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Abstract

Hyperharmonic numbers arise by taking repeated partial sums of harmonic numbers.
These numbers can be expressed in terms of r-Stirling numbers, leading to combinatorial
interpretations of many interesting identities.

1. Introduction

The harmonic numbers, defined by Hn =
∑n

k=1
1
k

arise frequently in the solution to
combinatorial problems and in the analysis of algorithms. It is well known [6] that

Hn =

[
n+1

2

]
n!

(1)

where
[
n
k

]
denotes the (unsigned) Stirling number of the first kind, counting the permu-

tations of n elements that are the product of k disjoint cycles. This allows harmonic
number identities to be viewed combinatorially, as in [2].

The quantity Hn can be generalized many ways (see, for instance, [9]). The general-
ization we pursue, called hyperharmonic numbers by Conway and Guy [5], are obtained
by taking repeated partial sums of the Harmonic numbers.

Formally, we define Hr
n, the hyperharmonic number of order r as follows.

Definition 1 Let Hr
n = 0 for r < 0 or n ≤ 0, H0

n = 1
n

for n ≥ 1, and for r, n ≥ 1, let

Hr
n =

n∑
i=1

Hr−1
i . (2)
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Note that H1
n is equal to the ordinary harmonic number Hn.

In [5], Conway and Guy express the hyperharmonic numbers in terms of ordinary
harmonic numbers.

Hr
n =

(
n + r − 1

r − 1

)
(Hn+r−1 −Hr−1). (3)

The presence of the binomial coefficient suggests that a deeper combinatorial rela-
tionship exists. As we shall see, the hyperharmonic numbers satisfy several interesting
identities like the ones below.

nHr
n =

(
n + r − 1

r

)
+ rHr+1

n−1 (4)

(
m− 1

r − 1

)
Hm

n =

(
n + m− r

n

)
Hr

n+m−r −
(

n + m− 1

n

)
Hr

m−r for 1 ≤ r ≤ m (5)

r∑
t=1

H t
n = Hr

n+1 −
1

n + 1
(6)

Hr
n =

n∑
t=1

(
n + r −m− t− 1

r −m− 1

)
Hm

t for 0 ≤ m ≤ r − 1 (7)

Hr
n =

m∑
t=0

(
m

t

)
Hr−t

n+t−m for 0 ≤ m ≤ r (8)

Hr
n =

n∑
s=m

(
n + r − l − s

r − l

)
H l−1

s +
r∑

t=l

(
n + r −m− t

n−m

)
H t

m−1 (9)

for 1 ≤ l ≤ r and 1 ≤ m ≤ n.

A generating function for the hyperharmonic numbers is

− ln(1− x)

(1− x)r
=
∞∑
i=1

Hr
i x

i

since − ln(1−x) =
∑

xn

n
, and multiplying by 1

(1−x)r has the effect of taking partial sums r

times. This generating function is equivalent by (3) to an identity in [7]. Although many
of the identities in this paper can be proved using algebraic methods, we shall prove all
of these by simple combinatorial arguments.
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2. Basic properties of hyperharmonic numbers

There are two different ways to approach the hyperharmonic numbers combinatorially.
One is to investigate the numerator of the unreduced fraction, i.e., n!Hr

n. This approach
will be followed in the next section. The other is to write Hr

n as the sum of fractions 1
t
,

where t ranges from 1 to n, and ask how many times each fraction appears in this sum.
The answer is given by the following theorem.

Theorem 1

Hr
n =

n∑
t=1

(
n + r − t− 1

r − 1

)
1

t
.

Proof. Given a particular t, where 1 ≤ t ≤ n, we claim that the fraction 1
t

is counted
exactly

(
n+r−t−1

r−1

)
times. To see this, consider the weighted directed graph with vertex

set V = {(x, y)|x ≥ 1, y ≥ 0} and the arcs leaving (x, y) enter vertices (x′, y + 1), where
x′ ≥ x. We give each vertex (x, y) a weight of Hy

x . Hence for all t ≥ 1, (t, 0) has weight
1
t

and for x, y ≥ 1, (x, y) has weight
∑

x′≤x Hy−1
x′ , which is the sum of the weights of the

vertices that point to (x, y).

Thus the fraction 1
t

appears in Hr
n for every path from (t, 0) to (n, r), i.e., for every

sequence t ≤ x1 ≤ · · · ≤ xr−1 ≤ n. This is the same as the number of size r − 1
multisubsets of {t, . . . , n}, which equals((

n− t + 1

r − 1

))
=

(
n + r − t− 1

r − 1

)
as desired, where

((
n
k

))
=

(
n+k−1

k

)
is the number of size k multisubsets of an n-element

set. 2

More generally, for 0 ≤ m ≤ r− 1, by counting all paths from (t, m) to (n, r), we see
that for 1 ≤ t ≤ n, Hm

t is contributed
((

n−t+1
r−1−m

))
=

(
n+r−t−m−1

r−m−1

)
times, and Identity (7)

follows. Similar path counting arguments can also be used to establish equations (6), (8)
and (9), but we shall provide other combinatorial proofs of these in Section 4.

We now begin our discussion of the combinatorial nature of the numerator of Hn,r.
We can write Hr

n as a (typically non-reduced) fraction of the form

Hr
n =

an,r

n!
. (10)

Thus a0,r = 0 and for n ≥ 1, an,0 = (n− 1)! . For n, r ≥ 1,

Hr
n =

n∑
i=1

Hr−1
i = Hr

n−1 + Hr−1
n

=⇒ an,r

n!
=

an−1,r

(n− 1)!
+

an,r−1

n!

=⇒ an,r = n an−1,r + an,r−1 (11)
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We shall use this recurrence and initial condition to prove a generalization of equation
(1).

3. r-Stirling numbers

The r-Stirling numbers, which are similar to the weighted Stirling numbers of Carlitz [4]
and are a special case of the generalized Stirling numbers of Hsu and Shiue [8], can be
defined combinatorially in terms of restricted permutations. Broder [3] gives the following
combinatorial definition, which we will use throughout this paper:

Definition 2
[
n
k

]
r
is the number of permutations of the set {1, 2, . . . , n} having k disjoint,

non-empty cycles, in which the elements 1 through r are restricted to appear in different
cycles.

Note that
[
n
k

]
0

and
[
n
k

]
1

are both equal to the ordinary Stirling number
[
n
k

]
.

For convenience, we let Tn,k,r denote the set of permutations of {1, 2, . . . , n} into
k cycles, in which the elements 1 through r appear in different cycles. Thus

[
n
k

]
r

is
the number of permutations in Tn,k,r. We can think of

[
n
k

]
r

as counting the number of
permutations with r “restricted” and n−r “free” elements. If a cycle contains a restricted
element, we call it a restricted cycle; otherwise we call it a free cycle.

We shall adopt the standard permutation notation of writing the smallest element in
a cycle at the beginning of that cycle, and listing the cycles in ascending order according
to their smallest elements. For example, (1 5 3 7)(2)(4 9 8)(6) is in standard permutation
notation, while (1 5 3 7)(2)(6)(4 9 8) and (1 5 3 7)(2)(9 8 4)(6) are not.

Generating functions for the r-Stirling numbers are presented in [3]:

n∑
k=r

[
n

k

]
r

xk = xr

n−1∏
i=r

(x + i).

∞∑
n=k

[
n + r

k + r

]
r

xn

n!
=

1

k!

(
1

1− x

)r [
ln

(
1

1− x

)]k

.

∑
0≤k≤n

[
n + r

k + r

]
r

xn

n!
tk =

(
1

1− x

)r+t

.

By definition, we have
[
0
0

]
r

= 1 and for n > 0,
[
n
k

]
r

= 0 for k < r or k > n. Notice
that for 1 ≤ r ≤ n [

n

r

]
r

=
(n− 1)!

(r − 1)!
(12)
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since we are counting permutations of the form (1 · · ·)(2 · · ·) · · · (r · · ·). The elements r+1
through n may be entered one at a time. Each element r+1 ≤ i ≤ n can be placed to the
right of any of the i−1 elements already in place, so there are r(r+1) · · · (n−1) = (n−1)!

(r−1)!

such permutations. Notice that r-Stirling numbers also satisfy the traditional Stirling
recurrence: for 0 ≤ r ≤ k ≤ n,[

n + 1

k

]
r

=

[
n

k − 1

]
r

+ n

[
n

k

]
r

(13)

which may be proved by conditioning on whether or not element n + 1 is alone in its
cycle.

Another useful identity we shall rely on is:

Identity 1 For r ≥ 1,[
n + r

k

]
r

= n

[
n + r − 1

k

]
r

+

[
n + r − 1

k − 1

]
r−1

.

This may be proved by conditioning on whether there are any free elements in the
first cycle. If so, then choose one of the n free elements to appear immediately after 1;
the other elements can be arranged

[
n+r−1

k

]
r

ways. Otherwise, element 1 is alone, and

elements 2 through n+r can be arranged
[
n+r−1

k−1

]
r−1

ways. This brings us to the following
theorem.

Theorem 2

Hr
n =

[
n+r
r+1

]
r

n!
.

Proof 1. Let An,r =
[
n+r
r+1

]
r
. Hence A0,r =

[
r

r+1

]
r

= 0 = a0,r and for n ≥ 1, An,0 =[
n
1

]
0

= (n − 1)! = a0,r. For n, r ≥ 1, Identity 1 implies An,r = nAn−1,r + An,r−1 just like
in equation (11). Since An,r and an,r satisfy the same initial conditions and the same
recurrence, then by equation (10) we have

[
n+r
r+1

]
r

= An,r = an,r = n!Hr
n, as desired. 2

It is also possible to combinatorially prove Theorem 2 without relying on a recurrence.
We first prove the following general identity, similar to one proved in [3].

Identity 2 For 0 ≤ m ≤ r ≤ n and 0 ≤ l ≤ k − r,(
k − r

l

)[
n + r

k

]
r

=
n−l∑

t=k−r−l

(
n

t

)[
t + r −m

k −m− l

]
r−m

[
n + m− t

m + l

]
m
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Proof. The left side counts permutations of Tn+r,k,r where the first m cycles and l free
cycles are colored red, and the other cycles colored green. On the right, we condition
on the number t of free elements in green cycles. There are

(
n
t

)
ways to choose the free

elements,
[
t+r−m
k−m−l

]
r−m

ways to arrange them in k − (m + l) green cycles, then
[
n+m−t

l+m

]
m

ways to arrange the other (n + r)− (r−m + t) elements among the m + l red cycles. 2

Proof 2 of Theorem 2. As a special case of Identity 2 with l = 0, m = r, and k = r + 1,
we have[

n + r

r + 1

]
r

=
n∑

t=1

n!

t!(n− t)!
· (t− 1)! · (n + r − t− 1)!

(r − 1)!
=

n∑
t=1

(
n + r − t− 1

r − 1

)
n!

t
= n!Hr

n

by Theorem 1. 2

4. r-Stirling identities

Theorem 2 expresses Hr
n in terms of r-Stirling numbers. This allows us to give combina-

torial proofs of hyperharmonic identities by proving the equivalent r-Stirling identities.
This will be the focus of the rest of our paper.

We make use of the following lemma:

Lemma 1 For r + 1 ≤ t ≤ n + r, the number of permutations in Tn+r,r+1,r with t as the

smallest element in the right cycle is (n+r−1)!
(r−1)!(t−1)

.

Proof 1. First place elements 1 through t− 1 in the restricted cycles. There are
[
t−1
r

]
r

=
(t−2)!
(r−1)!

ways to do this. Next, place element t at the beginning of the right cycle. Finally,
place each of the elements t+1 through n+r one at a time. Each element can be placed to
the right of any element already placed, so there are t·(t+1)·(t+2) · · · (n+r−1) = (n+r−1)!

(t−1)!

ways to place them. Altogether, then, the number of permutations is

(t− 2)!

(r − 1)!
· (n + r − 1)!

(t− 1)!
=

(n + r − 1)!

(r − 1)!(t− 1)
.

2

Proof 2. Alternatively, we could list the numbers 1 through n + r in any order with the
provision that 1 is first and the numbers 1 through r must be in increasing order. There
are

(
n+r−1

r−1

)
ways to place the elements 1 through r in our list, then n! ways to order the

numbers r + 1 through n + r in the remaining positions. We then convert our list to
a restricted permutation by starting a new cycle at each of 1, 2, . . . , r, t. Element t has
equal probability of having any position among elements 2, 3, . . . , t, so its probability of
being last among them is 1

t−1
. Thus the probability that we have a valid permutation is
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1
t−1

. The number of permutations in Tn+r,r+1,r with t as the smallest element in the right
cycle, then, is (

n + r − 1

r − 1

)
n!

1

t− 1
=

(n + r − 1)!

(r − 1)!(t− 1)
.

2

Now we are ready to prove equation (3).

Proof 1. Since every permutation in Tn+r,r+1,r must have some smallest element t in its
right cycle, with r + 1 ≤ t ≤ n + r, then by Theorem 2 we have

Hr
n =

1

n!

[
n + r

r + 1

]
r

=
1

n!

n+r∑
t=r+1

(n + r − 1)!

(r − 1)!(t− 1)
=

(
n + r − 1

r − 1

)
(Hn+r−1 −Hr−1).

2

Proof 2. By Theorem 2, (3) is transformed into the following r-Stirling identity:[
n + r

2

]
= (r − 1)!

[
n + r

r + 1

]
r

+
(n + r − 1)!

(r − 1)!

[
r

2

]
,

which is just a special case of the following identity with r = 1 and k = 2. 2

Identity 3 For 0 ≤ r ≤ m ≤ n,[
n

k

]
r

=
k∑

t=r

[
m

t

]
r

[
n

k + m− t

]
m

.

Proof. The left side counts the permutations in Tn,k,r. On the right, we condition on the
number t of cycles that contain the elements 1 through m, where r ≤ t ≤ k. We can build
such a permutation in two steps. First we arrange elements 1 through n into k + m− t
cycles so that elements 1 through m are all in separate cycles. Next, we reduce this to k
cycles by converting the first m cycles into t cycles by treating the m cycles as elements,
where the first r cycles are restricted to stay separate from each other. For example, if
r = 3 and m = 5, then to create the permutation (1 5 8)(2)(3 7 4 6), we would first create
the permutation (1)(2)(3 7)(4 6)(5 8), and then arrange and combine the first 5 cycles,
keeping 1 through 3 in separate cycles. There are

[
n

k+m−t

]
m

ways to accomplish the first

step and
[
m
t

]
r

for the second. Thus, for a given t there are
[
m
t

]
r

[
n

k+m−t

]
m

permutations.
Summing over t, we have the desired result. 2

We note that hyperharmonic identities (3) and (4) are special cases of equation (5),
which by Theorem 2, is equivalent to

Identity 4 For 0 ≤ r ≤ m ≤ n,[
n

r + 1

]
r

=

[
n

m + 1

]
m

[
m

r

]
r

+

[
m

r + 1

]
r

[
n

m

]
m

.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A15 8

Proof. This is a special case of Identity 3, with k = r + 1. We just condition on whether
elements 1 through m are in restricted cycles. 2

Next we prove equation (6), which is equivalent to the following identity when k=r+1.

Identity 5 [
n + r

k

]
r

=

[
n

k − r

]
+ n

r∑
t=1

[
n + r − t

k − t + 1

]
r−t+1

.

Proof. The left side counts the permutations in Tn+r,k,r. On the right, we condition on
whether there are any free elements in restricted cycles. There are

[
n

k−r

]
permutations

with no free elements in restricted cycles. Otherwise, condition on the number t of the first
cycle with a free element. There are n ways to choose the free element m to immediately
follow restricted element t. Next, there are

[
n+r−t
k−t+1

]
r−t+1

ways to place elements 1 through
t− 1 in their own cycles, and the other elements except m into all the cycles except the
first t− 1. Finally, we insert element m immediately to the right of t. 2

Using Theorem 2, equation (7) becomes the following r-Stirling identity:

Identity 6 For 0 ≤ m ≤ r,[
n + r

k

]
r

=
n∑

s=k−r

(
n

s

)[
s + r −m

k −m

]
r−m

[
n + m− s

m

]
m

.

Proof. This is just a special case of Identity 2 with l = 0. We condition on the number
s of free elements that do not appear in cycles 1 through m, where 0 ≤ m ≤ r. 2

Equation (8) is equivalent to the following r-Stirling identity when k = r + 1:

Identity 7 For 0 ≤ m ≤ r,[
n + r

k

]
r

=
m∑

t=0

(
m

t

)
n!

(n + t−m)!

[
n + r −m

k − t

]
r−t

.

Proof. We color the first m cycles blue, and condition on the number t of blue cycles
that have only one element. There are

(
m
t

)
ways to choose these cycles and place the

restricted elements in them. Next we choose but do not place the leftmost free element to
go in each of the other blue cycles; this can be done in

(
n

m−t

)
ways. Now we can arrange

the remaining n+ r−m elements in the k− t allowed cycles in
[
n+r−m

k−t

]
r−t

ways. Finally,

there are (m − t)! ways to place the m − t chosen free elements, each to the right of a
restricted element. 2

Finally, equation (9), is equivalent to the following r-Stirling identity.
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Identity 8 For 1 ≤ d ≤ r and 1 ≤ c ≤ n,[
n + r

k

]
r

=
d−1∑
i=0

c

(
n

c

)[
c + i

i + 1

]
i+1

[
n + r − c− i

k − i

]
r−i

+
c−1∑
j=0

(
n

j

)[
d + j

d

]
d

[
n + r − d− j

k − d

]
r−d

.

Proof. The left side counts the permutations in Tn+r,k,r. The right side conditions on
whether there are at least c free elements in the first d restricted cycles. If there are,
then condition on i, the last restricted cycle with fewer than c free elements before or in
it (if there are at least c free elements in the first cycle, then i = 0). There are

(
n
c

)
ways

to choose which c free elements are listed first in the permutation. Since at least one free
element is in cycle i + 1, there are c ways to choose which is the first free element of that
cycle. Then there are

[
c+i
i+1

]
i+1

ways to place the other c − 1 of the c first free elements.
Finally, we can place the remaining n− c free elements, but not in the first i cycles and
not in cycle i + 1 before any elements already placed. There are

[
n+r−c−i

k−i

]
r−i

ways to
place them.

If instead there are fewer than c free elements in the first d cycles, then condition on
the number j of free elements in the first d cycles. There are

(
n
j

)
ways to choose these j

elements,
[
d+j
d

]
d

ways to place them, and
[
n+r−d−j

k−d

]
r−d

ways to place the remaining free
elements in the other k − d cycles. 2
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