in
the subset partition graph should contain the d-set of incident facets. Kim
(2012)

We may lastly introduce two graph operations. LetVi andVj be two
vertices inV. Then:

• Contraction: IfVi andVj are connected by an edge in E, contraction
on the edge produces a new subset partition graphwith one less vertex:
the two vertices Vi and Vj are replaced with a new vertex which
contains all of the d-sets which were inVi andVj .

• Edge addition: If Vi and Vj were not connected by an edge in E,
edge addition makes the two vertices adjacent. The resulting subset
partition graph has one more edge than the original partition graph G
does.

Note that dimension reduction, adjacency, and endpoint-count properties
for subset partition graphs are preservedunder the outlinedgraphoperations.
Additionally, after a sufficient number of contractions and edge additions, the
resulting graph will be a complete graph, and thus the dimension reduction
and adjacency conditions will hold. Kim (2012)
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4.1 Returning to Connected Sets

Now, we shift focus from establishing a solid background on the Hirsch
Conjecture and polytopes, and the duality of connected layer families,
base abstractions, and polytopes, and will begin to play with sets with the
Combinatorial Polynomial Hirsch Conjecture properties given. Our goal is
to gain a better understanding of how the sets behave at lower dimensions
or n-values, with the hope that we can generalize to higher dimensions or
more complex examples. In addition, we look to understand which sets can
correspond to polytopes and which do not, as a long term goal to attempt to
draw equivalency between the conjectures.

Recall that the Combinatorial Polynomial Hirsch Conjecture states:

Conjecture 4.1.1. Combinatorial Polynomial Hirsch Conjecture Consider
t non-empty families of subsets F1 , ..., Ft of {1, ..., n} that are disjoint (i.e.
no set S can belong to two of the families Fi , F j). Suppose that for every
i < j < k and every S ∈ Fi and T ∈ Fk , then there exists R ∈ F j such that
S ∩ T ⊂ R. Let f (n) be the largest value of t for which this is possible. Then
f (n) is of polynomial size in n.

Kalai (2010a)

Example. The family of sets: {}, {1}, {12}, {123}, {23}, {3} is a valid family
according to the connectivity property above.

The family of sets: {}, {12}, {1, 2}, {123}, {3} is not a valid family, here
we see that {12} ∩ {123} � {12}, which is not contained in {1, 2}.

The family of sets {}, {1}, {1, 2}, {23}, {2, 3} is not a valid family, as the
subset {2} explicitly falls in both {1, 2} and {2, 3}.

We look to seek bounds on f (n), both upper and lower. Trivially
f (n) ≤ 2n since there are 2n subsets of Sn . We can also show that in
general, f (n) ≥ 2n, by the following construction: {}, {1}, {12}, {2}, {23}, ...,
{(n − 1)n}, {n} Kalai (2010a).

An alternative construction is: {}, {1}, {12}, ... {12...(n − 1)n}, {2...(n −
1)n}, ... {(n − 1)n}, {n}. Note that if the set {12...(n − 1)n} is contained
in a family (and we are working with n-sets), the rest of the family must
be of the above form, although other arbitrary subsets may be thrown in
the collections if desired, and some of the other families may be missing,
although this would render the family non-maximal (if maximality was an
option).
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4.2 f(n) for Very Small n

In fact, for n ≤ 4, it is true that f (n) � 2n!

Theorem 4.2.1. For n ≤ 4, f (n) � 2n.

Kalai (2010a)

Proof. First note that if a sequence of families contains {12. . . n}, then it
contains an ascending chain to the left of this set and a descending chain to
the right, and thus has length at most 2n, as we see in the above example.

If 12. . . n is not used and two subsets A,B of cardinality n − 1 appear
in families Fi , F j then |i − j | eq2 - this is because only one set contains the
intersection of A and B, that intersection set itself.

With these two properties we prove f (3) � 6 and f (4) � 8 as follows:

For f (3), suppose to the contrary that f (3) > 6 - then the maximal family
cannot contain 123 and thus f (3) � 7, as there are only 7 subsets of 123
remaining. However note that the three subsets 12, 23, and 13 cannot all fall
in different families, since this would violate the connectivity property, no
matter how we order them, a contradiction.

For f (4), as before, we can assume no Fi contains 1234, as this set would
have length 8. We do a case study according to how many of the triplets abc
are used. That is, how many of the I(abc)’s are non-empty, where I(x) is a
restriction of subset x upon the family of sets (note that the restriction will
return connected sets due to the connectivity property):

If three or four I(abc) are non-empty, then they are confined to an
interval of length 3 by the second property above. It follows that the I(ab)
are confined in an interval of length 5 (because any of them is contained in
one of the used abc’s), and the I(a) are confined in an interval of length 7.
We are done because I(0) contains at most one more element, and therefore
the family has 8 collections of sets.

The second case is when exactly two I(abc) are non-empty, say I(123)
and I(124) without loss of generality. If their values differ by 2 (which is
maximum possible), then I(13) and I(23) are confined in an interval E of
length 3, I(14) and I(24) are confined in an interval F of length 3, and F
intersects E in only one point (between I(123) and I(124)). Now I(34) can be
empty, in which case the I(ab) are confined in an interval E∪F of length 5, or
I(34) is a singleton and we only have to show that it is in that same interval.
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But if it where, e.g., on the right of this interval, then I(3) would have at
least 2 points not lying in any of I(13), I(23), I(123) nor I(34), a contradiction.
Then in this case, the maximum length of the collection is 8.

If I(123) and I(124) are adjacent or equal, then all of I(ab)where ab is not
34 are confined in a interval G of length 4, which is a union of two intervals
of length 3, the first one containing I(13) and I(23), the second one I(14) and
I(24). A similar argument than above proves that I(34)must be adjacent to
G. This case is suboptimal compared to the above case, so we may disregard
it.

The third case is when exactly one of the I(abc) is not empty, I(123) say.
Then I(12), I(23) and I(13) are confined in a interval E of length 3 around
I(123), and I(14), I(24), I(34) are either empty or singletons. Looking at I(1)
shows that (if not empty) I(14) is in the 2-neighborhood of E. But looking at
I(4) shows that all non-empty I(a4) are at distance at most 2, so that all I(ab)
are confined in some interval of length 5. Some of them could be empty, but
in any case it is easily checked that I(0) is confined in an interval of length at
most 8.

Kalai (2010a)
For the fourth case, assume that all I(abc) are empty but some I(ab) are

not. Note that I(a) can only have length at most 4, and that it must intersect
with all other I(b) in that span. If I(a) has length 4 then the maximum size
of the set is 8. Additionally if I(a) has length 3 and this is maximum for
all elements, it will not intersect with some I(b), rendering I(b) to length
at most 2. Additionally the I(c) potentially connecting I(b)may only have
length up to 3 since it cannot use element d - I(d)must also have length 2.
The situation described here is exactly the construction described to show
f (4) ≥ 8, above.

Last, consider the case when all I(ab) are empty. Then we have at most
4 points covered by the I(a), and at most 5 by I(0), and we are (finally)
done. �

One last quick lemma which gives us a framework for recursively trying
to build up (n + 1)-families from n-families is as follows:

Theorem 4.2.2. If f (n) � k, f (n + 1) ≥ k + 2.

Proof. We prove so with an explicit construction. The collection, if it is
maximal, either begins or ends with an empty set. Let the non-empty
tail set be of the form {a1 , ..., ak}. Then append the following two sets on:
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{a1 ∩ {n + 1}, ..., ak ∩ {n + 1}}, {n + 1}. This set is not guaranteed to be
maximal but it has length 2 longer. �

In initial constructions of the above lemma, itwas considered that perhaps
the last set is a singleton of the form {a}. Though no counter-examples have
been discovered, no clear proof of this has been realized as of yet.

Conjecture 4.2.1. Every maximal set begins on an empty collection and ends
on a singleton set of the form {a}, or vice versa.

Until recently a proof idea existed, but one case persisted to exist - the case
where we end on a set of the form {i j} but have a set in the middle including
the subset {i} and another of the form { j}. At present, it is not believed that
such a maximal set could exist however. A proof of this conjecture would
be extremely helpful, as this would greatly simplify the process of finding
maximal sets.

While it may seem intuitive that a maximal set should begin and end on
a singleton (excluding the null set), observe the following set, which helps
build up a 5-set demonstrating f (5) ≥ 11:

Example. {}, {12}, {1, 2}, {13, 24}, {14, 23}, {3, 4}, {34}
This set is one away frommaximality, and additionally has the interesting

property that any I(ab) has length 1. Hence, it is impossible to insert any
subset of size 3 into a new family.

A last quick bound for f (n) is provided on polymath, this time a recursive
upper bound on f (n).

Theorem 4.2.3. f (n) ≤ f (n − 1) + f (bn/2c) + f (b(n − 1)/2c) − 1

Kalai (2010a)
The proof of this follows similarly to the proof that f (5) < 13, which will

be presented in the next chapter.





Chapter 5

f(5): A Challenging Task
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While f (3) and f (4)were relatively easy to find and prove, f (5) is more
challenging to harness. We note this is the first instance where f (n) , 2n.

Theorem 5.0.1. f (5) = 11.

Two constructions from polymath are as follows:

• {}, {1}, {15}, {14, 5}, {12, 35, 4}, {13, 25, 45}, {245, 3},
{24, 34}, {234}, {23}, {2}

• {}, {1}, {12}, {125}, {15, 25}, {135, 245}, {145, 235},
{35, 45}, {345}, {34}, {4}

Note that in the previous chapter, we witnessed the example of a close to
maximal 4-family, {}, {12}, {1, 2}, {13, 24}, {14, 23}, {3, 4}, {34}. Note that
the second set was built up from this set by removing the first collection,
then adding a 5 to each subset, then completed by extending the two
ends naturally. In the future, this method could provide a framework for
recursively building maximal sets.

Proving f (5) < 13 is fairly straightforward.

Proof. ( f (5) < 13) Suppose to the contrary that f (5) � 13. Then there are
12 non-empty sets, without loss of generality say S0 � {}. Additionally
S1 , S2 , S3 must contain 3 elements, since otherwise if they contain two they
contain some isomorphic copy of {1}, {12}, {2} which implies the other 9
sets must contain only 4 elements, a contradiction since f (4) � 8. The same
argument applies for S10 , S11 , S12. Then there is some element i that spans
sets S3 through S10. Restricting those sets to the other four elements implies
there is a 4-set collection of length 8. However, since the first or last element
of a maximal 4-set is empty, this implies S3 or S10 is the set {i}, which brings
us back to the first case, a contradiction. �

Similarlywe can show for anyodd n � 2k+1, f (2k+1) < f (2k)+2( f (k)−1),
the proof follows the same steps as above generalized to k.

The next proof that f (5) < 12 comes from Polymath, so it has not been
properly peer reviewed and may be flawed. However it appears to be valid.
Unfortunately it is proven entirely by casework and is difficult for one to
verify.

Proof. ( f (5) < 12) Suppose to the contrary that f (5) � 12.
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Suppose we have a counterexample that under restriction to sets con-
taining the element 5 contains a set of length 7 which does not contain the
set containing only the element 5 but contains a set which under restriction
contains all 4 elements. Then we know that the original set must contain
a set which contains all the elements and hence has length 10. So we can
eliminate this case.

For the next case assume that in the restriction to sets containing the the
element 5 we don’t have a set with four elements and the element 5, we don’t
have a set containing the element 5 only, and we have three sets containing
the element 5 and three other elements. We note 3 or more sets of three
elements and the element 5 contains all combinations of two elements and
the element 5.

Now the first family and the second family must contain a set containing
at least a pair of elements. If not, there are only single elements in the first
two elements. Then one element will only appear in one single set which
cause the entire case to have at most 9 families and we are done. The last
and the second to last family must also contain a set containing a pair of
elements by similar reasoning.

Since all pairs are contained in the three sets containing three or more
elements and the element 5, the pairs mentioned at the second and first
families and those at the other end must be in the sets of three and the
element 5. This means that the third and third to last families must contain
sets containing three or more elements. Now if either of these families
doesn’t contain the element 5 then they will contain a common element and
we continue this proof with that element replacing the element 5. If it is a
previous case we use the previous proof and if it is one the cases to come we
will deal with it then.

Next we note that the three sets of three elements and the element 5
must lie within three consecutive positions or else the extremal sets of three
elements must contain a common pair which must appear four times which
is not possible. Now all the sets of two elements and the element 5 which
are contained in the sets of three elements and the element 5, which as we
have noted are all the sets of two elements, and the element 5 must appear
in the positions containing the the three element sets and the element 5 or
the two other positions adjacent to these which is a total of five positions.
But we have two sets of three elements at both ends of the sequence which
correspond to a set of two elements and the element 5 which lie on a span of
7 elements and we have a contradiction and we are done.

For the next case assume that in the restriction to sets containing the the
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element 5 we don’t have a set with four elements and the element 5 and
we don’t have a set containing the element 5 only and we have two sets
containing the element 5 and three other elements. We note 2 sets of three
elements and the element 5 contains all combinations of two elements and
the element 5 except one pair. In this case we will assume that this pair of
elements together with the element 5 is present.

Now the first family and the second family must contain a set containing
at least a pair of elements. If not there are only single elements in the first
two elements. Then one element will only appear in one single set which
cause the entire case to have at most 9 families and we are done. The last
and the second to last family must also contain a set containing a pair of
elements by similar reasoning.

Since all pairs are contained in the 2 sets containing three or more
elements and the element 5, or the set consisting of the remaining pair and
the element 5, the pairs mentioned at the second and first families and those
at the other end must be in the sets of three and the element 5. And this
means that the third and third to last families must contain sets containing
three or more elements. Now if either of these families doesn’t contain the
element 5 then they will contain a common element and then we continue
this proof with that element replacing the element 5. If it is a previous case
we use the previous proof and if it one the cases to come we will deal with it
then.

Next we note that the two sets of three elements and the element 5
must lie within three consecutive positions or else the extremal sets of three
elements must contain a common pair which must appear four times which
is not possible. Now all the sets of two elements and the element 5 which are
contained in the sets of three elements and the element 5 which as we have
noted are all the sets of two elements except 1 and the element 5 must appear
in the positions containing the the three element sets and the element 5 or
the two other positions adjacent to these which is a total of five positions.
But we have two sets of three elements at both ends of the sequence which
means that we have the set of two elements not in the two triples together
with the element 5 at one end of the sequence.

Now at the other end of the sequence there is a set of two or three
elements together with the element 5. If there is a set of three elements
there is one element in common with besides 5 in one set for each of the 7
elements and we get a contradiction.

So there must be a two element set plus the element 5 at both ends and at
one end there must be the two elements in the intersection of the two three
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element sets plus the element 5 and at the other the two elements in neither
set of 3 plus the element 5.

Then the two sets of three elements plus the element 5 must lie in the
two spaces following the set of two elements plus the element 5 as there is
no remaining element to fill the space between them.

Then the remaining sets of two elements plus the element 5 can only go
in the next consecutive slot.

This means that the two slots preceding the set of two elements not in
either triple plus the element 5 can only be single elements plus the element
5. But this means that the elements in these sets are disjoint which means
that there can be no common elements on either side but either set of three
elements plus the element 5 has an element besides the element 5 in common
with the set of two elements not in either set of three elements. We have a
contradiction and we are done.

�

Kalai (2010a)
As we can see, even demonstrating that f (5) � 11 is an arduous task. It

is safe to expect even more difficulty in verifying f (n) for larger n. While
computing small f (n)may have merit, perhaps instead of finding an explicit
formula it is wiser to look for ways to tighen upper bounds.





Chapter 6

f(6): A Potential Start
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Considerable work has been put into finding the value of f (6), which
has proven challenging. From the previous section, there are a few things
we can conclude immediately:

• f (6) ≥ 13, since f (n + 1) >� f (n) + 2.

• f (6) ≤ 20 by our recursive bound.

Unfortunately, this leaves uswith a lot ofmargin of error. One observation
however (which was previously mentioned) is that one of the maximal size
n � 5 collections can be considered as a recursive build from a smaller n � 4
set.

• {}, {1}, {12}, {125}, {15, 25}, {135, 245}, {145, 235}, {35, 45}, {345}, {34}, {4}
which is a maximal set, when restricted to to {1, 2, 3, 4} produces a very nice
looking set:

• {}, {1}, {12}, {12}, {1, 2}, {13, 24}, {14, 23}, {3, 4}, {34}, {34}, {4}.

This setwas built up from taking the non-maximal setwith the interesting
property that it both starts and ends (excluding the empty set) on sets of size
2.

• {12}, {1, 2}, {13, 24}, {14, 23}, {3, 4}, {34}

(one short of maximality, since the empty set is not included), and adding
a 5 to each subset of S, then finished by competing the trail of non-5 sets.
We conjecture that a similar process could be used to create larger 6-sets.

Note that because the above non-maximal 4-set begins with a set of size
2, this enables 3 sets to be inserted before it when generating the 5-set, and
similarly, the ending 2-set enables 2 additional sets to be inserted after. In
general, if we have some length k n-set which begins with a set of size a0
and ends with one of size a1, then we can generate a length k + a0 + a1 + 1
(n + 1)-set. If a0 and a1 are 0 and 1 respectively, then we see this is the same
as the recursive bound proven earlier.

Now we face a new question - what is f (5) when we demand that the
starting and/or ending set is of size 2? Though we lack evidence, it is
believed that if we restrict both the start and end to be of size 2, f (5) � 8
which then gives us a construction of size 13 - unhelpful for recursively
generating maximal sets. However, a set of size 9 of this form could exist - it
simply has not been discovered yet.

A few sets generated are:
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• {12}, {1, 2}, {14, 25}, {143, 253},
{153, 243}, {15, 24}, {4, 5}, {45}

• {12}, {1, 2}, {13, 23}, {143, 253},
{153, 243}, {45, 34}, {4, 5}, {45}

which then correspond to 6-sets of size 13:

• {}, {1}, {12}{126}, {16, 26}, {146, 256},
{1436, 2536}, {1536, 2436}, {156, 246},
{46, 56}, {456}, {45}, {4}

• {}, {1}, {12}{126}, {16, 26}, {136, 236},
{1436, 2536}, {1536, 2436}, {456, 346},
{46, 56}, {456}, {45}, {4}

We also have our set generated from the proof that f (n + 1) ≥ f (n) + 2:

• {}, {1}, {12}, {125}, {15, 25}, {135, 245},
{145, 235}, {35, 45}, {345}, {34}, {4}, {46}, {6}

Generating a 6-set of size greater than 13 has not occurred as of yet.
However, the implication that f (6) � 13 is strange to believe, as this implies
that the rate of growth of f actually slows at points. Given the complex
constraints of these sets, it is entirely plausible that this occurs. These sets
behave in unpredictable ways, and it is certainly possible that some factors,
such as the parity of n, could affect the growth rate of f (n).

On the other hand, a construction that shows that f (7) ≥ f (6) + 3 is
more plausible, by using a similar construction going from f (4) to f (5). The
convenience of working when n is even plays nicer - see the non-maximal
set from earlier. We have much more symmetry, which plays a key role in
creatinng these recursive sets.

Perhaps one direction to go from here is to show that f (n + 1) − f (n) ≥
f (n) − f (n − 1), to confirm that f (6) � 13 is false. However, a full proof
cementing the value of f (6)will be quite difficult, especially considering the
fact that it will be considerably harder than proving f (5) � 11.





Chapter 7

Where Do We Go From Here?
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A first step would like to be able to identify exactly when a subset
partition graph is some form of d-dimensional polytope. Perhaps this is the
easiest question to study.

Kimbrings up a fewopenquestionswhich are of interest. These questions
are certain cases of the Combinatorial Polynomial Hirsch Conjecture, and
while they may not immediately solve the conjecture, they are still steps
towards a full solution. Kim (2012)

• Problem 1: Prove a non-trivial upper bound on the diameters of
subset partition graphs with the strong adjacency and endpoint-count
conditions.

• Problem 2: Construct a family of subset partition graphs with super-
linear diameter satisfying all of the main properties.

Subset partition graphs satisfying strong adjacency and endpoint-count
conditions have superlinear diameter (as noted in Kim’s paper), which
is evidence against the original Linear Hirsch conjecture. This motivates
question 2, and Kim provides a possible approach for constructing a class of
subset partition graphs with all three properties, which provides a method
of disproving the Linear Hirsch Conjecture. Kim (2012)

• Start with a family of subset partition graphs satisfying at least the
endpoint-count property with superlinear diameter growth, such as
the family resulting from Theorem 4.4 or 4.5 (see Kim’s paper).

• Gain the other main properties that do not yet hold with contraction
and edge addition operations.

• If the resulting family of graphs still has superlinear diameter, realize
the sequence of graphs as a sequence of polytopes.

Other mathematicians have worked towards this direction as well, and it
is quite clear that this construction is quite difficult. Kalai (2010b)

To go about looking for answers in one of these questions, the first step
is to further examine the various properties outlined in chapter 3. When
is there a one to one correspondence between subset partition graphs and
d-dimensional regular polytopes, for example?

Lastly, a question that deals with the correlation between the two conjec-
tures is as follows:
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• When does a collection of subsets of a set correlate to a polytope in d
dimensions?

If we restrict ourselves to regular polytopes of d dimensions, then
we already have been provided a framework for determining when sets
correspond to polytopes and vice versa. However, if we remove regularity,
then the question becomes much more difficult, as we could have subsets
of multiple sizes corresponding to different vertices, which could then
correspond to the number of facets that vertex touches. Though it is true
that the Combinatorial Polynomial Hirsch Conjecture implies the Hirsch
Conjecture, finding a stronger statement could be fruitful.
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