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Abstract

Many quantum information tasks require measurements to distinguish be-
tween different quantum-mechanically entangled states (Bell states) of a
particle pair. In practice, measurements are often limited to linear evo-
lution and local measurement (LELM) of the particles. We investigate
LELM distinguishability of the Bell states of two qubits (two-state particles)
and qutrits (three-state particles), via standard projectivemeasurement and
via generalized measurement, which allows detection channels beyond the
number of orthogonal single-particle states. Projective LELM can only dis-
tinguish 3 of 4 qubit Bell states; we show that generalized measurement
does no better. We show that projective LELM can distinguish only 3 of
9 qutrit Bell states that generalized LELM allows at most 5 of 9. We have
also made progress on distinguishing qubit × qutrit hyperentangled Bell
states, which are made up of tensor products of the qubit Bell states and the
qutrit Bell states, showing that the maximum number distinguishable with
projective LELM measurements is between 9 and 11.
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Chapter 1

Background

1.1 Qubits, Qutrits and Qudits

Classically, the simplest form of information is the bit, a logical construct
that can either take the value 0 or 1. Computers store information and
perform computation using very large numbers of these bits. In quantum
information, the analogous construct is the qubit. A qubit is a quantum
mechanical system whose state can be expressed as a linear combination
or superposition of two distinguishable states |0〉 and |1〉, which we call the
standard basis states. The |〉 symbol is notation used to describe a quantum
state, and it is called a ket. Generally, the description of the state is put
inside the ket. The general form of a ket that represents a qubit looks like

|ψqubit〉 � a |0〉 + b |1〉 (1.1)

where a and b are complex numbers that satisfy the normalization condition
�
a

�2 +
�
b

�2
� 1. (1.2)

One physical example of a qubit would be the z-projection of the spin
of a spin-12 particle, which has spin-up and spin-down as its basis states.
Another would be the polarization of a photon, whose basis states are
vertical and horizontal polarization. We encode these physical states as the
standard basis states |0〉 and |1〉.

Such a state gives us informationwhen it is measured. The simplest way
tomeasure such a state is tomake a projectivemeasurement, which projects
the state into one of a set of orthogonal basis states with a probability that
depends on the state and the basis in which it is measured. If we were to
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make a simple projective measurement of the qubit in Equation 1.1 in the
standard basis ({|0〉 , |1〉}), we would get the result 0 and collapse the state
into |0〉with probability

�
a

�2 and we would get the result 1 and collapse the
state into |1〉with probability

�
b

�2. Probability conservation yields Equation
1.2.

Kets that represent qubits can also be treated as vectors in a two-
dimensional complex vector space. As this vector space is complete and
has an inner product (which we will describe soon), we call it a Hilbert
space. When we choose a basis, we can represent kets that represent qubits
as column vectors in C2. For example, if we choose to represent the state
from Equation 1.1 in the {|0〉 , |1〉} basis, we get

|ψqubit〉→
(
a
b

)
. (1.3)

For each ket |ψ〉, there exists a corresponding object 〈ψ|, called a bra,
which lives in the dual space to the Hilbert space and can be represented as
the adjoint of the ket. For example, the corresponding bra to |ψqubit〉 can be
represented as

〈ψqubit |→ �
a∗ b∗

�
, (1.4)

where a∗ is the complex conjugate of a. Because this is a Hilbert space, it
has an inner product. Let |ψ〉 � α0 |0〉 + α1 |1〉 and |φ〉 � β0 |0〉 + β1 |1〉. To
calculate the inner product between these two states, we must put one in
bra form and then multiply the corresponding vectors. The inner product
between these two states is

〈φ|ψ〉 � �
β∗0 β∗1

� (
α0
α1

)
� α0β

∗

0 + α1β
∗

1 , (1.5)

and the result is called the probability amplitude to measure |ψ〉 in the state
|φ〉. This turns out to be related to the probability of measuring |ψ〉 in the
state |φ〉 in an appropriate projective measurement. To form a projective
measurement, we need an orthonormal basis. Because qubits live in a two-
dimensional Hilbert space, we only need one other orthogonal state to |φ〉,
which might be |φ⊥〉 � β∗1 |0〉 − β∗0 |1〉. We can verify that the states are
orthogonal:

〈φ|φ⊥〉 � �
β∗0 β∗1

� (
β∗1
−β∗0

)
� β∗0β

∗

1 − β
∗

1β
∗

0 � 0. (1.6)
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If a projective measurement is made of |ψ〉 in the {|φ〉 , |φ⊥〉} basis, the
probability of measuring |φ〉 is the square of the probability amplitude:

p �
� 〈φ|ψ〉 �2

�
�
α0β

∗

0 + α1β
∗

1
�2
. (1.7)

We can also define operators that act on kets to transform them. When
a projective measurement is made on a state, a projection operator acts on
its ket. The projection operator that projects a state onto |φ〉 is

|φ〉 〈φ|→
(
β0
β1

) �
β∗0 β∗1

�
� *

,

�
β0

�2
β0β∗1

β∗0β1
�
β1

�2+
-
. (1.8)

After a projection operator acts on a ket, it must be renormalized by multi-
plying it by a scalar so that it satisfies Equation 1.2.

This concept of a qubit can be generalized to higher-dimensional Hilbert
spaces. A quantum state in the three-dimensional Hilbert space with the
standard basis {|0〉 , |1〉 , |2〉} is called a qutrit. In general, a quantum state in
a d-dimensional Hilbert state with the standard basis {|0〉 , |1〉 , . . . , |d − 1〉}
is called a qudit.

When a state is not being measured, it evolves in time according to the
Schrödinger Equation, shown below:

Ĥ |ψ(t)〉 � i~
∂
∂t

|ψ(t)〉 , (1.9)

where Ĥ is an operator called the Hamiltonian, which is related to the
energy of a particle in a system. As the Schrödinger Equation is a linear
differential equation, the evolution of independent systems in time is linear.
Alongwith probability conservation, this condition tells us that evolution of
independent systems when not being measured are described by a unitary
operator Û. Unitary means that when written as a matrix, U satisfies
U†U � I, where U† is the adjoint of U. So the relationship between the state
of a system at one point in time (t � t1) and the system at a later point in
time (t � t2) can always be described by a unitary operator like so:

|ψ(t2)〉 � U |ψ(t1)〉 . (1.10)

1.2 Bipartite Systems, Entanglement and Bell States

A bipartite state is the combined state of two quantum mechanical systems
together. A system of an n-state variable and an m-state variable will live in
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a mn-dimensional Hilbert space spanned by all possible tensor products of
the basis states of the n-state and m-state systems. For example, a general
two qubit state will look like

|Ψtwo qubit〉 � a |00〉 + b |01〉 + c |10〉 + d |11〉 , (1.11)

where |ab〉 is a shorthand for |a〉 |b〉, which is a shorthand for |a〉 ⊗ |b〉 and
for normalization, �

a
�2 +

�
b

�2 +
�
c

�2 +
�
d

�2
� 1. (1.12)

Again, let |ψ〉 � α0 |0〉+ α1 |1〉 and |φ〉 � β0 |0〉+ β1 |1〉. Then one could write
the bipartite system of these two qubits as

|ψ〉 |φ〉 � α0β0 |00〉 + α0β1 |01〉 + α1β0 |10〉 + α1β1 |11〉 . (1.13)

We see that the state in Equation 1.11 is more general than that in Equation
1.13. If a bipartite system cannot be factored as two independent single-
particle states, then it is in an entangled state. If it can, like the state in
Equation 1.13, the state is unentangled.

Entangled states have information stored in the correlation of the two
particles with each other, beyond what is stored in the individual particle
states. For example, the state

|Φ+〉 � 1
√
2

� |00〉 + |11〉 �
(1.14)

is fully entangled, and it gives absolutely no information about the state
of the first or second system, but it tells exactly how the two systems are
correlated: if they were measured in this basis, they would either both be
in the state |0〉 or both be in the state |1〉. One could not measure one in
the state |0〉 and the other in the state |1〉 because the coefficients of |01〉 and
|10〉 are zero, whichmeans that their probability amplitudes are zero, so the
probabilities for such measurements are also zero.

In Equation 1.11, we expressed the state of a two-qubit bipartite system
in what we call the joint-particle basis, which is comprised of the joint-
particle kets: {|00〉 , |01〉 , |10〉 , |11〉}. Each of these basis states are obviously
unentangled as they are tensor products of the single-particle basis states.
It is also possible to construct a basis for the same Hilbert space using
entangled states. One very useful such basis is the Bell basis (we will detail
some applications of these states in Section 2.2), comprising the Bell states.
For qubits, the Bell states are

|Φ+〉 � 1
√
2

� |00〉 + |11〉 �
(1.15a)
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|Φ−〉 � 1
√
2

� |00〉 − |11〉 �
(1.15b)

|Ψ+〉 � 1
√
2

� |01〉 + |10〉 �
(1.15c)

|Ψ−〉 � 1
√
2

� |01〉 − |10〉 �
(1.15d)

The qubit Bell states are labelled with Ψ and Φ based on the correlation
between the particles andwith a + or − based on the relative phase between
the terms.

General two-qudit bipartite systems also have Bell bases of their own.
For qudits, theΨ/Φ distinction is generalized to a correlation class, in which
all of the joint-particle kets that make up the Bell state have the same dif-
ference between the variable values (mod d). The +/− distinction is gen-
eralized to a phase class, in which all Bell states have consecutive terms in
the joint-particle ket representation differing by a constant complex phase.
The general qudit Bell state in correlation class c and phase class p is shown
below in Equation 1.16.

|Ψp
c 〉 � 1

√
d

d−1∑
j�0

e i2πp j/d | j〉 | j + c (mod d)〉 (1.16)

Because much of the work in this thesis will be done with qutrit Bell states,
I list the qutrit Bell states below.

|Ψ0
0〉 �

1
√
3

� |00〉 + |11〉 + |22〉 �
(1.17a)

|Ψ1
0〉 �

1
√
3

� |00〉 + e i 2π3 |11〉 + e i 4π3 |22〉 �
(1.17b)

|Ψ2
0〉 �

1
√
3

� |00〉 + e i 4π3 |11〉 + e i 2π3 |22〉 �
(1.17c)

|Ψ0
1〉 �

1
√
3

� |01〉 + |12〉 + |20〉 �
(1.17d)

|Ψ1
1〉 �

1
√
3

� |01〉 + e i 2π3 |12〉 + e i 4π3 |20〉 �
(1.17e)

|Ψ2
1〉 �

1
√
3

� |01〉 + e i 4π3 |12〉 + e i 2π3 |20〉 �
(1.17f)
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|Ψ0
2〉 �

1
√
3

� |02〉 + |10〉 + |21〉 �
(1.17g)

|Ψ1
2〉 �

1
√
3

� |02〉 + e i 2π3 |10〉 + e i 4π3 |21〉 �
(1.17h)

|Ψ2
2〉 �

1
√
3

� |02〉 + e i 4π3 |10〉 + e i 2π3 |21〉 �
(1.17i)

1.3 General LELM Apparatus

The goal of this thesis is to better understand how to reliably distinguish
these Bell states from each other. To distinguish the Bell states, we will
considerwhat is called anLELM(Linear Evolution andLocalMeasurement)
apparatus. We will define exactly what is meant by Linear Evolution and
Local Measurement and why we add these restrictions below. A general
two-particle LELM apparatus is shown in Figure 1.1 below.

Figure 1.1 This general two-particle LELM apparatus takes two particles in
separate input channels and performs single-particle unitary operations that
maymix the channels, but do not involve conditional evolution of one particle
based on the state of the second. Then the outputs from the channels are de-
tected by detectors which comprise a POVM, whichmay be either projective or
non-projective.

The first restriction on the LELM apparatus, Linear Evolution, refers
to each particle individually and requires that each particle must evolve
(change) independently from the other particle and evolve according to
Equation 1.10, although it may mix the particles between the two chan-
nels. It is always true that the whole system must evolve linearly before
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measurement, but this restriction further requires that both particles must
individually evolve according to some unitary operator Usingle-particle. No-
tably, this disallows operations that impact one qubit that are conditional
on the state of the other qubit. We consider this restriction because linear
or non-conditional evolution can be performed more reliably in practice.

The second restriction, Local Measurement, requires that each mea-
surement must act on single particles at a time, so there will be two distinct
detection events, or detector clicks. Each detector click heralds the presence
of one particle in a certain output mode of the apparatus; because of the
channel mixing allowed in the linear evolution step, a detector click might
not unambigiously identify which channel the detected particle originated
in. This restriction simply describes the physical reality of measurement.

In this LELMdevice, because there are two particles in distinct channels,
we add a channel variable to the state of each particle. Thus there are 2d
basis states for single-particle states:

{|0, L〉 , |0, R〉 , . . . , |d − 1, L〉 , |d − 1, R〉} (1.18)

Any input state into this system will be acted upon by the single-particle
unitary operator to transform it before it is detected. A general detection is
described by a Positive-Operator-Valued-Measure (POVM), which we will
describe in Section 3.2. Until then, we will consider a more specific case
of measurement, called projective measurement, which allows us to make
some nice simplifications.

1.4 Projective LELM Apparatus and Detection Modes

If we limit our LELM device to be projective, then all of the detectors
make projectivemeasurements, like themeasurements described in Section
1.1. Then the apparatus is much simpler. After the single-particle unitary
transformations operate, particles in any of the 2d orthogonal channels are
simply detected in output detectors. Now the output detectors will be pro-
jection operators of the form |i〉 〈i |, where |i〉 is what we will call a detector
mode. The detector modes will be defined by the unitary transformation
Usingle-particle as follows:

|2k + 1〉 � Usingle-particle |k , L〉 , |2k + 2〉 � Usingle-particle |k , R〉 . (1.19)

Because the transformation is unitary and the input modes (the 2d basis
kets from Equation 1.18) are orthogonal, the output modes must also be
orthogonal. This apparatus is shown in Figure 1.2.
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Figure 1.2 The projective LELM apparatus simply performs single-particle
unitary transformations before sending the particles to an orthogonal set of
projective detectors.

1.5 Particle Statistics

Dealing with two-particle states in the LELM apparatus requires us to con-
sider the statistics of the particles. When particles are distinguishable, we
can simply write the states of the particles separately. But when particles
are indistinguishable, we must deal with two cases: fermions, which must
be antisymmetric under exchange and bosons, which must be symmetric
under exchange. We will deal with this implicitly by letting

|i〉 | j〉 � 1
√
2

� |i〉1 | j〉2 ± | j〉1 |i〉2
�
, (1.20)

where the subscripts 1 and 2 denote particles 1 and 2 and the sign is a plus
for bosons and a minus for fermions.

1.6 Detection Signatures

Because Bell states are two-particle states, we will be getting 2 detector
modes to click. This pair of detections is called a detection signature.
In order to determine which Bell states trigger which detectors, we will
determine the form of these detection signatures in terms of the input states.
We have already dealt with indistinguishability of the particles in the last
section, so the order of the tensor product of the detection modes does
not matter. We can’t simply write the detection signatures as a raw tensor
product of two detection modes |i〉⊗ | j〉, because that would contain inputs
of two particles from the left and two particles on the right. Sowe introduce
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the projection operator PLR, which projects these detection signatures onto
the subspace of two particle states where one comes from the left side and
one comes from the right side (and then renormalizes). So the detection
signature resulting from a detection in detector i and a detection in detector
j is

|i〉 | j〉 � PLR |i〉 ⊗ | j〉 . (1.21)
To make this process clearer, let’s consider an example. Say that we have
two detection modes:

|i〉 � 1
√
2

� |0, L〉 + |0, R〉 � | j〉 � 1
√
3

� |0, L〉 + |1, L〉 + |2, R〉 �
(1.22)

Then the tensor product of the two is

|i〉⊗| j〉 � 1
√
6

� |0, L〉 |0, L〉+|0, L〉 |1, L〉+|0, L〉 |2, R〉+|0, R〉 |0, L〉+|0, R〉 |1, L〉+|0, R〉 |2, R〉 �
.

(1.23)
After we apply the projection operator, PLR, we get the detection signature:

|i〉 | j〉 � PLR |i〉 ⊗ | j〉 � 1
√
3

� |0, L〉 |2, R〉 + |0, L〉 |0, R〉 + |1, L〉 |0, R〉 �
. (1.24)

From now on, we will simply use the notation |i〉 | j〉 to denote a detection
signature after PLR acts. When these detectors are used to distinguish
between Bell states, it is helpful to express these detection signatures in the
Bell basis. Then the two detectors that make up the signature can trigger
if and only if any Bell state in the Bell-basis representation of the signature
is fed into the apparatus. So an apparatus cannot distinguish between two
Bell states that appear in one detection signature.

1.7 Creation and Annihilation Operators

Another useful formalism for representing states and detectors involves
creation operators (â†i ) and annihilation operators (âi). These operators
essentially create or remove particles from certain states. We can express
states by having the creation operators act on the vacuum (no-particle) state
|0〉 as follows:

|k , L〉 � â†2k |0〉 , |k , R〉 � â†2k+1 |0〉 (1.25)
We can also use multiple creation operators to represent multiple particles
in certain states. For example, we can write

|0, L〉 |1, R〉 � â†0 â†3 |0〉 . (1.26)
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Now annihilation operators can act as projective detectors and remove par-
ticles from a system after they are detected. If we apply the projection
operator |0, L〉 〈0, L| to the state in Equation 1.26, we could act on it with â0
to get

â0 â†0 â†3 |0〉 � â†3 |0〉 � |1, R〉 . (1.27)

However, if instead we applied the projector |0, R〉 〈0, R|, we should get
nothing, because both particle states are orthogonal to |0, R〉. So when we
act with â1, we get

â1 â†0 â†3 |0〉 � 0. (1.28)

Now we can write any detection mode as a superposition of these anni-
hilation operators. If we have a general detection mode that comes from
Usingle-particle, it will look like

|c〉 � ν0 |0, L〉 + ν1 |0, R〉 + . . . + ν2d−1 |d − 1, R〉 , (1.29)

where the νs are entries in the cth column of Usingle-particle and the annihila-
tion operator corresponding to that mode is

ĉ � ν0 â0 + ν1 â1 + . . . + ν2d−1 â2d−1. (1.30)

1.8 Necessary Conditions for Distinguishability

One method of determining whether a set of states is distinguishable using
an LELM apparatus is detailed in van Loock and Lütkenhaus (2004). The
idea is that all statesmust remain orthogonal after one particle is detected in
some detector. From Equation 1.30, we can write the annihilation operator
for a detection mode as

ĉ � ν0 â0 + ν1 â1 + . . . + ν2d−1 â2d−1.

This means that if a state |ψ〉 has one particle detected in this detector, the
remaining state is

ĉ |ψ〉 . (1.31)

So for a set of states {|ψi〉} to be distinguishable, these remaining states
must be orthogonal, so we must have

〈ψk | ĉ† ĉ |ψl〉 � 0 ∀k , l. (1.32)

These are only necessary conditions on one detector; they are definitely
not sufficient for showing that a set of states is distinguishable. For a set
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of states to be distinguishable, after any one detector fires, all of the states
must trigger different second detectors. This implies that the states after
one detection must be orthogonal, but the states could still be orthogonal
but trigger the same second detector. Still, these necessary conditions are
still very useful for ruling out sets of states as indistinguishable.





Chapter 2

Maximum Distinguishability
of Qutrit Bell States with
Projective Measurement

2.1 Overview

In this chapter, we will establish the maximum size of a set of qutrit Bell
states that can be distinguished from each other reliably with a projective
LELM device. We begin by motivating Bell measurement and we summa-
rize results in maximal Bell state distinguishability from before my work.
It has already been established that only 3 out of 4 qubit Bell states can be
distinguishedwith projective LELMdevices and that 3 or 4 is themaximum
number of qutrit Bell states that can be distinguished with projective LELM
devices. The criteria from Equation 1.32 were not sufficient to determine
whether a set of 4 qutrit Bell states could be distinguished, so in this chapter,
I detail additional arguments that were made to rule out such a possibility.

2.2 Applications of Bell State Measurements

Making unambiguous and deterministic measurements in the Bell basis is
required in many applications. If one wants to send a quantum state over
some distance, they may want to use a quantum teleportation protocol,
which requires a Bell measurement. The famous qubit teleportation pro-
tocol was introduced in Bennett et al. (1993). If this distance is sufficiently
long, one might want to use quantum repeaters, which can extend the dis-
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tance that one would send a quantum state through a noisy channel. These
devices, introduced in Briegel et al. (1998), also require Bell measurements
to bemade. If one wants to sendmany bits of classical information with rel-
atively few qubits, they may use quantum dense coding protocols. The first
of these was introduced in Mattle et al. (1996), and it requires a Bell mea-
surement. Additionally, using quantum states for computation can allow
one to build quantum computers, which theoretically offer an exponential
speedup over classical computers. In order to make these computers fault
tolerant, one needs to use quantum error correction protocols, which also
make use of Bell measurements. Some of these protocols were developed
in Gottesman and Chuang (1999).

2.3 The Qubit Bell States are not Completely Distin-
guishable

The qubit Bell state no-go theorem establishes that projectivemeasurements
can only distinguish 3 out of 4 qubit Bell states. To show this, wemust show
both that 3 out of 4 qubit Bell states can be distinguished and that all 4
cannot be distinguished. By applying the condition in Equation 1.32 to all
4 qubit Bell states, we can show that they cannot all be distinguished from
each other. In Lütkenhaus et al. (1999), an apparatus that can distinguish 3
of the qubit Bell states was detailed. So at most 3 qubit Bell states can be
distinguished by projective measurement. The next objective was to deter-
mine maximum distinguishability of the qutrit Bell states using projective
measurement.

2.4 3 Qutrit Bell States are Distinguishable, but 5 are
not

Like what was done for qubits, to show that n is the maximum number
of qutrit Bell states distinguishable using an LELM apparatus, we need to
show both that n qutrit Bell states are distinguishable and that n + 1 qutrit
Bell states are not distinguishable.

First, we will show by a simple construction that 3 qutrit Bell states are
distinguishable. If an LELM apparatus simply measures both particles in
the standard basis, it can distinguish between the 3 correlation classes by
measuring the correlation between the variable values. So we can pick 3
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Bell states from different correlation classes and distinguish them using this
method, which means that at least 3 are distinguishable.

To show that 3 was the maximum number of qutrit Bell states distin-
guishable with an LELM device, we would need to show that 4 were not
distinguishable. Unfortunately, the necessary criteria from Equation 1.32
were not sufficient to do that. However, they are sufficient to show that
5 were not distinguishable. Julien Devin (HMC ’11), a previous student
in this group used those criteria to show that 5 qutrit Bell states were not
distinguishable. He wrote a Mathematica program that would generate
the system of equations that come from the criteria above for each of the
126 sets of 5 qutrit Bell states. He added a normalization condition for the
detector and then ran the FindInstance command on all of the systems of
equations and all gave no solutions. From that point, the only question was
whether or not 4 qutrit Bell states were distinguishable.

2.5 Equivalence Classes of 4 Qutrit Bell States

Julien also used that program to generate the criteria from Equation 1.32 for
the 126 sets of 4 qutrit Bell states. 54 of these had no solutions and 72 of these
either gave solutions or did not complete. He was not able to determine
whether or not the solutions couldmake valid sets of 6 orthogonal detectors;
that proved to be too computationally difficult. The class of 54 that had
no solutions do not meet the necessary conditions for distinguishability; no
detector exists that would leave those sets orthogonal to each other after one
particle is detected, so they are indistinguishable using an LELMapparatus.
The class of 72 that gave solutions or did not complete were inconclusive,
so we could not determine simply from these criteria whether or not they
were distinguishable.

First, to understand the distinction between these two groups of sets of
Bell states, it is useful to look at sets of qutrit Bell states (Equation 1.17) in
a 3 × 3 grid where the c (correlation) index corresponds to rows and the p
(phase) index corresponds to columns; we will call these grids tic-tac-toe
diagrams. For example, the set {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ1

2〉 , |Ψ2
2〉} can be expressed

by Figure 2.1 below.
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Figure 2.1 The tic-tac-toe diagram of the set {|Ψ0
0〉 , |Ψ1

0〉 , |Ψ1
2〉 , |Ψ2

2〉}.

We call the 72 sets of Bell states that were inconclusive with the nec-
essary distinguishability conditions the "tic-tac-toe winners" because they
form boards that win at tic-tac-toe (they have 3 Xs in a row vertically, hor-
izontally or diagonally) when we allow for column permutation or allow
wrap-around boundaries. For example, the set {|Ψ2

0〉 , |Ψ1
1〉 , |Ψ2

1〉 , |Ψ0
2〉}

shown in Figure 2.2 below is a tic-tac-toe winner.

Figure 2.2 The tic-tac-toe diagram of the set {|Ψ2
0〉 , |Ψ1

2〉 , |Ψ2
1〉 , |Ψ0

2〉}. This
belongs to the tic-tac-toe winners class because it has 3 in a row diagonally.

The set {|Ψ1
0〉 , |Ψ0

1〉 , |Ψ1
1〉 , |Ψ2

2〉} shown in Figure 2.3 below is also a
tic-tac-toe winner. But unlike {|Ψ2

0〉 , |Ψ1
1〉 , |Ψ2

1〉 , |Ψ0
2〉} in Figure 2.2 above,

{|Ψ1
0〉 , |Ψ0

1〉 , |Ψ1
1〉 , |Ψ2

2〉} requires either row permutation or wrap-around
boundaries to give it 3 in a row.
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Figure 2.3 The tic-tac-toe diagram of the set {|Ψ1
0〉 , |Ψ0

1〉 , |Ψ1
1〉 , |Ψ2

2〉}. This
belongs to the tic-tac-toe winners class because it has 3 in a row diagonally
when we permute the columns or allow wrap-around boundaries.

We call the 54 sets of Bell states that were already determined to be
indistinguishable the "tic-tac-toe losers", because they do not form boards
that win at tic-tac-toe, even allowing column permutation or wrap-around
boundaries. For example, the set {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ1

2〉 , |Ψ2
2〉} in Figure 2.1

above and the set {|Ψ0
0〉 , |Ψ2

0〉 , |Ψ1
1〉 , |Ψ1

2〉} in Figure 2.4 below are both tic-
tac-toe losers. Nowwewill show that all of the sets of Bell states in these two

Figure2.4 The tic-tac-toediagramof the set {|Ψ0
0〉 , |Ψ2

0〉 , |Ψ1
1〉 , |Ψ1

2〉}. Even
withcolumnpermutationorwrap-aroundboundaries,wecannotget3 ina row,
so it is a tic-tac-toe loser.

classes must share distinguishability or indistinguishability. We will argue
that any set of qutrit Bell states in one of these classes can be transformed
into any other set in the same class using the following four transformations:

1. Cycle the variable value in the right channel:

|0, R〉→ |1, R〉→ |2, R〉 . (2.1)

This increases the c index of all of the Bell states.
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2. Add phases to kets in the left channel:

|1, L〉→ e
2πi
3 |1, L〉 , |2, L〉→ e

4πi
3 |2, L〉 . (2.2)

This increases the p index of all of the Bell states.

3. Add phases to kets with variable value 0:

|0, L〉→ e
2πi
3 |0, L〉 , |0, R〉→ e

4πi
3 |0, R〉 . (2.3)

This increases the p index of the Bell states by their c index.

4. Change basis to

|0′〉 � 1
√
3

� |0〉 + |1〉 + |2〉 �
(2.4a)

|1′〉 � 1
√
3

� |0〉 + e
2πi
3 |1〉 + e

4πi
3 |2〉 �

(2.4b)

|2′〉 � 1
√
3

� |0〉 + e
4πi
3 |1〉 + e

2πi
3 |2〉 �

(2.4c)

add phases to kets in the new basis with variable value 0′ as in trans-
formation 3, and transform back:

|0, L〉→ 1
√
3

�
e i π6 |0, L〉 + e i 5π6 |1, L〉 + e i 5π6 |2, L〉 �

, (2.5a)

|1, L〉→ 1
√
3

�
e i 5π6 |0, L〉 + e i π6 |1, L〉 + e i 5π6 |2, L〉 �

, (2.5b)

|2, L〉→ 1
√
3

�
e i 5π6 |0, L〉 + e i 5π6 |1, L〉 + e i π6 |2, L〉 �

, (2.5c)

|0, R〉→ 1
√
3

�
e−i π6 |0, R〉 + e−i 5π6 |1, R〉 + e−i 5π6 |2, R〉 �

, (2.5d)

|1, R〉→ 1
√
3

�
e−i 5π6 |0, R〉 + e−i π6 |1, R〉 + e−i 5π6 |2, R〉 �

, (2.5e)

|2, R〉→ 1
√
3

�
e−i 5π6 |0, R〉 + e−i 5π6 |1, R〉 + e−i π6 |2, R〉 �

. (2.5f)

This increases the c index of the Bell states by their p index (and adds
a phase of 4π

3 if the p index is nonzero).



Equivalence Classes of 4 Qutrit Bell States 19

Originally, Julien showed that these transformations transformed all sets in
each class into each other inMathematica. It can also be verified by hand by
noting that the transformations do the following to the tic-tac-toe diagrams.

1. Cycle all rows down.

2. Cycle all columns right.

3. Cycle the rows differently. Don’t cycle the top row, cycle the middle
row right and cycle the bottom row left.

4. Cycle the columns differently. Don’t cycle the left column, cycle the
middle column down and cycle the right column up.

One can use these transformations to transform any specific tic-tac-toe win-
ner into all of the other tic-tac-toe winners or any specific tic-tac-toe loser
into all of the other tic-tac-toe losers. We will leave this as an exercise to
the reader, but we will show that is all that is required to show that any set
can be transformed into any other in the same class. First, we note that we
can perform the inverse of any sequence of transformations. Because each
of these transformations can be undone by applying itself twice again, the
inverse of any sequence of transformations can be performed by perform-
ing each transformation twice in reverse. Now if we let the representative
tic-tac-toe winner set be W and the representative tic-tac-toe loser set be L,
the sequence of transformations to get from any set A to any other set B in
the same class can be described simply. This sequence is just the inverse of
the sequence from W or L to A followed by the sequence from W or L to B.

Because these transformations are all unitary operations on each chan-
nel, they can be realized in an LELM apparatus. If any set in one of the
classes is distinguishable, then any other set in that class could be trans-
formed into that setwith anLELMapparatus and be distinguished thatway.
Thus if one set in a class is distinguishable then all classes in the set are dis-
tinguishable. Similarly, if one set in one of the classes is indistinguishable,
it can be transformed into any other set in its class using an LELM appa-
ratus and must remain indistinguishable. Therefore, if any set in a class is
indistinguishable, then all sets in that class must also be indistinguishable.
So all of the sets of Bell states in both classes must share distinguishability
or indistinguishability. We know the tic-tac-toe losers are all indistinguish-
able. Thus we only need to consider the distinguishability of one tic-tac-toe
winner to determine whether or not all of them are distinguishable.
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2.6 Putting Further Limits on Detection Modes

The necessary distinguishability criteria of Equation 1.32 were not enough
to show that the tic-tac-toe winners were indistinguishable. To investigate
further, I chose to search for limits on what the detectors could look like
in order to either determine the form of detectors that could distinguish
the tic-tac-toe winners or to add additional conditions that, along with the
equations from the necessary distinguishability criteria, would be able to
rule out distinguishability of the tic-tac-toe winners.

The goal was to put as many restrictions as possible on the number of
kets (input basis states from Equation 1.18) that could be in a detection
mode. Because all of the tic-tac-toe winners share distinguishability, we
only needed to do this for a single set of Bell states in the tic-tac-toe winners
class.

2.7 Detector Modes in the Bell Basis and in the Joint-
Particle Basis

In order to put restrictions on the number of kets that can be in a detec-
tion mode, I need to know the minimum and maximum number of Bell
states that are in detection signatures involving those modes. First, we will
establish two restrictions on detection modes and detection signatures.

If I can show that a detection signaturemust necessarily containmultiple
Bell states that I am trying to distinguish, then I can say that that detection
signature cannot be part of an apparatus that distinguishes those Bell states.

We note that the state of one of the particles in a Bell state is completely
random, so we can not get anymeaningful information from our first detec-
tion. We would have to discriminate between the Bell states solely based on
information from the second particle. For a more rigorous treatment of this
argument, see Pisenti et al. (2011). Therefore, if I can show that no detection
signatures involving a mode contain a certain Bell state that I am trying to
distinguish, then I can say that that mode cannot be part of an apparatus
that distinguishes that Bell state from any others.

It will be much easier to construct detection signatures from modes in
the joint-particle basis, so next, we want to know how many Bell states can
be in a signature based on its joint-particle representation. We see that both
joint-particle-kets and Bell states are grouped by correlation class, sowe can
separate the joint-particle kets into correlation classes that contain different
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numbers of Bell states in the same correlation class.
Next, we will establish that for each correlation class, there are a few

restrictions on the number of Bell states that can be in a signature based on
the number of joint-particle kets in that signature. First, the only way for a
detection signature to have a single Bell state in a correlation class is for the
joint-particle kets in that correlation class to form a scalar multiple of the
Bell state, which requires all 3 joint-particle kets in that correlation class.
Second, a single joint-particle ket in a correlation class consists of all Bell
states in its correlation class. Lastly, it is possible for a state made up of 2
Bell states in a correlation class to be made up of only 2 joint-particle kets.

2.8 Ruling out 4-Ket Detection Modes

First, for any set of tic-tac-toe winners, we were able to rule out 4-ket detec-
tion modes using the following argument. A 4-ket detection mode either
has 1 ket in one channel and 3 in the other or 2 in both channels. If a
4-ket mode has 1 ket in one channel and 3 in the other, then without loss of
generality, let it have 1 ket in the left channel and three in the right. Let a,
b and c represent 0,1 and 2 in an arbitrary permutation and let α, β, γ and
δ be arbitrary nonzero coefficients. Then this detection mode would look
like

|4-ket1〉 � α |a , L〉 + β |a , R〉 + γ |b , R〉 + δ |c , R〉 . (2.6)

Then the detection signature corresponding to two clicks in this detector
would be

|4-ket1〉 |4-ket1〉 � αβ |aa〉 + αγ |ab〉 + αδ |ac〉 . (2.7)

Here, as each joint-particle ket must contain a left-channel ket and a right-
channel ket, we can leave off the L and R, and put the left-channel variable
value first. We notice that this is a superposition of 3 joint-particle kets from
different correlation classes. Because 1 joint-particle ket in a correlation
class must be made of a superposition of all 3 Bell states in that class, this
detection signature will be a superposition of all 9 Bell states, so it would
not be able to distinguish any Bell states. So to distinguish 4 of them, we
cannot have 4-ket modes with 1 ket in one channel and 3 kets in the other.
That leaves 2 kets in each channel.

If there are 2 kets in each channel, there are 2 possibilities. Either the
kets in both channels have the same variable values or they only share one
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variable value. If they have the same variable values, they look like

|4-ket2〉 � α |a , L〉 + β |b , L〉 + γ |a , R〉 + δ |b , R〉 (2.8)

and the detection signature corresponding to two clicks in this detector
would be

|4-ket2〉 |4-ket2〉 � αγ |aa〉 + βδ |bb〉 + αδ |ab〉 + βγ |ba〉 . (2.9)

Because a and b are different, |ab〉 and |ba〉 are single joint-particle kets in
the c � 1 and c � 2 correlation classes. Again, these must each be made up
of all 3 Bell states in their correlation classes. |aa〉 and |bb〉 are both from
the c � 0 correlation class, and 2 joint-particle kets are made up of at least
2 Bell states, so this must have at least 2 Bell states in the c � 0 correlation
class. In total, this signature must be a superposition of at least 8 out of the
9 Bell states, so it could not be present in an apparatus that distinguishes 4
of them.

If there are 2 kets in each channel and the kets in both channels only
share one variable value, then the mode must look like

|4-ket3〉 � α |a , L〉 + β |b , L〉 + γ |a , R〉 + δ |c , R〉 (2.10)

and the detection signature corresponding to two clicks in this detector
would be

|4-ket3〉 |4-ket3〉 � αγ |aa〉 + βδ |bc〉 + αδ |ac〉 + βγ |ba〉 . (2.11)

Here, |aa〉 and |bc〉 are the only joint-particle kets in their correlation classes,
so again we get all 6 Bell states from both of those correlation classes. |ac〉
and |ba〉 are both in the other correlation class, which gives at least 2 more
Bell states. So again, we get at least 8 or 9 Bell states, which is not allowed.
So we cannot have 2 kets in each channel either, which means 4-ket modes
cannot be present in an apparatus to distinguish 4 of 9 qutrit Bell states.

2.9 Ruling out Single-Channel Detection Modes

In Section 2.5, we listed out transformations that could be realized as part
of an LELM device that allowed us to transform any set of 4 Bell states into
another set in the same class. Because these transformations act separately
on each channel (i.e. they do not send particles from one channel to the
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other), they transform single-channel detectors into single-channel detec-
tors and transform multi-channel detectors into multi-channel detectors.
Thus, if we want to show that single-channel detectors are not allowed to
distinguish any set of tic-tac-toe winners, then we only need to show that
single-channel detectors cannot distinguish one set of tic-tac-toe winners.
If a single-channel detector could be used to distinguish one set, then any
other set could also be distinguished using a transformed single-channel
detector.

Wewill demonstrate that single-channel detectors cannot be in an appa-
ratus that can distinguish {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ1

1〉 , |Ψ2
2〉}, shown below in Figure

2.5, to show that single-channel detectors cannot be in an apparatus that
can distinguish any set of tic-tac-toe winners.

Figure 2.5 The tic-tac-toe diagram of the set {|Ψ0
0〉 , |Ψ1

0〉 , |Ψ1
1〉 , |Ψ2

2〉}. We
will show that single-channel detectors cannot be part of an apparatus that
distinguishes these states.

Without loss of generality, wewill let the single-channel modes be in the
left channel. Single-channel modes can have either 1, 2 or 3 kets in them. If
a single-channel mode were to have 1 ket, it would look like

|S1〉 � |a , L〉 . (2.12)

Then we can write an arbitrary mode as

|i〉 � x |a , R〉 + y |b , R〉 + z |c , R〉 + |L〉 , (2.13)

where x, y and z could be zero and |L〉 is a superposition of kets in the left
channel. We can then write all detection signatures involving a click in the
1-ket single-channel detector as

|S1〉 |i〉 � x |aa〉 + y |ab〉 + z |ac〉 . (2.14)
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If x � 0, then there are no joint-particle kets in the c � 0 correlation class. If
x , 0, then there is only one joint-particle ket in the c � 0 correlation class,
which means that there are all 3 Bell states in the c � 0 correlation class.
Neither of these possibilities allow |Ψ0

0〉 and |Ψ1
0〉 to be distinguished, so

there can’t be any 1-ket single-channel detector modes. If a single-channel
mode were to have 2 kets, it would look like

|S2〉 � α |a , L〉 + β |b , L〉 . (2.15)

Using the arbitrary mode in Equation 2.13, we can write all detection sig-
natures involving a click in the 2-ket single-channel detector as

|S2〉 |i〉 � xα |aa〉 + yβ |bb〉 + yα |ab〉 + zβ |bc〉 + xβ |ba〉 + zα |ac〉 . (2.16)

If x, y and z are all 0, there is no detection signature. If one or two of them is
zero, then 2 correlation classes only have 1 joint-particle ket, which means
that those two correlation classes must have all 6 Bell states in them. As we
can see in Figure 2.5, each correlation class (row) has at least one Bell state
(X) in it, so this detection signature would render at least two of those Bell
states indistinguishable. So after |S2〉, all of the remaining detector modes
must have either no right-channel kets or all of them.

Those that have all of the right-channel kets would create detection
signatures with |S2〉 that would have 2 joint-particle kets in each correlation
class. That means that they would have to have at least 2 Bell states in each
correlation class. This could distinguish |Ψ0

0〉 or |Ψ1
0〉 from the rest, but the

signaturewould have to contain one of those two, so it could not distinguish
|Ψ1

1〉 or |Ψ2
2〉. So there can be no 2-ket single-channel detector modes.

If a single-channel mode were to have 3 kets, it would look like

|S3〉 � α |a , L〉 + β |b , L〉 + γ |c , L〉 . (2.17)

Using the arbitrary mode in Equation 2.13, we can write all detection sig-
natures involving a click in the 3-ket single-channel detector as

|S3〉 |i〉 � xα |aa〉 + yβ |bb〉 + zγ |cc〉 + yα |ab〉
+ zβ |bc〉 + xγ |ca〉 + zα |ac〉 + xβ |ba〉 + yγ |cb〉 . (2.18)

Aswe just showed at the end of the previous example, if the c � 0 correlation
class has 2 ormore Bell states, this signature cannot distinguish |Ψ1

1〉 or |Ψ2
2〉.

So there must be at least 2 detection signatures that detect |Ψ1
1〉 and |Ψ2

2〉
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and both must only have |Ψ2
0〉 as the only Bell state in the c � 0 correlation

class. This fixes x, y and z up to an overall phase, which allows there
to be only one signature that has |Ψ2

0〉 as the only Bell state in the c � 0
correlation class, where we needed two such signatures. So there can be no
3-ket single-channel signatures.

So we cannot have any single-channel detector modes in an apparatus
that can distinguish {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ1

1〉 , |Ψ2
2〉}. Again, because transforma-

tions between the tic-tac-toe winners preserve single-channel detectors, we
cannot have single-channel modes in any tic-tac-toe winner. With this piece
of information, we are now ready to focus on our final tic-tac-toe winner.

2.10 Forcing a 6-Ket Mode in a Specific Tic-Tac-Toe
Winner

Now that we have established multiple restrictions on the general form of
a tic-tac-toe winner, we can start to restrict a specific tic-tac-toe winner to
determine distinguishability of the entire class. The set that we will look at
is {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ2

0〉 , |Ψ0
1〉}, shown below in Figure 2.6.

Figure 2.6 The tic-tac-toe diagram of the set {|Ψ0
0〉 , |Ψ1

0〉 , |Ψ2
0〉 , |Ψ0

1〉}. We
will show that any apparatus that distinguishes these statesmust have a detec-
tor with all 6 joint-particle kets.

The advantage of using this set is that it contains all 3 Bell states in the
c � 0 correlation class. Thus, detection signatures would have to have only
one of the Bell states in the c � 0 correlation class, so they must have either
0 or 1 c � 0 joint-particle kets.

In any apparatus that could distinguish this set, we can show that there
cannot be any 5-ket modes. Without loss of generality, such a mode could
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be missing one ket in the right channel. It would then look like

|5-ket〉 � α |a , L〉 + β |b , L〉 + γ |c , L〉 + δ |a , R〉 + ε |b , R〉 . (2.19)

Then the detection signature corresponding to two clicks in this detector is

|5-ket〉 |5-ket〉 � αδ |aa〉+βε |bb〉+αε |ab〉+γδ |ca〉+βδ |ba〉+γε |cb〉 . (2.20)
We see that this has 2 joint-particle kets from the c � 0 correlation class, so
it is not allowed. So there cannot be any 5-ket modes.

There clearly cannot be any 1-ket modes, because those are necessarily
single-channel. Next, we will show that there cannot be any 2-ket modes.
We know such a mode can’t be single-channel, so we will consider only
multi-channel 2-ket modes. One of these detectors could either have kets
of the same variable value or different variable values. If the detector had
kets with the same variable value, it would look like

|2-ket1〉 � α |a , L〉 + β |a , R〉 (2.21)

and the detection signature corresponding to two clicks in this detector
would be

|2-ket1〉 |2-ket1〉 � |aa〉 . (2.22)

This has only one joint-particle ket in the c � 0 class, so it is not allowed. If
the detector had kets with different variable values, it would look like

|2-ket2〉 � α |a , L〉 + β |b , R〉 . (2.23)

In order to have 6 orthogonal detectors, one other detector would have to
contain the |a , R〉 ket. So this detector would look like

|i〉 � v |a , R〉 + w |b , R〉 + x |c , R〉 + η |a , R〉 + y |b , R〉 + z |c , R〉 , (2.24)

where v, w, x, y and z maybe zero, but η is nonzero. Thedetection signature
corresponding to clicks in these two detectors would be

|2-ket2〉 |i〉 � αη |aa〉 + wβ |bb〉 + (yα + vβ) |ab〉 + zα |ac〉 + xβ |cb〉 . (2.25)

We see that this has either 1 or 2 joint-particle kets in the c � 0 correlation
class (based on whether w is 0 or not). This is also not allowed. So there
can be no 2-ket modes.

Now all that is left are multi-channel 3-ket modes and 6-ket modes. We
will show that there must be a 6-ket mode by showing that this apparatus
cannot consist of six 3-ket modes.



Forcing No Solution to the Necessary Conditions 27

If we have 1multi-channel 3-ketmode, it must have 2 kets in one channel
and 1 ket in the other. Without loss of generality, we will let it have 2 kets
in the left channel. Then it will look like

|3-ket1〉 � α |a , L〉 + β |b , L〉 + γ |d , R〉 , (2.26)

where d � a, b or c. Then the detection signature corresponding to two
clicks in this detector will be

|3-ket1〉 |3-ket1〉 � αγ |ad〉 + βγ |bd〉 . (2.27)

If d � a or b, then this signature will have 1 joint-particle ket in the c � 0
correlation class, so we must have d � c. So

|3-ket1〉 � α |a , L〉 + β |b , L〉 + γ |c , R〉 . (2.28)

Another detector would have to have |a , R〉, |b , R〉 or |c , L〉. If it did not
have all 3, the detection signature |3-ket1〉 |3-ket2〉 would have fewer than 3
joint-particle kets in the c � 0 correlation class. So we would have to have

|3-ket2〉 � δ |c , L〉 + ε |a , R〉 + η |b , R〉 . (2.29)

Then the detection signature |3-ket1〉 |3-ket2〉 is
|3-ket1〉 |3-ket2〉 � αε |aa〉 + βη |bb〉 + γδ |cc〉 + αη |ab〉 + βε |ba〉 . (2.30)

This has all 3 joint-particle kets in the c � 0 correlation class, but it also has
only 1 joint-particle ket in each of the other correlation classes. So it would
have to have at least 7 Bell states, which would have to contain 2 of the 4
Bell states that we are trying to distinguish. This is also not allowed, so we
would have to have at least 1 detector mode with all 6 kets.

2.11 Forcing No Solution to the Necessary Conditions

Now that we have the requirement that at least one detector must have all 6
kets, we look back at the necessary distinguishability criteria from Section
1.8. For the set {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ2

0〉 , |Ψ0
1〉}, shown in Figure 2.6, we will use

the following subset of the conditions in Equation 1.32:

〈Ψ0
0 | ĉ† ĉ |Ψ0

1〉 � 0 (2.31a)

〈Ψ1
0 | ĉ† ĉ |Ψ0

1〉 � 0 (2.31b)
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〈Ψ2
0 | ĉ† ĉ |Ψ0

1〉 � 0 (2.31c)

If we now consider the detector mode that must have 6 kets:

|6-ket〉 � ν∗0 |0, L〉+ ν∗1 |1, L〉+ ν∗2 |2, L〉+ ν∗3 |0, R〉+ ν∗4 |1, R〉+ ν∗5 |2, R〉 , (2.32)
the associated annihilation operator is

ĉ � ν0 â0 + ν1 â1 + ν2 â2 + ν3 â3 + ν4 â4 + ν5 â5. (2.33)

Plugging this into the conditions above in Equations 2.31 gives Equations
2.34 below.

〈Ψ0
0 | ĉ† ĉ |Ψ0

1〉 � (ν4ν∗3 + ν2ν∗0) + (ν5ν∗4 + ν0ν∗1) + (ν3ν∗5 + ν1ν∗2) � 0 (2.34a)

〈Ψ1
0 | ĉ† ĉ |Ψ0

1〉 � (ν4ν∗3+ν2ν∗0)+e i 4π3 (ν5ν∗4+ν0ν∗1)+e i 2π3 (ν3ν∗5+ν1ν∗2) � 0 (2.34b)

〈Ψ2
0 | ĉ† ĉ |Ψ0

1〉 � (ν4ν∗3+ν2ν∗0)+e i 2π3 (ν5ν∗4+ν0ν∗1)+e i 4π3 (ν3ν∗5+ν1ν∗2) � 0 (2.34c)

Using various linear combinations of these, we can get

ν4ν
∗

3 + ν2ν
∗

0 � 0 (2.35a)

ν5ν
∗

4 + ν0ν
∗

1 � 0 (2.35b)

ν3ν
∗

5 + ν1ν
∗

2 � 0. (2.35c)

We can then rewrite these as

ν4ν
∗

3 � −ν2ν
∗

0 (2.36a)

ν5ν
∗

4 � −ν0ν
∗

1 (2.36b)

ν3ν
∗

5 � −ν1ν
∗

2. (2.36c)

If we multiply all of these together, we get
�
ν0

�2�
ν1

�2�
ν2

�2
� −

�
ν3

�2�
ν4

�2�
ν5

�2
. (2.37)

Because all of these magnitudes are non-negative, both sides would have to
be zero. But because |6-ket〉must have all 6 kets, none of the νs can be 0. So
these conditions cannot be satisfied.

Thismeans that the set {|Ψ0
0〉 , |Ψ1

0〉 , |Ψ2
0〉 , |Ψ0

1〉} cannot be distinguished
with an LELM apparatus. Because the set {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ2

0〉 , |Ψ0
1〉} is a tic-

tac-toe winner, all of the tic-tac-toe winners must be indistinguishable with
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an LELMapparatus. Lastly, because both the tic-tac-toewinners and the tic-
tac-toe losers are indistinguishable, it is not possible for an LELM apparatus
to distinguish 4 out of 9 qutrit Bell states.

So the maximum number of qutrit Bell states that can be distinguished
with a projective LELM device is 3. This is a notably restrictive upper limit
on distinguishable states, since it is realized simply by an apparatus that
measures each particle separately in the standard basis.





Chapter 3

Distinguishability of Qubit
and Qutrit Bell States with
POVMs

3.1 Overview

In this chapter, we will establish LELM distinguishability bounds for qubit
and qutrit Bell stateswhen the requirement of projectivemeasurement is re-
moved. This allows for amore general formofmeasurement called aPOVM.
We will offer a mathematical description of a POVM and then present ar-
guments that show that all 4 qubit Bell states cannot be distinguished even
with non-projective LELMdevices and that nomore than 5 qutrit Bell states
can be distinguished with general LELM devices.

3.2 Introduction to POVMs

So far, we have been considering distinguishability of Bell states in the spe-
cial case of projective measurements. A more general quantum measure-
ment is called a POVM, a positive operator-valued measurement. A POVM
is made up of a set of Kraus operators Êi and POVM elements Π̂i � Êi

†
Êi ,

which are positive operators that satisfy∑
i

Π̂i � Î ,
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where Î is the identity operator in the Hilbert space of the particle(s) being
measured. Each index value i corresponds to a measurement that trans-
forms a pure state according to

|ψ〉→ Êi |ψ〉√
〈ψ| Êi

†
Êi |ψ〉

(3.1)

with probability
pi � 〈ψ| Êi

†
Êi |ψ〉 . (3.2)

If all of the Kraus operators are projection operators (then so are the
POVMelements), the POVM is a projectivemeasurement, which is what we
have been using all along. Otherwise, it is a non-projective measurement.
Non-projective POVMs are useful in many distinguishability applications.
POVMs can be used for minimum error discrimination and unambigu-
ous state discrimination, and both schemes are able to distinguish between
non-orthogonal states in ways that projective measurements cannot. In
minimum error discrimination, a measurement returns a result which may
be incorrect, but the probability of an incorrect result is minimized. In un-
ambiguous state discrimination, the resultingmeasurement is neverwrong,
but there is a probability that the resulting measurement may be inconclu-
sive. These protocols have uses, but we are interested in potential use of
non-projective POVMs to discriminate Bell states perfectly, with no theo-
retical probability of failure. But POVMs show potential for this as well.
POVMs have the useful property that the number of measurement out-
comes is not limited by the dimension of the Hilbert space. In a projective
qudit (d-state variable) Bell state discrimination scheme, we are limited to
2d detectors that can project onto orthogonal states. In a general POVM
scheme, we do not generally get that restriction.

3.3 General Limits of Bell State Discrimination

In this thesis, wewill develop restrictions on a device that maximally distin-
guishes Bell states with LELM measurements. We will show that a general
POVM cannot distinguish more than 2d Bell states in the general case. We
will also restrict the form of a maximally distinguishing Kraus operator in
a POVM.

For distinguishable particles, we have tomeasure the two particles sepa-
rately. Again, from Section 2.7, because the state of an individual particle in
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a Bell state is random, only a measurement of the second particle can give
meaningful information. We know that even in the general POVM case,
only orthogonal states can be reliably distinguished (See Preskill (1998)).
The second particle only has a d-state variable, so only d orthogonal states
could exist in its Hilbert space. Therefore, only d Bell states of distinguish-
able particles could be distinguished.

For indistinguishable particles, we can mix the two particles in two
channels, which gives an extra channel variable, doubling the dimensions
of theHilbert spaces for both particles. So again, because the state of the first
particle is completely random, we can only distinguish orthogonal states of
the second particle. As the second particle has both d-state variable and a
2-state channel variable, there are amaximum of 2d orthogonal states of the
second particle that can be used to distinguish the Bell states. So a general
POVM can not distinguish more than 2d Bell states.

Now we will restrict the form of a maximally distinguishing Kraus
operator in a POVM. Based on whether the particle is a boson or a fermion,
we explicitly symmetrize or antisymmetrize the Bell states. Then the Bell
states look like

|Ψc
p〉 � ηc ,p

1 |0, L〉 |χc ,p
1 〉 + ηc ,p

2 |0, R〉 |χc ,p
2 〉 + . . . + ηc ,p

2d |d , R〉 |χc ,p
2d 〉 , (3.3)

where all of the ηc ,p
i s all have magnitude 1

√
2d

and |χc ,p
1 〉 , . . . , |χc ,p

2d 〉 are some
permutation of all of the basis states. After the first measurement, the
first particle will be transformed according to Equation 3.1. To maximize
distinguishability, we would like the remaining states to be orthogonal. If
any remaining states are mixed, then it is impossible to have 2d − 1 states
that are orthogonal to every state in the ensemble, so it is not possible to
reliably distinguish them. To be able to distinguish 2d qudit Bell states, the
state remaining after the first measurement would have to be unentangled.

Because the state in Equation 3.3 has each basis state for the first particle
andeachbasis state for the secondparticle, the state that eachKrausoperator
takes each basis state to must be a scalar multiple of some fixed state that
can be factored out of the resulting 2-particle state. This means that each
Kraus operator must be rank 1.

Because of this, I will write a general Kraus operator as

Êi �



α1n1 α2n1 . . . α2d n1
α1n2 α2n2 . . . α2d n2
...

...
. . .

...
α1n2d α2n2d . . . α2d n2d



(3.4)



34 Distinguishability of Qubit and Qutrit Bell States with POVMs

3.4 POVMs cannot distinguish all 4 qubit Bell states

Nowwewill applyEquation 3.4 to thequbit case to show thatPOVMscannot
distinguish all 4 qubit Bell states. When we symmetrize or antisymmetrize
the qubit Bell states, we get Equation 3.5.

|Φ+〉 � 1
2
(|0, L〉 |0, R〉 ± |0, R〉 |0, L〉 + |1, L〉 |1, R〉 ± |1, R〉 |1, L〉) (3.5a)

|Φ−〉 � 1
2
(|0, L〉 |0, R〉 ± |0, R〉 |0, L〉 − |1, L〉 |1, R〉 ∓ |1, R〉 |1, L〉) (3.5b)

|Ψ+〉 � 1
2
(|0, L〉 |1, R〉 ± |0, R〉 |1, L〉 + |1, L〉 |0, R〉 ± |1, R〉 |0, L〉) (3.5c)

|Ψ−〉 � 1
2
(|0, L〉 |1, R〉 ∓ |0, R〉 |1, L〉 − |1, L〉 |0, R〉 ± |1, R〉 |0, L〉) (3.5d)

Now we can use the 4 × 4 version of Equation 3.4 on each of these Bell
states, which leave the second particles in the states in Equation 3.6.

|Φ+〉i ,2 �
1
2
(±α2 |0, L〉 + α1 |0, R〉 ± α4 |1, L〉 + α3 |1, R〉) (3.6a)

|Φ−〉i ,2 �
1
2
(±α2 |0, L〉 + α1 |0, R〉 ∓ α4 |1, L〉 − α3 |1, R〉) (3.6b)

|Ψ+〉i ,2 �
1
2
(±α4 |0, L〉 + α3 |0, R〉 ± α2 |1, L〉 + α1 |1, R〉) (3.6c)

|Ψ−〉i ,2 �
1
2
(±α4 |0, L〉 − α3 |0, R〉 ∓ α2 |1, L〉 + α1 |1, R〉) (3.6d)

All of thesemust be orthogonal to be distinguishable. In both the boson and
fermion cases, the 6 pairwise orthogonality conditions are not satisfiable.
So there is no way for such an apparatus to distinguish all four qubit Bell
states.

3.5 POVMs cannot distinguish 6 qutrit Bell states

Next we will apply Equation 3.4 to the qutrit case to show that POVMs can-
not distinguish 6 qutrit Bell states. Whenwe symmetrize or antisymmetrize
the qutrit Bell states, we get Equations 3.7.

|Ψ0
0〉 �

1
√
6
(|0, L〉 |0, R〉 ± |0, R〉 |0, L〉 + |1, L〉 |1, R〉

± |1, R〉 |1, L〉 + |2, L〉 |2, R〉 ± |2, R〉 |2, L〉) (3.7a)
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|Ψ1
0〉 �

1
√
6
(|0, L〉 |0, R〉 ± |0, R〉 |0, L〉 + e i 2π3 |1, L〉 |1, R〉

± e i 2π3 |1, R〉 |1, L〉 + e i 4π3 |2, L〉 |2, R〉 ± e i 4π3 |2, R〉 |2, L〉) (3.7b)

|Ψ2
0〉 �

1
√
6
(|0, L〉 |0, R〉 ± |0, R〉 |0, L〉 + e i 4π3 |1, L〉 |1, R〉

± e i 4π3 |1, R〉 |1, L〉 + e i 2π3 |2, L〉 |2, R〉 ± e i 2π3 |2, R〉 |2, L〉) (3.7c)

|Ψ0
1〉 �

1
√
6
(|0, L〉 |1, R〉 ± |1, R〉 |0, L〉 + |1, L〉 |2, R〉

± |2, R〉 |1, L〉 + |2, L〉 |0, R〉 ± |0, R〉 |2, L〉) (3.7d)

|Ψ1
1〉 �

1
√
6
(|0, L〉 |1, R〉 ± |1, R〉 |0, L〉 + e i 2π3 |1, L〉 |2, R〉

± e i 2π3 |2, R〉 |1, L〉 + e i 4π3 |2, L〉 |0, R〉 ± e i 4π3 |0, R〉 |2, L〉) (3.7e)

|Ψ2
1〉 �

1
√
6
(|0, L〉 |1, R〉 ± |1, R〉 |0, L〉 + e i 4π3 |1, L〉 |2, R〉

± e i 4π3 |2, R〉 |1, L〉 + e i 2π3 |2, L〉 |0, R〉 ± e i 2π3 |0, R〉 |2, L〉) (3.7f)

|Ψ0
2〉 �

1
√
6
(|0, L〉 |2, R〉 ± |2, R〉 |0, L〉 + |1, L〉 |0, R〉

± |0, R〉 |1, L〉 + |2, L〉 |1, R〉 ± |1, R〉 |2, L〉) (3.7g)

|Ψ1
2〉 �

1
√
6
(|0, L〉 |2, R〉 ± |2, R〉 |0, L〉 + e i 2π3 |1, L〉 |0, R〉

± e i 2π3 |0, R〉 |1, L〉 + e i 4π3 |2, L〉 |1, R〉 ± e i 4π3 |1, R〉 |2, L〉) (3.7h)

|Ψ2
2〉 �

1
√
6
(|0, L〉 |2, R〉 ± |2, R〉 |0, L〉 + e i 4π3 |1, L〉 |0, R〉

± e i 4π3 |0, R〉 |1, L〉 + e i 2π3 |2, L〉 |1, R〉 ± e i 2π3 |1, R〉 |2, L〉) (3.7i)
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Now we can use the 6 × 6 version of Equation 3.4 on each of these Bell
states, which leave the second particles in the states in Equation 3.8.

|Ψ0
0〉i ,2 �

1
√
6
(±α2 |0, L〉 + α1 |0, R〉 ± α4 |1, L〉

+ α3 |1, R〉 ± α6 |2, L〉 + α5 |2, R〉) (3.8a)

|Ψ1
0〉i ,2 �

1
√
6
(±α2 |0, L〉 + α1 |0, R〉 ± e i 2π3 α4 |1, L〉

+ e i 2π3 α3 |1, R〉 ± e i 4π3 α6 |2, L〉 + e i 4π3 α5 |2, R〉) (3.8b)

|Ψ2
0〉i ,2 �

1
√
6
(±α2 |0, L〉 + α1 |0, R〉 ± e i 4π3 α4 |1, L〉

+ e i 4π3 α3 |1, R〉 ± e i 2π3 α6 |2, L〉 + e i 2π3 α5 |2, R〉) (3.8c)

|Ψ0
1〉i ,2 �

1
√
6
(±α4 |0, L〉 + α5 |0, R〉 ± α6 |1, L〉

+ α1 |1, R〉 ± α2 |2, L〉 + α3 |2, R〉) (3.8d)

|Ψ1
1〉i ,2 �

1
√
6
(±α4 |0, L〉 + e i 4π3 α5 |0, R〉 ± e i 2π3 α5 |1, L〉

+ α1 |1, R〉 ± e i 4π3 α2 |2, L〉 + e i 2π3 α3 |2, R〉) (3.8e)

|Ψ2
1〉i ,2 �

1
√
6
(±α4 |0, L〉 + e i 2π3 α5 |0, R〉 ± e i 4π3 α6 |1, L〉

+ α1 |1, R〉 ± e i 2π3 α2 |2, L〉 + e i 4π3 α3 |2, R〉) (3.8f)

|Ψ0
2〉i ,2 �

1
√
6
(±α6 |0, L〉 + α3 |0, R〉 ± α2 |1, L〉

+ α5 |1, R〉 ± α4 |2, L〉 + α1 |2, R〉) (3.8g)

|Ψ1
2〉i ,2 �

1
√
6
(±α6 |0, L〉 + e i 2π3 α3 |0, R〉 ± e i 2π3 α2 |1, L〉

+ e i 4π3 α5 |1, R〉 ± e i 4π3 α4 |2, L〉 + α1 |2, R〉) (3.8h)
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|Ψ2
2〉i ,2 �

1
√
6
(±α6 |0, L〉 + e i 4π3 α3 |0, R〉 ± e i 4π3 α2 |1, L〉

+ e i 2π3 α5 |1, R〉 ± e i 2π3 α4 |2, L〉 + α1 |2, R〉) (3.8i)

Now, we are left with
�9
6
�
� 84 sets of 6 Bell states to determine distinguisha-

bility for. We can simplify this greatly by considering equivalence classes
of 6-state sets that we can generate using the operations from Section 2.5.

It can be verified by hand using the transformations on a tic-tac-toe
diagram that these operations establish 2 classes, which we will call the
tic-tac-toe anti-winners and the tic-tac-toe anti-losers. Any set of 6 states
leaves out 3 of the qutrit Bell states. The location of those states is what
determines which class a set belongs to.

If the missing states in a set win at tic-tac-toe with wrap-around bound-
ary conditions or column permutation, then that set is a tic-tac-toe anti-
winner. An example is shown in Figure 3.1.

Figure 3.1 The tic-tac-toe diagram of the set
{|Ψ0

0〉 , |Ψ2
0〉 , |Ψ1

1〉 , |Ψ2
1〉 , |Ψ0

2〉 , |Ψ1
2〉}. This belongs to the tic-tac-toe

anti-winners class because with wrap-around boundary conditions or column
permutation, the missing states win at tic-tac-toe.

If the missing states in a set do not win at tic-tac-toe with wrap-around
boundary conditions or column permutation, then that set is a tic-tac-toe
anti-loser. An example is shown in Figure 3.2.



38 Distinguishability of Qubit and Qutrit Bell States with POVMs

Figure 3.2 The tic-tac-toe diagram of the set
{|Ψ2

0〉 , |Ψ0
1〉 , |Ψ1

1〉 , |Ψ0
2〉 , |Ψ1

2〉 , |Ψ2
2〉}. This belongs to the tic-tac-toe

anti-losers class because with even with wrap-around boundary conditions or
column permutation, the missing states do not win at tic-tac-toe.

We can simultaneously show that both a representative of the tic-tac-toe
anti-winners and a representative of the tic-tac-toe anti-losers cannot be dis-
tinguishable by showing that a subset of both representatives cannot be or-
thogonal after 1 detection. This subset is {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ2

0〉 , |Ψ0
1〉 , |Ψ1

1〉} and
it is a subset of the tic-tac-toe antiwinner {|Ψ0

0〉 , |Ψ1
0〉 , |Ψ2

0〉 , |Ψ0
1〉 , |Ψ1

1〉 , |Ψ2
1〉}

and the tic-tac-toe anti-loser {|Ψ0
0〉 , |Ψ1

0〉 , |Ψ2
0〉 , |Ψ0

1〉 , |Ψ1
1〉 , |Ψ0

2〉}. All of
these sets are shown in Figure 3.3.
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Figure 3.3 The subset {|Ψ0
0〉 , |Ψ1

0〉 , |Ψ2
0〉 , |Ψ0

1〉 , |Ψ1
1〉} is shownwith orange

Xs. The tic-tac-toe anti-winner adds |Ψ2
1〉, shown as amaroon Xwith a large cir-

cle. The tic-tac-toe anti-loser adds |Ψ0
2〉, shown as a blue X with a small rectan-

gle. By showing that the subset cannot remain orthogonal a�er one detection,
we will show that both representatives from the two classes cannot remain or-
thogonal a�er one detection.

To show that the subset cannot remain orthogonal after one detection,
we will use the general forms of the second particles in Equations 3.8a-3.8e.
Imposing 〈Ψ0

0 |i ,2 |Ψ1
0〉i ,2 � 0 and 〈Ψ0

1 |i ,2 |Ψ1
1〉i ,2 � 0 (in either the fermion or

boson case) gives the conditions
�
α1

�
�

�
α3

�
�

�
α5

�
and

�
α2

�
�

�
α4

�
�

�
α6

�
.

Imposing 〈Ψ0
0 |i ,2 |Ψ0

1〉i ,2 � 0, 〈Ψ1
0 |i ,2 |Ψ0

1〉i ,2 � 0 and 〈Ψ2
0 |i ,2 |Ψ0

1〉i ,2 � 0 (again
in either the fermion or boson case) gives the conditions

α2α
∗

4 � −α1α
∗

5

α4α
∗

6 � −α3α
∗

1

α6α
∗

2 � −α5α
∗

3.

If we multiply all of these together, we get
�
α2

�2�
α4

�2�
α6

�2
� −

�
α1

�2�
α3

�2�
α5

�2
.

The only way that all of these conditions can be satisfied is if all of the
coefficients are zero, which obviously cannot happen. So no set of 6 qutrit
Bell states is distinguishable with any LELM apparatus.





Chapter 4

Maximum Distinguishability
of Qubit × Qutrit Bell States
with Projective Measurement

4.1 Overview

In this chapter, we will detail progress toward determining maximal distin-
guishability of a different type of Bell states with projective LELM devices.
Here, we consider hyperentangled Bell states, which are entangled in more
than one property, specifically qubit × qutrit Bell states. We will begin
by introducing the concept of hyperentanglement and hyperentangled Bell
states. Then we will present some minor results and progress toward
determining exactly how many of these qubit × qutrit Bell states can be
distinguished with a projective LELM device.

4.2 Hyperentanglement

So far in this thesis, we have considered the distinguishability of Bell states
of two particles entangled in one d-dimensional variable. When two parti-
cles are entangled in more than one variable, they are called hyperentangled.
For example, a pair of photons could be entangled in both spin and mo-
mentum if their momenta and spins were not individually defined, but
their correlations were. Hyperentanglement is an important phenomenon,
and hyperentangled states have many applications. Earlier in this thesis,
we showed that the qubit Bell states could not be distinguished determin-
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istically by any LELM device. But if we allow entanglement in additional
variables, the 4 qubit Bell states can be distinguished with an LELM appa-
ratus. This protocol is detailed in Walborn et al. (2003).

Hyperentangled states can be written as tensor products of the states of
the individual variables. For example, if I have a two-particle system that
is entangled in the |Φ+〉 state in qubit variable A and entangled in the |Φ−〉
state in qubit variable B, we could write this state as

|Ψ〉 � |Φ+〉A ⊗ |Φ−〉B �
� |00〉A + |11〉A

�
⊗

� |00〉B − |11〉B
�

�
1
2

� |00〉A |00〉B − |00〉A |11〉B + |11〉A |00〉B − |11〉A |11〉 �
. (4.1)

4.3 Hyperentangled Bell States

As the section title suggests, one can also make hyperentangled Bell states,
which form an entangled basis for Hilbert spaces of two-particle multiple-
variable states. The state shown above in Equation 4.1 is one of the qubit
× qubit Bell states. One can make a complete set of hyperentangled Bell
states for a set of variables of a specific dimension by tensoring all of the
possible Bell states for each variable together. For example, the qubit ×
qubit Bell states are made up of all 16 possible tensor products of qubit Bell
states. In general, the Bell states for a hyperentangled systemwith variables
of dimension d1 , d2 , . . . dn are all of the d2

1d2
2 . . . d

2
n combinations of the Bell

states for those variables.
Neal Pisenti (HMC ’11), another previous student in this group, con-

sidered distinguishability of hyperentangled n-qubit Bell states (particles
entangled in n qubit variables) in his thesis. He showed that 2n+1

− 1 is
the maximum number of hyperentangled n-qubit Bell states distinguish-
able with projective LELM measurements (Pisenti (2011)). Unfortunately,
his argument did not fully generalize to other sets of hyperentangled Bell
states, so we had to start almost from scratch.

Next, we consider the simplest hyperentangled case that has not yet
been solved: qubit × qutrit Bell states. We have since made some progress
on determining the maximum number of qubit × qutrit Bell states that can
be distinguished deterministically with projective LELM measurements.
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4.4 9 Qubit × Qutrit Hyperentangled Bell States are
Distinguishable, but 12 are not

One might hope that because 3 qubit Bell states can be distinguished with
LELMmeasurements that 9 qubit× qubit Bell states could be distinguished.
But by substituting n � 2 into themaximum that Pisenti proved, we see that
only 7 canbedistinguished, as originally shown inWei et al. (2007). Formax-
imum qubit Bell state discrimination (detailed in Lütkenhaus et al. (1999)),
the particles must be mixed together in a way that can’t be undone for mea-
surement on the second qubit variable. But in the qubit × qutrit case, we
don’t have that problem because the maximally distinguishing protocol on
the qutrit variable does not mix the particles; it just requires separate mea-
surements of each particle in the standard basis. So to distinguish 9 qubit
× qutrit Bell states, one can simply measure the particles in the standard
basis of the qutrit variable and then perform the maximally distinguishing
qubit measurement from Lütkenhaus et al. (1999). This means that at least
9 qubit × qutrit Bell states are distinguishable.

If we consider the form of the projective LELM device for measuring
qubit × qutrit Bell states, we see that we only have 12 detectors, 3 for the
qutrit variable times 2 for the qubit variable times 2 for the channel vari-
able. As in the non-hyperentangled Bell states, the first detection gives
no information because all Bell states can trigger all detectors. So distin-
guishability again depends on one measurement, giving us a maximum of
12 distinguishable qubit × qutrit Bell states.

Neal Pisenti argues inhis thesis that the correspondingmaximumof 2n+1

cannot be achieved for n-qubit hyperentangled Bell states. This argument
can be extended to this case to show that 12 qubit × qutrit Bell states cannot
be distinguished. The argument considers three possible cases for particle
statistics: distinguishable particles, fermions and bosons.

Distinguishable particles do not have the channel variable because there
is no possibility of mixing the channels, so after the first particle is detected,
there can only be 6 orthogonal detectors to detect the second, so 12 can
definitely not be distinguished.

Fermions must be antisymmetric under exchange, so if detector |i〉 fires
for the first particle, it cannot fire again, because that would yield the
symmetric state |i〉 |i〉 for the pair, which is not allowed, so only 11 of the 12
detectors could fire second.

In the case of bosons, we will consider a general detector |i〉 which
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we will let fire first. If |i〉 is a single-channel detection mode, then we
can’t have a second click in that detector, because both particles can’t be
detected in the same channel. In other words, the detection signature
PLR |i〉 |i〉 � 0. This allows only 11 possibilities to distinguish qubit × qutrit
Bell states. Otherwise, |i〉 would be a nontrivial superposition of states in
the left channel and states in the right channel. We can express this state as
shown below in Equation 4.2.

|i〉 � |L〉 + |R〉 (4.2)
Here we require that |L〉 is only made of left-channel states, |R〉 is only
made of right-channel states, |L〉 , 0, and |R〉 , 0. Now we consider the
hypothetical state

|X〉 �
∑

j

ε j | j〉 � |L〉 − |R〉 , (4.3)

where the | j〉s are thedetectors and the ε js are chosen for the second equality
to hold. Now we see that

PLR |i〉 |X〉 � PLR(|L〉 + |R〉)(|L〉 − |R〉) � PLR(|L〉 |L〉 − |R〉 |R〉) � 0. (4.4)

So by rewriting |X〉 differently as shown in Equation 4.3, we get that∑
j

ε jPLR |i〉 | j〉 � 0. (4.5)

We know that at least one of the ε js must be nonzero. So there is a nonzero
term ε jPLR |i〉 | j〉 in that expression that must have at least one of the qubit×
qutrit Bell states in it, specifically one that we are trying to distinguish from
others by getting the detection (i , j). In order for Equation 4.5 to sum to zero
in the Bell basis, one of the other detection signatures PLR |i〉 |k〉 must have
that same Bell state in it, which does not allow this state to be distinguished.
So not all 12 qubit × qutrit Bell states are distinguishable. As this is true for
all 3 types of particle statistics, it is true in general.

4.5 Distinguishability Classes of Qubit × Qutrit Hy-
perentangled Bell States

Future investigations into whether sets of 10 or 11 qubit × qutrit Bell states
are distinguishable would have to consider a ridiculously large number of
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Bell state sets. The easiest case is 10 qubit × qutrit Bell states, and there are�36
10

�
� 254, 186, 856 of them. Because we do not want to investigate over a

quarter of a billion cases individually, we want to simplify the search using
equivalence classes. In order to generate some distinguishability classes
for qubit × qutrit Bell states like those used in Section 2.5, I extended what
was known from the equivalence classes for qutrit Bell states and qubit
Bell states, specifically the single-particle operations that permuted the Bell
states.

First, conveniently, the qubit Bell states are arbitrarily permutable! We
will show that every element in S4 that acts on the Bell states is obtainable
from unitary operations on the individual qubits. To do this, we begin by
labelling the qutrit Bell states as shown below:

1 : |Φ+〉 � 1
√
2

� |0〉A |0〉B + |1〉A |1〉B
�

(4.6a)

2 : |Φ−〉 � 1
√
2

� |0〉A |0〉B − |1〉A |1〉B
�

(4.6b)

3 : |Ψ+〉 � 1
√
2

� |0〉A |1〉B + |1〉A |0〉B
�

(4.6c)

4 : |Ψ−〉 � 1
√
2

� |0〉A |1〉B − |1〉A |0〉B
�

(4.6d)

We know that S4 is generated by the set {(12), (23), (34)}, so we will show
that (12), (23) and (34) can be performed. The operation (12) is performed
by performing the same conditional phase operation on both qubits:

(12) : |1〉A → i |1〉A , |1〉B → i |1〉B (4.7)

The operation (23) can be done with a general basis change performed on
both qubits:

(23) : |0〉→ 1
2
(|0〉 + |1〉 , |1〉)→ 1

2
(|0〉 − |1〉) (4.8)

The last operation, (34), can be performed by different conditional phase
operations on the qubits:

(34) : |1〉A → i |1〉A , |0〉B → i |0〉B (4.9)

So because the qubit × qutrit Bell states all have one of the four qubit Bell
states for their qubit variable, performing these operations on them allow
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many permutations on the whole set. Specifically, sets of Bell states are
equivalent if they have the same qutrit Bell states that share qubit Bell
states, and the specific identities of the qubit Bell states do not matter. So
far, our best option is to consider this freedom alongside the operations on
the qutrit Bell states from Section 2.5. One can see from operations on the tic
tac toe diagram, that the operations on the qutrit Bell states split the 9 qutrit
Bell states into 1 class for sets of 1, 2, 7, 8, and 9 Bell states and 2 classes for
sets of 3, 4, 5, and 6 Bell states. So we can count every equivalence class of
n qubit × qutrit Bell states by partitioning n into 4 integers between 1 and
9, counting how many qutrit Bell states are associated with each qubit Bell
state and for each partition, choosing which set of qutrit Bell states reduces
the total number of classes the most by performing the qutrit permuting
operations to reduce it to the one or two qutrit Bell state classes.

For example, if we are looking for equivalence classes for sets of n � 10
qubit × qutrit Bell states, we may choose the partition (6, 2, 1, 1), which cor-
responds to one qubit Bell state having 6 qutrit Bell states that are tensored
with it, another having 2 and the last two having 1 each. Without qutrit
operations, wewould have

�9
6
��9
2
��9
1
��9
1
�
� 84×36×9×9 � 244,944 equivalence

classes, but we choose to use the qutrit Bell state permutation operations to
reduce the

�9
6
�
down to 2. So we only get 2

�9
2
��9
1
��9
1
�
� 2 × 36 × 9 × 9 � 5,832

equivalence classes in this case.
We list all of the valid partitions and the number of equivalence classes in

each partition below, so that we can calculate a total number of equivalence
classes:
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Partitions of 10 Qubit × Qutrit Bell States Number of Equivalence Classes
(9,1,0,0) 1
(8,2,0,0) 9
(8,1,1,0) 81
(7,3,0,0) 72
(7,2,1,0) 324
(7,1,1,1) 729
(6,4,0,0) 168
(6,3,1,0) 1,512
(6,2,2,0) 2,592
(6,2,1,1) 5,832
(5,5,0,0) 252
(5,4,1,0) 2,268
(5,3,2,0) 6,048
(5,3,1,1) 13,608
(5,2,2,1) 23,328
(4,4,2,0) 9,072
(4,4,1,1) 20,412
(4,3,3,0) 14,112
(4,3,2,1) 54,432
(4,2,2,2) 93,312
(3,3,3,1) 127,008
(3,3,2,2) 217,728

Total Equivalence Classes: 592,900

As you can see, we have not yet reached an easy computation, but
we have reduced the number of cases to check by about a factor of 500.
With further Bell state permutation operations that could be expressed as
operations on single qubits, we may be able to get this down to something
that is computationally feasible. In Wei et al. (2007),12,870 cases for sets
of 8 qubit × qubit Bell states were investigated in Mathematica. Because
we need to solve a larger system of equations for each case, we may reach
computational feasibility at around 1,000 cases.





Chapter 5

Conclusion

In this thesis, we have established multiple distinguishability limits for Bell
states with LELM devices, with and without the restriction of projective
measurement. For two qubits, it has been known for quite a while that
LELM cannot perform a complete Bell measurement, but at least it is possi-
ble to distinguish 3 out of 4 Bell states, where measuring the two particles
separately only allows us to distinguish 2 Bell states. Not even this much
can be said for qutrit Bell states. We have shown that the most effective
projective LELM scheme for distinguishing qutrit Bell states is a simple
measurement of each particle separately in the standard basis. As this only
allows 3 Bell states to be distinguished, the same number as for qubit Bell
states, the viability of qutrit Bell states in quantum information protocols
looks less promising.

We have also shown that general non-projective POVMs do not allow for
better distinguishability for qubit Bell states with an LELM apparatus; only
3 can be distinguished with a general LELM apparatus. We also establish
that no more than 5 qutrit Bell states can be distinguished with a general
LELM apparatus. Both results suggest that non-projective measurement
may not improve the outlook for deterministic unambiguous Bell state dis-
crimination, but we have not yet ruled it out for the qutrit case or in general.
This is consistent with my intuition, as non-projective measurement tends
to introduce an additional element of chance in themeasurement outcomes,
so it can increase a probability of successful state discrimination in some
applications, but it does not work reliably.

Finally, we have made some progress on distinguishability of qubit ×
qutrit Bell stateswithprojectiveLELMdevices. Weknow that themaximum
number distinguishable is between 9 and 11 and we have made progress in
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simplifying the investigation of these cases by considering the equivalence
classes that arise from the operations that permute the non-hyperentangled
qubit and qutrit Bell states. Future work on this project would involve con-
sideration of new operations that might permute the hyperentangled qubit
× qutrit Bell states, which could further reduce the number of equivalence
classes down to around 1,000, which may be computationally feasible. Al-
ternatively, one might be able to make arguments about the detector modes
similar to those that I made in Chapter 2, which may circumvent the diffi-
culty of considering the system from Equation 1.32 for every equivalence
class.
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