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Abstract

Antibiotic resistance is a problem of significant and growing international
concern, in part due to the rapid evolution of new resistances. One potentially
important factor in the emergence of resistance is concentrated antibiotic use
in environments such as hospitals. Such high use creates a strong selective
pressure for pathogens to evolve resistance. We analyze some strategies
hospitals can use to slow the evolution of resistance, and estimate the length
of the delay between evolution and outbreak of resistance.
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Chapter 1

Introduction

Resistance to antibiotics is a growing international crisis. In the century
since their discovery, antibiotics have become a keystone of modern medical
treatments and have enabled extremely successful control and treatment
for diseases such as tuberculosis. Through a combination of sluggish
pharmaceutical research and fast evolution, antibiotic-resistant bacteria
(ARB) now threaten this progress.

In the mid-20th century, a renaissance of antibiotic research fueled
the discovery of over 20 new classes of antibiotics, each using a different
chemical core to fight bacterial infections. Since then decreasing incentives
have slowed this pipeline, closed academic research groups, and pulled away
industry focus. New analogue drugs are still being developed, but there is a
limit to the number of analogues that can be produced from a single core.
Thus, although analogues are helpful, new classes of antibiotics must be
discovered to achieve the rates of antibiotic development we will need to
support modern medicine in the coming decades (Coates et al., 2011).

As the development of novel classes of antibiotics becomes more rare,
ARB have become a larger and larger problem. Multiply drug-resistant
strains such as methicillin-resistant Staphylococcus aureus, or MRSA, are
dangerous and difficult to treat (Crowcroft and Catchpole, 2002), and Gram-
negative bacteria may pose an even greater threat (Kumarasamy et al., 2010).
To fight these strains, it is critical that we restart the antibiotic-research
engine of the 1940-60s by providing greater government incentives, but it is
equally critical that we develop effective policies to fight antibiotic resistance
and lengthen the lifetime during which current and future drugs remain
effective.

This thesis deals with the latter question: what are the best strategies for
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slowing the spread and emergence of antibiotic resistance, short of develop-
ing new drugs? We approach this problem from a modeling perspective, in
the hopes that theoretical insights will be able to inform the creation of more
effective real-world policies. In the following sections we will first define
our system, then give a brief overview of the types of anti-ARB strategies
others have modeled in the past.

1.1 Our System: Hospitals

There are many important battlegrounds in the fight against antibiotic
resistance, including outpatient (Goossens et al., 2005) and livestock use
(Mathew et al., 2007). However, perhaps the most frequently modeled
battleground is hospitals and other medical-care facilities (MCFs). These
facilities have several properties that make them an important reservoir for
antibiotic-resistance. These are:

• High vulnerability of patients. Patients in MCFs often have compro-
mised immune systems, or surgical wounds that are susceptible to
bacterial colonization. With many vulnerable patients in one place,
bacterial infections are bound to spread rapidly unless actively sup-
pressed.

• High volume of antibiotic use. Roughly half of all patients checked
into acute care hospitals receive antibiotics. Of this use roughly 75%
is to treat infections� while the remainder is used for prophylactic
(preventative) care) (Magill et al., 2014). Such heavy use creates an
environment which strongly selects for ARB.

• High turnover of patients. With the exception of specialized long-term
care facilities, most MCFs treat patients only for relatively short periods
of time (on the order of a week or two) (Cooper et al., 1999; Cosgrove
et al., 2005). Once they are well enough, they are released back into the
community, or perhaps to one of the aforementioned long-term care
facilities. By allowing such patients to potentially become colonized
by ARB and then leave the facility, hospitals have the potential to act
as a source population and fuel ARB in the community. For example,
MRSA patients often carry MRSA for months after they are released

�Hospital-acquired (or nosocomial) bacterial infections are incredibly common and account
for over 90,000 deaths per year in the US alone (D’Agata et al., 2007).
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from a hospital (Scanvic et al., 2001). On the other hand, if hospitals
treat ARB very effectively, they also have the potential to act as a
powerful sink population, almost like an ARB filter, which quickly and
efficiently treats patients before releasing them back to the community
free of ARB.

With these properties, fighting antibiotic-resistance in MCF settings will be
especially important in the coming years.

In addition, fighting antibiotic-resistance in MCFs poses several advan-
tages over other contexts such as outpatient and livestock use. Hospitals
are organized institutions whose express purpose is to save lives and keep
people healthy. In this, they provide a unique opportunity to implement
large-scale, coordinated strategies. Such strategies could prove difficult to
implement for outpatients, who must follow pre-defined treatment plans
(and often deviate from these prescribed regimens (Kardas et al., 2005)).
Similarly, it could be difficult to convince the agriculture industry to imple-
ment such strategies without clear short-term incentives. Thus unlike other
contexts, hospitals have both the organizational structure and motivation to
implement strategies to fight antibiotic-resistance.

In the following two sections we will describe some of the major strategies
hospitals can use to fight ARB. These strategies can be grouped into two
rough categories: those which focus on antibiotics themselves and the
patterns with which they are used in a hospital, and those which come at
the problem from a more general epidemiological perspective and focus on
reducing transmission of ARB within a hospital.

1.2 Antibiotic-Use Strategies

Antibiotic-use strategies seek to minimize prevalence of antibiotic-resistance
by optimally partitioning the use of several different antibiotics. Most
research (Bergstrom et al., 2004; Lipsitch et al., 2000; Peña Miller and
Beardmore, 2010; Chow et al., 2011) that has been done on this problem has
looked at the simplifying case that a hospital has access to an infinite supply
of exactly two antibiotics (antibiotic A and antibiotic B) that use different
antibiotic mechanisms but are otherwise equivalent. Under this scenario a
particular disease may have a susceptible strain (the S-strain), an A-resistant
strain (the A-strain), a B-resistant strain (the B-strain), and a strain resistant
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to both A and B (the AB-strain)�. Antibiotic-use strategies then seek to
prescribe antibiotics A and B to patients in a hospital so as to optimize some
quantity: for example, the average number of infected patients, the average
number infected by a resistant strain, or the probability that the AB-strain
evolves (assuming it was not previously present) from the A- and B-strains
in some given time interval.

This last possibility raises an interesting assumption that is often made
(Bergstrom et al., 2004; Lipsitch et al., 2000; Peña Miller and Beardmore, 2010):
that the AB-strain has not yet arisen. This seems somewhat counterintuitive;
multiply-resistant strains are a big concern and it is important that we learn
how to deal with them. However, in the context of antibiotic-use strategies, it
is often unhelpful to talk about a strain which is resistant to all the antibiotics
allowed in your system. Such a “superbug” strain is not treatable using
antibiotics. Instead, other strategies — such as isolation units — must be
implemented to prevent their spread. Thus in the context of a two-antibiotic
system it is not useful to talk about doubly-resistant strains; in the context of
a three-antibiotic system (which we construct and analyze in Chapter 3) it is
useful to talk about doubly-resistant strains but not triply-resistant strains;
and so on.

In addition to the assumption that only two antibiotics exist, and the
assumption that the AB-strain has not yet evolved, it is often assumed
(Bergstrom et al., 2004; Lipsitch et al., 2000; Peña Miller and Beardmore, 2010;
Chow et al., 2011) that resistance incurs a fitness cost. That is, in the absence
of antibiotics the susceptible strain is assumed to be more fit than either the A-
or B-strains, while in the presence of only one antibiotic, the singly-resistant
strain is assumed to be more fit than the multiply-resistant strain. This
assumption is complicated by the evolution of “compensatory” traits in ARB,
or traits that reduce this fitness cost while maintaining resistance. In the
absence of antibiotic use, such compensatory traits have been observed to
dramatically reduce fitness costs in some ARB (Schrag and Perrot, 1996). In
addition, these traits tend to evolve more rapidly than reversion to antibiotic-
susceptibility, thus preventing susceptibility from replacing resistance even
if antibiotic-use ceases entirely (Levin et al., 2000). Though flawed, the
assumption of fitness costs is quite common. Thankfully, fitness costs are
often modeled using parameters that can be set to zero to approximate the
case of compensatory mutation.

�Bergstrom et al. and Peña Miller and Beardmore consider only the S- ,A-, and B-strains,
Lipsitch et al. considers only the S- and A-strains, and Chow et al. considers all four.
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Intuitively, antibiotic-use strategies can be thought of as representing
attempts to vary the selective environment in the hospital (Bergstrom et al.,
2004). If the environment were constant then ARB would very quickly adapt
to that environment. For example, if every patient was given antibiotic A
for all time then the A- and AB-strains would have a clear evolutionary
advantage over the S- and B-strains. Thus these two strains would reach very
high levels in the hospital very quickly, and soon most treatments would
prove ineffective. In this case, ARB can be thought of as having evolved
to the selective environment of the hospital. However by varying use of
antibiotics A and B, the selective environment will vary, so that no one strain
has a clear advantage. Hopefully, in this scenario, ARB will be unable to
evolve, or at least be unable to evolve quickly, so that treatments will remain
effective for as long as possible.

The most commonly modeled antibiotic-use strategies are cycling and
mixing. These can be thought of respectively as attempts to vary the
evolutionary environment in time and in space. Under cycling, the entire
population of a hospital is assumed to take the same antibiotic simultaneously,
while at some regular intervals the antibiotic-of-choice changes. For example,
a hospital might choose to use antibiotic A for a week, then antibiotic B
for two weeks, then repeat this cycle over and over. This represents pure
temporal variation, because at any given time the hospitals is completely
spatially homogeneous; everyone is taking the same drug. Under mixing,
patients are randomly assigned antibiotic A with some probability p and are
assigned antibiotic B with probability 1� p. These probabilities are assumed
not to change with time. Thus mixing represents pure spatial variation, with
absolutely no change in the strategy over time. Of the two, mixing more
closely approximates current practices in hospitals (Bergstrom et al., 2004)

These two strategies have been modeled numerous times and have even
seen some clinical studies (zur Wiesch et al., 2014) but for both practical�
and theoretical� reasons it has proven quite difficult to provide a compelling
case for hospitals to use one or the other.

The only other antibiotic-use strategy that is commonly modeled is
combination therapy. In this strategy some or all patients receive multiple
antibiotics simultaneously. This does not introduce variation into the

�Clinical trials tend to use historical controls, making it “difficult to distinguish the effects
of cycling from the general effect of having a well-publicized, specific antimicrobial policy”
(Bergstrom et al., 2004).

�Under some models, it is possible to show that there must always be mixing strategies
that outperform cycling strategies and vice versa (Peña Miller and Beardmore, 2010).
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selective environment, but is extremely advantageous for whichever patient
receives this therapy, since any strain not simultaneously resistant to all
antibiotics in use will be effectively treated. It may however, very strongly
select for multiple resistance (for example if bacterial evolution is stress-
induced (Obolski and Hadany, 2012)) and this danger may outweigh the
benefits in some scenarios. Combination therapy is not considered in any of
our models.

1.2.1 Volume of Antibiotic Use

A related problem is that of volume of antibiotic use. It is perhaps evident
that all else being equal a higher volume of antibiotic use should select more
strongly for resistance. Major questions surrounding volume of use include:

• Evolution: How does the volume of antibiotic use impact the rate of
evolution of ARB?

• Outbreak: Once ARB have evolved, how does the volume of use impact
the time scale over which ARB frequency increases?

• Optimality: What is the optimal volume of antibiotic use, taking into
account rates of evolution and outbreak?

Questions like these can and have been tackled using mathematics, though
surprisingly infrequently (Austin et al., 1999b).

Of particular interest when considering the volume of antibiotic use —
and to a lesser extent antibiotic-use strategies — are the ethical questions they
raise. Doctors must face a balancing act between treating current patients
with aggressive, often prophylactic, courses of antibiotics or preserving the
efficacy of antibiotics for future generations. Mathematics can be used as a
tool to aid in these dilemmas, though it should not be the sole consideration.
For example, modeling allows us to quantifying the problem of optimality.
One can attempt to minimize the number of bacterial-infection related deaths
over some period of time (say, the next 100 years). If the optimum volume of
antibiotic use is found to be significantly lower than current levels, however,
doctors could face the morally gray prospect of treating current patients less
effectively in the hopes of treating future patients more effectively. Likewise
if the optimum use is found to be very high, doctors face the psychologically
easier but still morally gray decision of sacrificing antibiotic efficacy for future
generations. The choice will never be easy, and given the simplifications
found in any mathematical model, many theoretical results must be taken
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with a grain of salt. Nevertheless modeling will be vital in our societal
attempt to achieve sustainable antibiotic use.

1.3 Transmission-Reduction Strategies

Antibiotic-use strategies are quite specific to the problem of antibiotic-
resistance. However there are many strategies for fighting ARB which
draw on more general epidemiological ideas. In particular, a major focus
of epidemiological modeling is R0, the basic reproductive number, which
measures the average number of secondary infections resulting from a
single “patient-zero.” By reducing R0 below 1, any outbreak of a disease
will inevitably dwindle and die, because it is not able to sustain itself by
infecting new patients. Following this mindset, many strategies for fighting
antibiotic-resistance involve trying to reduce the rate of transmission of
resistant infections.

It is worth noting that most of these strategies can more accurately be
described as strategies for fighting hospital-acquired infections. They do
not take into account the actual resistance properties of ARB. Instead they
try to limit the spread of bacteria through an MCF, just as they would any
other infectious disease. As multiply-resistant strains become more common,
these general strategies will become more important. The more resistant an
infection is, the greater the likelihood initial treatment will be ineffective and
the more aggressive ultimate antibiotic therapy must be. Thus it is critical to
develop strategies for coping with ARB in the absence of effective treatment.
Many such strategies (Beggs et al., 2006; Austin et al., 1999a) have been
analyzed, particularly in the context of MRSA (Cooper et al., 2004, 1999).

The classic example of a transmission-reduction strategy is hand-washing.
Most patient-to-patient contacts in a hospital setting are thought to be
mediated by healthcare workers (HCWs). For example, if a nurse dresses
patient 1’s wound and then changes the sheets on patient 2’s bed, they could
transmit MRSA from patient 1 to patient 2. By washing hands thoroughly
in between every patient-to-HCW contact, the rate of patient-to-patient
transmission can be dramatically reduced. Models confirm that this should
in theory be a remarkably effective strategy (Beggs et al., 2006; Austin
et al., 1999a), however compliance with hospital hand-washing policies is
notoriously bad (Larson and Kretzer, 1995) and this reduces the efficacy of
this strategy. Thus, other transmission-reduction strategies are needed.

Another common transmission-reduction strategy is cohorting. Under
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cohorting, the patients in a hospital are partitioned into smaller groups,
and HCWs are assigned to one particular group. Interaction of HCWs
with patients or workers in other groups is then discouraged or forbidden.
In essence this reduces the pool of susceptible individuals any particular
infected individual is capable of infecting. Analysis has found cohorting to
be extremely effective in theory, particularly in combination with diligent
hand-washing (Beggs et al., 2006).

Finally, it is possible to designate one particular cohort as an isolation
unit. Whenever a patient is found to have been infected by ARB, or is
suspected to have been infected, they are sent to the isolation unit. This
effectively reduces the pool of susceptible individuals to zero as soon as
a patient is moved. This strategy is vulnerable to stochastic fluctuations;
it is costly to maintain a large isolation ward, but if the ward is too small
it is likely to be overwhelmed by random spikes in admission of patients
with resistant infections. This can result in a much larger outbreak if ARB is
allowed to spread to the general hospital population. However, this can be
solved by allowing inter-hospital transfers, so that nearby hospitals can lend
their isolation unit space to smooth out stochastic fluctuations. Isolation
units also have the fortunate property that after their introduction, they are
capable of eradicating an endemic antibiotic-resistant strain, though they
do so only very slowly. It is worth noting that this strategy sees wide use in
Denmark and The Netherlands where it has proven extremely effective in
keeping MRSA levels low, despite high levels in countries like the UK and
the US (Cooper et al., 2004).

1.4 Outline

The primary antibiotic use and transmission reduction strategies can be
found in Table 1.1. In addition to these strategies, volume of antibiotic use
must also be considered (i.e. can it be decreased?). All of these strategies have
been mathematically modeled, some of them extensively. In the following
chapters we will focus primarily on antibiotic-use strategies and volume of
antibiotic use.

Chapter 2 contains in-depth discussions of past modeling of antibiotic-
use strategies. Common model structures and assumptions are covered
in detail, along with the limitations of these models, and some important
results.

Chapters 3 and 4 contain the extensions we have made to past work. In
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Antibiotic Use Transmission Reduction
Cycling Hand-Washing
Mixing Cohorting

Combination Isolation Units

Table �.� Popular strategies used to fight ARB in hospitals.

Chapter 3 we focus on mixing and cycling. We discuss the two-antibiotic
system modeled in (Chow et al., 2011) and present an ecological interpretation
for their result that cycling exhibits superior control over multiply-resistant
strains. We then analyze a three-antibiotic system and compare the results
from this system with those from (Chow et al., 2011) and (Bergstrom et al.,
2004). A primary focus of this analysis is on reducing the rate of evolution
of antibiotic resistance. In Chapter 4 we shift focus and analyze the problem
of community-wide ARB outbreaks. To do so we extend Bergstrom et al.’s
model by coupling a hospital to its surrounding community. In order to
obtain analytical results, we also simplify the system down to a single
antibiotic. In our model only volume of antibiotic use can be considered,
but extensions to this work could examine cycling and mixing.

Finally in Chapter 5 we suggest possible extensions to our work. Among
other things, we discuss the need to confirm our ideas in Chapter 3 with
systematic simulations; the need to relax certain assumptions used in
Chapter 4; and the need for more in-depth explorations of the stochastic
behaviors of both systems.

Code and Figures

The code used for this thesis can be found at http://math.hmc.edu/~cokasaki/
thesis. Individual files are provided capable of generating every figure
and of reproducing most calculations whose derivations are not included
in the body of this thesis. Stochastic figures and calculations may only
be reproduced qualitatively due to random number generation. We also
provide image files for all of our figures. The less well-documented original
code is also provided in a subfolder.

http://math.hmc.edu/~cokasaki/thesis
http://math.hmc.edu/~cokasaki/thesis




Chapter 2

Background

As discussed in Chapter 1 many models of ARB dynamics study antibiotic-
use strategies. Antibiotic-use models attempt to understand the optimal
way to set the volume of use of one or several antibiotics. These are the
primary models we build off of in Chapters 3 and 4. In this chapter we give
an introduction to the mathematical structure of these models.

2.1 Deterministic Antibiotic-Use Models

Most antibiotic-use papers use compartmental deterministic ordinary dif-
ferential equation (ODE) models to account for transmission dynamics in
a hospital. The most popular is the model proposed by (Bergstrom et al.,
2004). This model considers a single bacterial contagion and its interactions
with two antibiotics (A and B) in a hospital setting. It assumes there are
three strains of this bacteria: susceptible, resistant to A, and resistant to B.
As discussed in Chapter 1, it also assumes that multiple-resistance has not
yet arisen, or is at such low levels in the general community that it has not
yet spread to this hospital. The model then tracks the proportion of patients
occupying each of four compartments: uncolonized (X), colonized by the
susceptible strain (S), colonized by the A-resistant strain (R1), and colonized
by the B-resistant strain (R2).

A diagram depicting the relationships between these compartments can
be found in Figure 2.1. The allowed interactions between patients are:

• Infection. A patient in S, R1 , or R2 may infect a patient in X. Thus
patients in X move to one of the other three categories at a rate
proportional to both the number of patients in X and the number
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of patients in the destination compartment. The rate constant � is
assumed to be the same for all three strains (that is, resistance neither
inhibits nor enhances contagiousness).

• Clearance. A patient in S, R1 , or R2 may receive successful antibiotic
treatment, or their immune system may successfully defeat their
infection. In either case they move into compartment X. The rate of
natural immune clearance is � for all three strains. Antibiotic A is used
at rate ⌧1, and antibiotic B is used at rate ⌧2. These rates are assumed
to be independent of infection class. In reality this is not the case: a
patient with a symptomatic A-resistant infection will eventually be
treated with antibiotic B or vice versa�. However, many infections are
asymptomatic, and hospitalized patients often receive prophylactic
care before their infections become symptomatic. Thus to first order
antibiotic use may realistically be independent of infection class.

• Admission/Discharge. A patient may be admitted into any category
from the outside community, and may be discharged from any category.
Since the hospital is assumed to have a constant population, total
admission rate equals total discharge rate (µ) at any given time. Thus
the average length of stay is 1/µ. This parameter is assumed to be the
same for all patients regardless of infection status. Again, this is not true
in reality: patients who contract hospital-acquired infections will likely
stay in the hospital for a longer period of time. Nevertheless, since
many infections are asymptomatic, discharge rates are still assumed to
be independent of infection class.

• Superinfection. A patient already infected by one strain may have
their infection replaced by another. Thus patients may move between
S, R1, and R2. This occurs at rates proportional to population sizes,
and scaled by � (the rate of contagion), � the fractional rate at which
supercolonization is successful (as compared to normal infection), and
modified by c1 and c2 the fitness cost of resistance.

The interactions between these compartments can then be modeled with the

�Antibiotic-use strategies that take this into account are called adjustable in (zur Wiesch et al.,
2014). These are much closer to reality, and further research into adjustable cycling/mixing
is needed.
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following system of equations:

S0 ⇤ (m � S)µ + �SX + ��S(c1R1 + c2R2) � S(� + ⌧1 + ⌧2)
R01 ⇤ (m1 � R1)µ + �R1X � ��R1(c1S + (c1 � c2)R2) � R1(� + ⌧2)
R02 ⇤ (m2 � R2)µ + �R2X � ��R2(c2S + (c2 � c1)R1) � R2(� + ⌧1)
X ⇤ 1 � S � R1 � R2.

(2.1)

Within this model, antibiotic-use strategies define how ⌧1 and ⌧2 vary
with time. To explain the strategies and give them some additional formal
structure we will use some assumptions and notation from (Peña Miller and
Beardmore, 2010). In addition to the assumptions inherent in the underlying
hospital model, we will now assume that:

• Some interval of time [0, T] for 0 < T < 1 is of interest to us as admin-
istrators of a hospital. We only concern ourselves with optimizing over
this interval.

• Patients are given precisely one antibiotic. This rules out strategies
such as combination therapy, but simplifies our job as modelers.

• The rate at which patients are treated with antibiotics is constant. The
size of the population is assumed to smooth out any variation in how
frequently patients are prescribed antibiotics.

• Explicit spatial information is not used to inform our strategy. Antibi-
otics are assigned randomly with some proportion receiving antibiotic
A and the remainder receiving antibiotic B. This rules out, for example,
a strategy which attempts to minimize the number of neighboring
patients receiving the same antibiotic.

Together, these assumptions allow us to completely specify our strategy
with a single function ⇣ : [0, T]! [0, 1], which represents the proportion of
patients receiving treatment who receive antibiotic A at any given time. The
remaining patients receive antibiotic B.

Peña Miller and Beardmore then present several sets of functions corre-
sponding to well-known antibiotic-use strategies. A cycling strategy ⇣ is
specified by two parameters t1 and t2 and is defined to be

⇣(t) ⇤
8><>:

1 0  t (mod t1 + t2)  t1

0 t1  t (mod t1 + t2)  t2.
(2.2)
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Figure �.� The compartments for Bergstrom et al.’s antibiotic-use model,
shown in System �.�. Patients in X are uninfected, those in S are infected by
the susceptible strain, and those in R1 or R2 are infected by a resistant strain.
There is assumed to be nomultiply resistant strain. Arrows are color-coded by
the process they represent. Red represents infection, yellow represents super-
colonization, blue represents clearance, and black represents admission and
discharge from the hospital. Figure adapted from (Bergstrom et al., ����).
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Figure �.� Graphical depictions of cycling (le�) andmixing (right). The pro-
portion of patients receiving antibioticA is shown in blue, and the proportion
receiving antibiotic B is shown in green. Note that the sum of the two propor-
tions is always �. Figure adapted from (Peña Miller and Beardmore, ����).

A mixing strategy is specified using just one parameter 0  m  1, and is
defined to be the constant function ⇣(t) ⇤ m. Figure 2.2 graphically depicts
these functions.

Now we can bring together our understanding of how antibiotic-use
strategies are defined with the ODE model for ARB dynamics in hospitals.
In the ODE model ⌧1 and ⌧2 are used to denote the rates at which drug
A and B are used respectively, and each drug (if effective) is assumed to
instantaneously clear any infection present. Since we also assume that the
rate of antibiotic prescription is constant, we find that ⌧ ⇤ ⌧1 + ⌧2 must be
constant. Thus in order to simulate a particular antibiotic-use strategy ⇣ we
set ⌧1(t) ⇤ ⌧⇣(t) and ⌧2(t) ⇤ ⌧(1 � ⇣(t)).However this makes the assumption
that physicians follow our assumed antibiotic-use protocol perfectly. This
may not be the case, and (Bergstrom et al., 2004) accounts for this possibility
with a parameter ↵ that describes the probability that physicians correctly
follow the assumed protocol. The remaining ⌧(1�↵) antibiotics are assigned
at random, 50% to antibiotic A and 50% to antibiotic B.

An example of a simulation of this system under a cycling protocol is
shown in Figure 2.3. In general, though, we do not need all the information
given in such a simulation. Instead we usually wish to compute some
statistics with which we can compare strategies. For example it might be
informative to plot R1 + R2 over time as a measurement of the total “amount”
of resistance present in the hospital. This statistic on a different simulation is
shown in Figure 2.4 for two cycling protocols (both with t1 ⇤ t2), as compared
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Figure �.� A simulation of System �.�. Figure from (Bergstrom et al., ����)
using parameters � ⇤ 1, c1 ⇤ c2 ⇤ 0, � ⇤ 0.03,m ⇤ 0.7,m1 ⇤ 0.05,m2 ⇤

0.05, ⌧ ⇤ 0.5, µ ⇤ 0.1, � ⇤ 0.25, and ↵ ⇤ 0.8. The cycling protocol was defined
as t1 ⇤ t2 ⇤ �� days.

to a mixing protocol.
Analysis of this form (plotting statistics computed on S,X, R1, and R2

over time) conducted in (Bergstrom et al., 2004) was able to roughly indicate
that under this model, mixing outperforms cycling, as measured both by
prevalence of resistant strains and rate of evolution of new resistance. These
results were questioned in (Peña Miller and Beardmore, 2010) and (zur
Wiesch et al., 2014), both of which argue that only very slight expansions
in what is allowed as a cycling protocol erase the advantages presented
by Bergstrom et al.. Additionally, (Chow et al., 2011) argued that cycling
exhibits more effective control over multiply-resistant strains. In Chapter 3
we expand on Chow et al.’s results for a three-antibiotic system.

Deterministic models have also been used to examine the volume of
antibiotic use (Austin et al., 1999b). The particular model used by Austin
et al. is slightly different and more complex than Bergstrom et al.’s model
described above. In order to model the evolution of resistance Austin et al.
takes into account the treatment history of individuals, adding additional
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Figure�.� Plots ofR1 +R2 over time in System �.�under two cycling protocols
(solid line) compared to the same plots for a mixing protocol (dashed line). The
cycling protocols were assumed to have t1 ⇤ t2, but the value of t1 + t2 was
varied and is shown on the x-axis. Figure from (Bergstrom et al., ����) using
parameters from Figure �.�.

classes “Treated Uncolonized” and “Treated Resistant” patients. These
patients represent those who have recently been treated successfully, or
unsuccessfully (e.g., resulting in selection for, or evolution of, a resistant
infection). In the interests of simplicity our investigation of volume of
antibiotic use in Chapter 4 will use an adapted version of Bergstrom et al.’s
model rather than this more sophisticated approach.

2.2 Stochastic Antibiotic-Use Models

Stochastic antibiotic-use models are surprisingly lacking in the literature�.
Only one antibiotic-use paper in our literature review (Bergstrom et al.,
2004) confirmed that the results they obtained using deterministic models
hold under analogous stochastic models. Several other papers either ignore
stochasticity entirely (Peña Miller and Beardmore, 2010; Chow et al., 2011)
or mention its importance only in passing (Lipsitch et al., 2000). We present
some preliminary stochastic results in Chapters 3 and 4 but a more thorough
analysis is beyond the scope of this thesis.

�Stochastic transmission-reduction models are slightly more common. See for a particu-
larly good example (Cooper et al., 2004).





Chapter 3

Competition Between Resistant
Strains

In this section we present an ecological interpretation of the results in (Chow
et al., 2011) and extend the results of (Chow et al., 2011; Bergstrom et al.,
2004) by considering the addition of a third antibiotic to the system. We
briefly present a method for balancing the risks of evolution with the desire
for effective medical treatment.

Bergstrom et al. concluded that cycling may control evolution of resis-
tance more effectively than mixing under certain particularly symmetric
parameter sets. Namely if the community prevalences m1 and m2 of the two
resistant strains are similar, then cycling reduces the possibility of horizontal
gene transfer� (HGT), though at the risk of increasing the rate of mutation
of resistance. However, Bergstrom et al. also note that such symmetric
parameter sets are rare in practice, and that even when present, monitoring
is often insufficient to detect them (Bergstrom et al., 2004).

Chow et al. concluded that cycling controls the frequency of a superbug
strain R12 more effectively than mixing, but presented no rationale for why
(Chow et al., 2011).

After conducting our own analysis of Chow et al.’s system, we conclude
that Chow et al.’s claims are correct and result from competition between
resistant strains. In a sense resistant strains exploit the fixed resource of
uninfected patients in X. Because cycling provides less effective control

�Horizontal gene transfer is an evolutionary process through which non-chromosomal
DNA is transferred horizontally between two organisms (as opposed to vertical transfer
through reproduction and mutation). Horizontal gene transfer can, for example, allow R1 to
share its resistance with R2 without mutation.



20 Competition Between Resistant Strains

over the frequencies of singly-resistant strains, these strains are allowed to
more effectively compete with the doubly-resistant superbug. Accordingly
this phenomenon should generalize to larger number of antibiotics, and
the efficacy of cycling in controlling highly-resistant strains should depend
greatly on the diversity and community prevalences of other resistant strains
present in a given hospital.

By adding a third antibiotic we can synthesize the results of (Chow et al.,
2011) and (Bergstrom et al., 2004). We conclude that by more effectively
controlling highly-resistant strains, cycling provides better control over the
mutation of novel combinations of resistances. Moreover since cycling still
has the ability to reduce HGT under sufficiently symmetric parameter sets
(Bergstrom et al., 2004) this means that cycling may in certain cases be
significantly more effective at slowing evolution of ARB.

In selecting an antibiotic-use strategy in practice many factors must be
considered. As noted by Bergstrom et al. symmetric parameter sets may not
reflect reality in many cases, so data must be gathered on the frequencies of
resistance in incoming patients. Moreover in cases of asymmetric frequencies,
the relative importance of mutation vs. HGT must be evaluated in selecting
an antibiotic-use strategy.

Finally, although Bergstrom et al. previously presented evidence that
mixing provides superior control for the frequency of total resistance R1 + R2,
more diverse sets of resistant strains call for more sophisticated approaches.
What is the relative risk posed by a doubly-resistant or triply-resistant
infection vs. a singly-resistant infection? We propose that a statistic centered
on ultimate patient outcomes (for example: rate at which patients are
incorrectly treated) should be used when evaluating the medical efficacy
of an antibiotic-use strategy, in addition to statistics based on infection
frequency (for example: total infection mass 1 � X). Due to the subtleties
of cycling’s superior control of resistant strains, cycling still underperforms
mixing under these metrics. Ultimately, then, a balance must be struck
between rate of evolution by mutation, rate of evolution by HGT, and medical
efficacy of treatment as measured by various metrics. We briefly present one
method for balancing these concerns, but further research is needed to help
advise hospitals in selecting a practical antibiotic-use strategy.

An important omission from this chapter is a detailed consideration
of stochastic effects. These effects are certainly important: hospitals are
usually relatively small communities and in some cases this will make the
possibility of local extinction substantial. For example, by virtue of the
natural periodicity of cycling strategies, cycling encourages local extinction
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of rare bacterial strains — a property that could prove useful in the early
stages of a resistance outbreak. However, a full analysis of stochastic effects
is beyond the scope of this thesis. Potential stochastic analysis is instead
discussed in Chapter 5 as an important avenue for future study.

3.1 Control of Double Resistance

In Bergstrom et al.’s model, discussed in Section 2.1, we assumed that
multiple-resistance had not yet arisen. If it had, it would be a “superbug,”
immune to all available antibiotics. It would thus either dominate the
hospital (if the basic reproductive number R0 > 1 in the hospital) or go
through a series of local outbreaks and extinctions (if R0 < 1 in the hospital),
each outbreak begun by admission of a new infected patient.

To our knowledge only one paper (Chow et al., 2011) has considered
superbug strains in their model. That paper presents an extension to
Bergstrom et al.’s model to include a doubly-resistant superbug strain.
They argue that their simulations indicate cycling controls the superbug
strain more effectively than mixing does. Here we present an ecological
interpretation of their results.

They observed that under cycling, double-resistance remains at both
lower average and lower peak levels. While this is true they do not present
an explanation for why this is the case. Observing simulations of their
model, like those in Figure 3.1 we can note that whenever the superbug
strain R1 + R2 undergoes its characteristic downward spike, R12 undergoes
a counterpart upward spike. Thus we argue that the control of R12 that
Chow et al. is observing is the result of competition with singly-resistant
strains. Since cycling is less effective than mixing as a control measure for
singly-resistant strains, it allows R1 and R2 a greater competitive ability
versus R12.

Qualitatively we can argue that this must be true by considering what
happens when R1 and R2 are removed from the system. If we set R1 ⇤ R2 ⇤ 0
and m1 ⇤ m2 ⇤ 0 then the only populations remaining in the hospital are
S,X, and R12. However, since the total rate of antibiotic use ⌧1 + ⌧2 is
assumed to be constant, our choice of strategy no longer affects the dynamics
of this system: S is susceptible to both antibiotics while R12 is resistant to
both. Thus cycling and mixing have identical dynamics when R1 and R2 are
absent from the system. It follows that any differences between cycling and
mixing’s R12 dynamics when R1 and R2 are present must be mediated by
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Figure �.� A simulation of Chow et al.’s model. Note the periodic spikes in
R12, in sync with the periodic dips in R1 + R2. Parameters were µ ⇤ 0.1,m ⇤

0.7,m1 ⇤ m2 ⇤ 0.05,m12 ⇤ 0.0005, � ⇤ 0.03, � ⇤ 1, c1 ⇤ c2 ⇤ 0.05, c12 ⇤

0.15, � ⇤ 0.25, ↵ ⇤ 0.8, ⌧ ⇤ 0.76, as in (Chow et al., ����). When applicable,
parameters are given in units of days�1. Cycling period is ��� days (��� days per
antibiotic).
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interactions with R1 and R2. These interactions may take the form of either
exploitation competition� or interference competition�.

Unfortunately, within the context of Chow et al.’s simple two-strain
model, the nature of this competition negates any benefits otherwise accrued
by reducing R12. This is because pure population dynamics (while certainly
useful) are not a sufficient metric for measuring the efficacy of an antibiotic-
use strategy. Rather, we must also consider patient outcomes. Even though
R12 remains at lower levels under cycling, patients on average receive less
effective antibiotic treatment.

Since antibiotics are in general quite effective, resistant infections are
only problematic if initial treatment is with an ineffective antibiotic. This
ineffective treatment could be dangerous as the infection will continue
unchecked. Thus one measure of patient outcome is the rate at which these
ineffective treatment events occur.

It is important to note the weaknesses of this metric. For example, this
metric reaches an absolute minimum when all antibiotic use ceases. In this
scenario no patients receive any ineffective treatments, because no patients
receive any treatments at all! However, by throwing out this optimum or
by holding total antibiotic use ⌧ constant, we may hope to find a more
useful optimum. Because of this weakness, this metric should not be used
in isolation, and any optima obtained from it should be cross-checked with
other metrics such as 1�X, the total number of infected patients (such a cross-
check would, for example, rule out the no-antibiotic optimum discussed
above).

Under the well-mixing assumption that allowed us to construct our ODE
model in the first place, we can approximate the rate of ineffective treatment
as

I(t) ⇤ ⌧1R1(t) + ⌧2R2(t) + (⌧1 + ⌧2)R12(t). (3.1)
Under this I metric, mixing tends to outperforms cycling, in both superbug
and non-superbug models. When hospitals cycle their antibiotics in a

�In ecology, exploitation occurs when two or more species that compete for a limited
shared resource (prey, sunlight, etc). Since that resource is limited, the presence of competitors
will tend to decrease a species’ population size. In this case, with R1 and R2 exploiting the
“resource” of susceptible patients, the population R12 is decreased.

�In ecology, interference occurs when a species actively interferes with a competitor’s
ability to exploit their shared resource. For example many plants release chemicals into the
soil that hinder the growth of their competitors, and territorial animals may attack potential
competitors. In this case, R1 or R2 may superinfect patients in R12 , thus reducing the R12
population. This will only occur when the fitness-cost of double-resistance is greater than
that of single resistance: c12 > c1 or c2.
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non-superbug system, the strain resistant to that antibiotic quickly rises to
dominance over the other singly-resistant strain causing the product ⌧iRi
to rise. Moreover, when cycling is compared to mixing under this metric
in Chow et al.’s superbug model, it loses all the benefits it appeared to
have when plotting pure population statistics. Although R12 does remain
at lower levels, this proves unhelpful because it is almost entirely replaced
by the singly-resistant strain that resists the current antibiotic-of-choice in
the hospital. As we will see in the next section, cycling may still provide
some benefits if the superbug is rare (m12 ⌧ 1) since cycling may encourage
stochastic local extinction. However, in most other cases, evidence seems to
suggest that in a superbug model, mixing is the superior strategy.

3.2 A Third Antibiotic

We now consider the case that our hospital has at its disposal not two,
but three antibiotics. The primary difference between these models is the
behavior of dual-resistance. In a three-antibiotic model, dually-resistant
strains are no longer wholly untreatable — they are no longer superbugs —
but they are nonetheless much more difficult to treat than singly-resistant
strains. Further, dually-resistant strains have the potential to evolve into
superbugs through HGT or mutation. Thus in the three-antibiotic case
we find ourselves faced with a common dilemma in antibiotic-resistance
control: how can we optimize our strategy to both maximize positive medical
outcomes and minimize evolution?

Three-antibiotic systems have previously been modeled, but with several
important differences from our analysis. A short response to (Bergstrom
et al., 2004) extended their model to three antibiotics, but did not include
doubly-resistant strains (Levin and Bonten, 2004). A recent paper constructed
a very similar three-antibiotic model to ours, including doubly-resistant
strains (Obolski et al., 2015), but their analysis focused on the usefulness of
restriction of one antibiotic, rather than the optimality of cycling vs. mixing.
To our knowledge no other papers beyond these two have considered
three-antibiotic systems.

Ignoring the superbug for this system so that we can consider the threat of
evolution, we find ourselves with eight compartments: X, S, R1, R2, R3, R12,
R13, R23. The processes included in our model are almost exactly analogous
to Bergstrom et al.’s model. The one difference is that for simplicity — and
in order to account for rapid compensatory mutation — we set all the fitness
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costs ci and ci j to 0. This gives us the system

S0 ⇤ (m � S)µ + �SX � (� + ⌧)S
R0i ⇤ (mi � Ri)µ + �RiX � (� + ⌧ � ⌧i)Ri

R0i j ⇤ (mij � Rij)µ+ �RijX� (� + ⌧ � ⌧i � ⌧ j)Rij

X ⇤ 1 � S �P
Ri �

P
Rij .

(3.2)

This system can of course naturally be extended to account for non-zero
fitness costs.

The simulations of this system shown in Figure 3.2 show that under a
three-antibiotic system (for a particularly symmetric parameter set) cycling
appears to control double-resistance more effectively than mixing. At first,
it appears to do so in a different way than in (Chow et al., 2011). In their
model double-resistance spikes when single-resistance dips, and vice versa,
while in our system, double-resistance and single-resistance dip and spike
in unison with one another. However, deeper investigation shows that this
system bears many of the same unfortunate properties as Chow et al.’s.
Namely, when singly-resistant strains are removed from the system cycling
ceases to show superior control for double-resistance (as can be seen in
Figure 3.4). Thus, even in the three-antibiotic case the superior control of
doubly-resistant strains by cycling is due not to direct control through the
use of antibiotics, but instead to greater competition from singly-resistant
strains. Moreover, cycling does not bestow any benefit to I (as can be seen in
Figure 3.3), the rate at which patients are incorrectly treated.

However, in leaving the superbug R123 out of our system, we have given
ourselves the ability to measure cycling’s efficacy in terms of the threat of
evolution. We could not do this in Section 3.1 because the superbug was
already present; there was no further resistance left to evolve. Bergstrom
et al. previously estimated the rate at which horizontal gene transfer will
successfully evolve a superbug strain. We conduct a similar analysis, though
we follow (Obolski et al., 2015) by including also an estimate of the rate
at which mutation of a doubly-resistant strain will successfully evolve a
superbug strain. These two statistics can be approximated as follows:

• The rate at which a triply-resistant strain evolves directly from a
doubly-resistant strain through mutation is roughly proportional to
rM for

rM ⇤ ⌧3R12 + ⌧2R13 + ⌧1R23. (3.3)
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Figure �.� Two simulations of our three-antibioticmodel, given by System �.�.
Parameterswereµ ⇤ 0.1,m ⇤ 0.7,m1 ⇤ m2 ⇤ m3 ⇤ 0.05,m12 ⇤ m13 ⇤ m23 ⇤

0.0005, � ⇤ 0.03, � ⇤ 1, c1 ⇤ c2 ⇤ c3 ⇤ c12 ⇤ c13 ⇤ c23 ⇤ 0, � ⇤ 0.25, ↵ ⇤

0.8, ⌧ ⇤ ⌧1 + ⌧2 + ⌧3 ⇤ 0.5. When applicable parameters are given in units of
days�1. Under mixing (top) ⌧1 ⇤ ⌧2 ⇤ ⌧3, and under cycling (bottom) ⌧i ⇤ ⌧ for
�� days per antibiotic (total cycling period �� days).
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This makes the assumption that evolution through mutation will only
occur when correct treatment of a doubly-resistant strain creates an
environment which selects for the third resistance. It is conceivable
that triple-resistance could arise some other way (perhaps through
pleiotropic effects) but it is at least plausible that these other evolution-
ary pathways contribute only negligibly to rM .

• The rate at which a triply-resistant strain evolves through horizontal
gene transfer is roughly proportional to rH for

rH ⇤ (R1+R12+R13)R23+(R2+R12+R23)R13+(R3+R13+R23)R12. (3.4)

Although we assume that only a single strain can dominate the infection
of a given patient, we may assume that the rate at which patients in a
given infection class Rij are exposed to another strain is proportional
to the product of the two population sizes. We are also making
the important (and tenuous) assumption that all resistance genes are
equally likely to undergo horizontal gene transfer.

With these statistics in hand, we can more comprehensively measure
the performance of cycling as compared to mixing. In order to do so
we will usually plot these statistics versus cycling period. In the limit of
very short cycling periods, cycling approaches mixing (and will thus be
indistinguishable) and in the limit of very long cycling periods, cycling
approaches single-antibiotic-use (which will be unacceptably ineffective
in the presence of resistance). Thus we expect that if cycling is ever to
outperform mixing, it should do so only for intermediate cycling periods.

To observe the benefits of these intermediate periods in our model, we
can graph the averages of our performance statistics vs. cycling period. We
simulate for 1000 days to allow transients to completely decay� and then
average statistics over the last period of the cycling protocol. For comparison,
we plot the corresponding values of the equivalent mixing protocol. We
also plot some average population sizes for reference. The results of these
simulations for the three-antibiotic system are shown in Figure 3.3. Similar
results with R1 ⇤ R2 ⇤ R3 ⇤ 0 and m1 ⇤ m2 ⇤ m3 ⇤ 0 are shown in Figure 3.4.

In many ways this model combines the properties of Bergstrom et al.’s
and Chow et al.’s models. As in (Bergstrom et al., 2004) we note that cycling

�As we will note in Section 3.3, transients tend to decay over a shorter time period: a few
months perhaps. However, since we have not done a rigorous analysis of this rate of decay,
we allow almost three years as a conservative estimate to ensure that transients are well and
truly negligible.
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Figure �.� Statistics comparing cycling (blue) to mixing (red) under the three-
antibiotic model given by System �.� as cycling period is varied. Cycling period
is measured in days. For ease of calculation, cycling period is varied in steps of
� days but the curves remain su�iciently smooth that this appears to introduce
little error. Parameter values were the same as in Figure �.�.
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Figure �.� Statistics comparing cycling (blue) to mixing (red) under the three-
antibiotic model given by System �.� as cycling period is varied. Cycling period
is measured in days. For ease of calculation, cycling period is varied in steps of
� days. Parameter values were the same as in Figure �.� but with m1 ⇤ m2 ⇤
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appears to confer some advantage at reducing the rate of horizontal gene
transfer, at the cost of less effective treatment. Both our model and theirs
also lose this property when resistant strains occur at asymmetric rates in
the outside community. Under symmetric conditions, this phenomenon
is explained by short-term selection for resistant strains; the strain (or
strains) resistant to the current antibiotic-of-choice very quickly comes to
dominate the hospital while the non-resistant strains reach very low levels.
This results in the product of these populations being very small. This
phenomenon breaks down under asymmetric prevalences because when
the more-prevalent strain is being selected against, it is still maintained at
relatively high levels by influx of patients from the community.

As we noted above, this model shares Chow et al.’s model’s property
that cycling more effectively controls multiple-resistance because it allows
singly-resistant strains to persist at higher levels and compete with multiply-
resistant strains. This model also shares Chow et al.’s model’s property that
the rate of ineffective treatment I(t) is not improved under cycling.

The major difference that this model bears from Bergstrom et al.’s and
Chow et al.’s is in the evolution metric rM . Excluding the possibility of
pleiotropy�, only doubly-resistant strains can evolve triple-resistance. In
this way, doubly-resistant strains bear a fundamental difference from singly-
resistant strains that cannot be captured in a two-antibiotic model. Thus
although reduced levels of double-resistance under cycling may not provide
tangible benefits in terms of treatment outcomes, it does dramatically reduce
rM . This benefit of cycling appears to be robust to all but the largest
asymmetries.

Indeed the benefit of cycling on rM is in some cases even greater than is
apparent in our deterministic model. Stochastic simulations of our model
using the Gillespie stochastic simulation algorithm (SSA)� reveal that the
dips and spikes in our deterministic solutions pave the way for long stretches
of stochastic local extinction. When doubly-resistant strains are rare in the
community (mij ⌧ 1) local extinction will persist for a long time before
new resistant infections are imported from the community. By reducing the
populations of doubly-resistant bacteria in a naturally periodic system, we

�The control of multiple traits by a single gene. In the presence of pleiotropy a single
gene could control resistance to multiple antibiotics, thus allowing a singly-resistant strain to
evolve directly into a triply-resistant strain. We assume the effect of pleiotropy is negligible.

�Many thanks to István Zachar on StackExchange for their implementation of the Gillespie
SSA, which we use for our simulations. This implementation and a discussion of the Gillespie
SSA can be found at https://mathematica.stackexchange.com/revisions/119786.
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increase the probability of local extinction. In essence bringing the natural
troughs of a population closer to zero makes it easier for stochastic variations
to completely extinguish that population.

This phenomenon can be observed by comparing Figure 3.5 to Figure 3.2.
Though the parameter values are identical, local extinction has the effect
of further depressing the average prevalence of doubly-resistant bacteria,
which in turn decreases rM . Unfortunately, a quantitative estimate of the
extent to which local extinction depresses doubly-resistant populations is
beyond the scope of this thesis.

Notably, the benefit of reducing the rates of mutation (rM) or HGT (rH) is
often in conflict with the cost of increasing the rate of ineffective treatment (I).
In order to compare cycling to mixing we must thus devise some aggregate
metric that combines both of these concerns.

3.3 Prioritization: Prevalence vs. Emergence

In (Bergstrom et al., 2004) cycling and mixing are compared by the metrics
of resistance prevalence and rate of horizontal gene transfer. It was found
that under very symmetric parameter sets, cycling outperforms mixing
on the HGT but underperforms on resistance control. Additionally, they
argued that in most cases, sufficient data is not available to show that the
current parameter set favors cycling. However, let us suppose that such
data was available: to our knowledge no one has presented a method for
balancing the two conflicting metrics of prevalence vs. evolution. We now
do so. Note that our method makes few assumptions about the specifics of
the model until numerics are plugged in. It can be applied just as easily to a
two-antibiotic system as a three-antibiotic system, and other effects such as
transmission-reduction can also be easily included.

Let C(t) denote the value of some cost function at time t. Then, given
some parameters and a time interval [0, T]we wish to devise an antibiotic-use
protocol which minimizes

C ⇤

Z T

0
C(t)dt . (3.5)

However emergence of a new resistant strain is a distinct possibility, and
may occur during our interval of interest. Thus C must be a random variable.
Varying our antibiotic-use protocol will vary the rate of evolution of new
resistance which will vary the distribution of C. Thus, minimizing the
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Figure �.� A single simulation (top) and an average of ��� simulations (bot-
tom) of our three-antibiotic model using the Gillespie stochastic simulation
algorithm. Parameter values were the same parameters as in Figure �.�, with
population size N ⇤ 400. Note the frequent local extinction events (top) and
depressed average prevalence of doubly-resistant strains (bottom) as compared
to Figure �.�.
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expected value E[C] gives us an aggregate metric that accounts both for
incorrect treatment and rates of evolution.

We have already discussed statistics (rM and rH) that allow us to measure
the rate of evolution through mutation or horizontal gene transfer. In general
these statistics will be functions of t, and will be associated with constants of
proportionality kM and kH . They must also be scaled by the population size
N of the hospital�, such that the true rate at which triple-resistance emerges
is given by

r(t) ⇤ kM NrM(t) + kH NrH(t). (3.6)

Ultimately we want to find the expectationE[C]. This is quite complicated
in general, since we have to integrate over the solution to a large system
of ODEs. However, if we assume that any transients of the system decay
instantaneously� at time t ⇤ 0 and at the time when emergence occurs
then we can calculate E[C] much more easily. In other words at all times
the system is assumed to be in its long-term state, which we have only
ever observed to be a stable fixed point (under mixing), or a limit cycle
(driven by the periodicity of a cycling strategy). To calculate E[C] under
this assumption, let C1(t) be the value of C(t) in the stable equilibrium or
limit-cycle that forms before a new resistance emerges and let C2(t) be the
value of C(t) in the stable equilibrium or limit-cycle that forms after (shifted
so that t ⇤ 0 is the time of emergence). Finally let f (t) be the probability that
triple-resistance has not yet emerged at time t. Then we find that

E[C] ⇤
Z T

0

"Z t

0
C1(t0)dt0 +

Z T�t

0
C2(t0)dt0

#
f (t)r(t)dt . (3.7)

In general finding C1(t), C2(t) and r(t) is no easy task, but f (t) is given by

�In reality rM(t) and rH (t) denote the dimensionless rate at which certain interactions
occur — a doubly-resistant strain is correctly treated, or a doubly-resistant strain is exposed
to a strain with its missing resistance — with each population term scaled down by N . After
scaling back up by N , kM and kH represent the rate at which each of these interactions results
in successful evolution of triple-resistance. Note that we must assume that kM and kH are
small since otherwise evolution would occur frequently and we would have to include it as
a deterministic process in our model. In essence this is a partially deterministic/partially
stochastic model where all processes besides evolution are assumed to be dominated by
deterministic effects but the probability of evolution is assumed to be so small that it is
dominated by stochastic effects.

�After many simulations this appears to be a good assumption so long as the interval of
interest T is on the order of years. Figure 3.2 shows a relatively standard decay of transients
on the order of 1-2 months.
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the solution to the initial value problem

f 0(t) ⇤ � f (t)r(t)
f (0) ⇤ 1,

(3.8)

which can be found by separating variables to be:

f (t) ⇤ exp
 
�

Z t

0
r(t0)dt0

!
. (3.9)

However finding r(t), C1(t), and C2(t) in general may require a numerical
approach, a complete analysis of which is beyond the scope of this thesis.
Nevertheless the following section demonstrates the utility of this method
by analytically optimizing the volume of antibiotic use ⌧ for the cost function
C(t) ⇤ I(t) ⇤ ⌧R(t) (the rate of ineffective treatment) in a one-antibiotic
system.

3.4 A Simple Example

Consider the one-antibiotic system

S0 ⇤ µmS � S(µ + � + ⌧ � �X)
R0 ⇤ µmR � R(µ + � � �X)
X ⇤ 1 � S � R.

(3.10)

If resistance has not yet evolved then R(0) ⇤ mR(0) ⇤ 0. Since the community
is much larger than the hospital we will assume that its dynamics are much
slower and that mR(T) ⇤ 0 even at the end of our interval-of-interest. Then
we can analytically solve for the steady-state values of our cost function I(t)
before and after resistance evolves in the hospital, which we call I1 and I2. I1
is trivial. If we assume R ⇤ 0 then

I1 ⇤ ⌧R ⇤ 0. (3.11)

To calculate I2 we must find the fixed point with mR ⇤ 0 and R > 0, namely

x2 ⇤ (S, R,X)

⇤

 
µmS

⌧
, 1 � µ + �

�
� µmS

⌧
,
µ + �
�

!
. (3.12)
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In the next chapter we will derive approximations for how mR changes with
time (as it will surely increase when R > 0 for any extended period of time).
However since empirical evidence suggests that mR tends to stay low for
long periods of time (Austin et al., 1999b), mR ⇤ 0 is a good approximation
so long as our period-of-interest is not on the scale of decades or centuries.

Now we can calculate

I2 ⇤ ⌧R

⇤ ⌧

 
1 � µ + �

�

!
� µmS . (3.13)

Since HGT is impossible in a one-antibiotic system we can set

r ⇤ kM NrM

⇤ kM N⌧R

⇤ kM N
"
⌧

 
1 � µ + �

�

!
� µmS

#
. (3.14)

Finally, putting it all together, we find that

E[I] ⇤
Z T

0

"Z t

0
I1(⌧)d⌧ +

Z T�t

0
I2(t0)dt0

#
f (t)r(t)dt

⇤

Z T

0
re�rt(T � t)I2dt

⇤ I2

 
T � 1 � e�rT

r

!

⇤
I2
r
�
rT � (1 � e�rT)

�

⇤

�
rT + e�rT � 1

�
kM N

. (3.15)

Thus to minimize E[I] we need to minimize rT + e�rT . This, in turn, reduces
to minimizing

A⌧ + Be�A⌧ , (3.16)

where
A ⇤ kM N

 
1 � µ + �

�

!
T and B ⇤ ekM N2µmST .
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This minimum occurs at

⌧opt ⇤
ln B
A

⇤
µmS⇣

1 � µ+�
�

⌘ . (3.17)

Note that this optimum is, remarkably, independent of T,N, and kM . As a
quick representative calculation, suppose that both the average length of
stay in an emergency room is 1

µ ⇤ 1.5 days; the average time-to-clearance due
to natural immune system processes is independently 1

� ⇤ 7 days; a single
patient contacts on average of 10 other patients per day, with a probability
0.1 of contagion per contact, so that � ⇤ 1 infection per patient per day per
fraction of population uninfected; and roughly 1% of the outside population
is infected, so that mS ⇤ 0.01. Then we find that

⌧opt ⇤ 0.035 per patient per day

In other words, the optimal rate of antibiotic use in this (contrived) high-
traffic emergency room is 3.5% of patients per day. In fact this result is robust
even to reasonable changes in the cost function C. For example, we might
set C(t) ⇤ R(t) if we were worried about the weaknesses of the I(t) metric.
This gives an identical result.

The percent of patients per day that actually receive antibiotics is far
higher than 3.5% (Magill et al., 2014), particularly considering that many
outpatients receive prescriptions for further antibiotics. Of course this is
an exceedingly simple model, and without taking into account far more
complexity we certainly do not claim that dramatic reduction in antibiotic
use is wise. Nevertheless this model may account for some of the very
real processes that are causing the rapid evolution of resistance in bacterial
populations around the world, and indicates that, like some scientists have
argued (Austin et al., 1999b), decreased antibiotic use should be considered
moving forward.

3.5 Discussion

Above we propose that cycling may demonstrate superior control (as com-
pared to mixing) over multiply-resistant strains provided there is a sufficiently
diverse set of less-resistant strains available to compete for infection. This
phenomenon does not increase the efficacy of medical treatment, but should
slow the evolution of further resistance. It is also reinforced by stochastic
extinction when multiply-resistant strains are rare.
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We also propose a metric I(t) for measuring the efficacy of antibiotic
treatment. This metric has notable weaknesses: it is globally optimized
when total antibiotic use ⌧ ⇤ 0. However, in combination with other metrics,
such as total infection mass 1 � X or total resistant infection mass 1 � X � S,
this metric will aid in measuring the efficacy of antibiotic use strategies.

Finally, we proposed a method for optimizing an antibiotic use strategy
in terms of an instantaneous cost function C(t). We use this method with
the cost function I(t) for a simple one-antibiotic system and find that E[I] is
optimized for unrealistically small values of ⌧. We hope that more realistic
extensions to this work can bring ⌧opt within achievable limits, and that such
work can help to lengthen the lifetime of antibiotics for future generations.





Chapter 4

Outbreak of Antibiotic
Resistance

Besides evolution and efficacy of medical treatment, outbreak is the third
major problem associated with ARB. After resistant strains of a given
infection evolve, their frequencies increase until certain antibiotics are no
longer reliable treatments for that infection (Coates et al., 2011). Slowing
mutation and HGT addresses the problem of evolution, but what do we do
after resistance has already evolved, and spread far enough that eradication
is not feasible? If we continue to use that particular antibiotic to treat that
particular infection then we continue to select for resistance, and eventually
resistance will likely be fixed in the population. Though complete cessation
of antibiotic use is unlikely, the dynamics of ARB outbreaks may reveal ways
to slow it down.

The outbreak problem requires us to consider not just a hospital, but
also the surrounding community. Within a hospital, selection for resistance
is very strong and outbreak may be rapid. However in the outside com-
munity use of antibiotics will be much lower. Moreover the population
of a community is likely much larger than that of the hospital that serves
it. Thus even if we couple a hospital to its community, the community
frequency of resistance should still increase relatively slowly. Indeed the
pattern observed in epidemiological studies of resistance frequency over
time tends to be sigmoidal (Austin et al., 1999b): we see long periods of
very low-frequency resistance followed by a rapid rise to dominance. In the
remainder of this chapter we present one possible model of this sigmoidal
pattern, several measures of the time-scale of outbreak, and argue that
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Figure �.� A compartmental diagram showing the processes considered in
our hospital-community model. See System �.� for the system of equations that
this diagram represents.

sufficiently concentrated antibiotic use changes the fundamental temporal
pattern of emergence from a sigmoid to an exponential.

Our basic model is as follows:

S0 ⇤ µ(mS � S) + �SX � (� + ⌧)S
R0 ⇤ µ(mR � R) + �RX � �R
X ⇤ 1 � S � R

m0S ⇤ ✏µ(S � mS) + �mSmX � �mS

m0R ⇤ ✏µ(R � mR) + �mRmX � �mR

mX ⇤ 1 � mS � mR,
(4.1)

where ✏ ⇤ NH/NC is the ratio of the population sizes of the hospital to that of
the surrounding community. This model considers only the bare minimum
possible processes: admission/discharge (µ), infection (�), immune clearance
(�), and antibiotic clearance (⌧). A compartmental diagram of these processes
is shown in Figure 4.1.
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Note that for ease of analysis, we have made a number of important
assumptions, including: all antibiotic use is concentrated in the hospital,
µ does not vary between infection classes, superinfection is of negligible
importance, and �, � are the same inside vs. outside the hospital. Some of
these assumptions are tenuous, and should be relaxed in future work.

Using this model we will derive approximate time scales for two cases:
µ very large, and µ relatively small. In the former case, we see a sigmoidal
outbreak pattern, while in the latter we see an exponential pattern. For
intermediate µ, simulations show sigmoidal behaviors, but we have been
unable to derive an approximation for this case.

In this chapter, like in Chapter 3, we omit an in-depth discussion of
stochasticity, despite its importance. In this model, stochasticity has two
major effects. First, with a sigmoidal outbreak curve, the population mR
may stay small for a very long time. This means the chances of stochastic
extinction may be substantial, and may result in significant delay of the
ultimate outbreak. We have made some progress estimating the length of
this delay, and a discussion of this is included at the end of this chapter.
Second, stochasticity will tend to add variability to the time-scales we derive
in this chapter. Understanding the distributions of these time-scales will be
of vital importance when planning for ARB outbreaks. However, a thorough
analysis of both these stochastic effects is beyond the scope of this thesis and
is discussed primarily as an important avenue for future work.

4.1 A Well-Mixed Community

The greatest simplification of our model we can consider is one in which the
rate of admission/discharge µ is very large. If µ ⇡ 1 then any separation
between the hospital and the community becomes negligible, and the two
can be treated as a single large population. Then we can reduce our system
to the following:

m0S ⇤ mS(�mX � � � ✏⌧)
m0R ⇤ mR(�mX � �)

(4.2)

This system can be simplified further by assuming ✏ ⌧ 1. Consider

m0X ⇤ �m0S � m0R
⇤ ✏⌧mS � (mS + mR)(�mX � �)
⇤ ✏⌧mS � (1 � mX)(�mX � �). (4.3)
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If ✏ ⇤ 0 then mX quickly approaches either 1 or �/�. If mX ⇤ 1 then
mS ⇤ mR ⇤ 0. Thus to get any non-trivial behavior let us assume that mX
quickly approaches �/�. In reality it reaches a slightly perturbed fixed point,
which can be found to be a root of the binomial

�m2
X � (� + �)mX + � + ✏⌧mS . (4.4)

Letting ↵ ⇤ 1 � �� we find that this binomial has roots

1
2

 
1 +
�
�

!
± 1

2�

q
(� + �)2 � 4�(� + ✏⌧mS) ⇤

1
2

 
1 +
�
�

!
± 1

2

r
↵2 � 4✏ ⌧mS

�
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2
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�
�

!
± 1

2↵
r

1 � 4✏ ⌧mS

↵2�

⇡ 1
2

 
1 +
�
�

!
± 1
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1 � 2✏ ⌧mS

↵2�

!

⇤
8><>:

1 � ✏ ⌧mS
↵�

�
� + ✏ ⌧mS

↵� .

Note that in order to derive these results we properly need to assume not
that ✏ ⌧ 1 but rather than ✏ ⌧ ↵2�

4⌧mS
. However since ↵, � are not small and

⌧,mS are not large, this should remain a good approximation.
Since we are interested in the �/� root we will assume for the remainder

of our analysis that

mX ⇤
�
�

+ ✏
 
⌧mS

↵�

!
. (4.5)

We can plug this into our equation for mS to give us an alternative specifica-
tion of our system in terms of mS and mX , with mR now implicitly defined
as mR ⇤ 1 � mS � mX . Then

m0S ⇤ mS

✓
✏
✓ ⌧mS

↵

◆
� ✏⌧

◆
. (4.6)

This gives us a system with characteristic time scale

T ⇤
↵
✏⌧
,

and rescaling to t0 ⇤ Tt we find that

ṁS ⇤ mS(mS � ↵). (4.7)
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Solving this equation we find that

mS(t0) ⇤
↵mS(0)e�↵t0

↵ � mS(0)(1 � e�↵t0) (4.8)

The inflection point of this equation should give us a measure of the amount
of time it takes for resistance to invade a system. This inflection point occurs
at dimensionless time

t0 ⇤ � 1
↵

ln
 
↵

mS(0)
� 1

!
(4.9)

This gives us a dimensional time between evolution and outbreak of

1
✏⌧

ln
 

mS(0)
↵ � mS(0)

!
. (4.10)

However when mR ⇤ 0 our system has a fixed point at

mS ⇤ 1 � � + ✏⌧
�

⇤ ↵ � ✏⌧
�
,

so we can plug this in as our initial condition to find that the time-to-outbreak
after evolution is

Tapprox ⇤
1
✏⌧

ln
 
↵�

✏⌧
� 1

!
. (4.11)

Simulation reveals that our approximate solution for S is very close to
correct, provided we use the initial conditions

mS(0) ⇤ ↵ �
✏⌧
�
, mR(0) ⇤

✏⌧
�
, mX(0) ⇤

�
�
. (4.12)

However, in reality the initial condition is likely to involve the evolution
of resistance in a single individual�. This would correspond to the initial
conditions

mS(0) ⇤ ↵ �
✏⌧
�
� 1

N
, mR(0) ⇤

1
N
, mX(0) ⇤

�
�

+ ✏⌧
�
. (4.13)

�Another way to think of this is that there is a fifth process (mutation) occurring at a very,
very slow rate. This process moves patients in S who are treated with antibiotics to R.
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However, since both initial conditions have mR(0) ⌧ 1 we can adjust between
them by assuming that the initial outbreak of mR is exponential�. Linearizing
about the no-resistance initial condition, we find that the rate of exponential
increase is �mX(0)�� ⇤ ✏⌧. Thus we can reach our empirical initial condition
of mR(0) ⇤ ✏⌧� over a time-scale of

Tshift ⇤
1
✏⌧

log
 
✏⌧

�mR(0)

!
. (4.14)

Thus by shifting our time-to-outbreak by this empirical value we obtain the
correct solution

Tmixed ⇤ Tapprox + Tshift

⇤
1
✏⌧

ln
 

mS(0)
mR(0)

!
⇡ 1
✏⌧

ln(↵N). (4.15)

This empirical solution matches our numerical simulations to a remarkable
degree, as can be seen in Figure 4.2.

This estimate has two particularly attractive properties. First, it can be
expressed in terms of only phase variables mR(0),mS(0) along with total
antibiotic use� ✏⌧. This makes it feasible to estimate from real-world data,
though we do not do so here. Second, it is inversely dependent on ✏⌧. This
means that we get increasing marginal returns when we decrease ⌧. Of course
these returns must be balanced against the costs incurred: lower antibiotic
use would likely be achieved by reducing prophylactic antibiotic use, which
could result in life-threatening infections for some patients. These costs
can be minimized by taking into account patient risk when prescribing
prophylactic antibiotics (for example, the elderly are at greater risk and
should perhaps receive more cautious prophylactic treatment). We discuss
the possibilities for a risk-structured model of antibiotic use in Chapter 5, as
well as some of the ethical concerns that might arise in practice.

4.2 A Weakly-Mixed Community: Early Dynamics

Of course in reality, antibiotic use is disproportionately concentrated in small
populations such as hospitals. This highly concentrated antibiotic use gives

�This is actually a very common assumption in epidemiology, and it underlies any
discussion of the basic reproductive number R0.

�Note that total antibiotic use gains a factor of ✏ because antibiotic use ⌧ is concentrated
in only an ✏-fraction of the community.
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Figure �.� A comparison of our analytical approximations with numerical
simulations for both the well-mixed (Section �.�) and weakly-mixed cases (Sec-
tions �.� and �.�). Generated with ✏ ⇤ 10�3 , ⌧ ⇤ 1, � ⇤ 0.5, � ⇤ 1/10,N ⇤ 106,
and (for the weakly-mixed case) µ ⇤ 1/7. The well-mixed approximation has
been artificially o�set to make the simulation beneath it more visible. We as-
sume that the weakly-mixed case follows the Tlong approximation for all time.
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the resistant R-strain a marked advantage within the hospital. The hospital
can then act as a source population: a sort of engine driving the community
towards resistance. To examine this case we consider the full System 4.1:

S0 ⇤ µ(mS � S) + �SX� (� + ⌧)S
R0 ⇤ µ(mR � R)+ �RX� �R
X ⇤ 1 � S � R

m0S ⇤ ✏µ(S � mS) + �mSmX� �mS

m0R ⇤ ✏µ(R � mR)+ �mRmX� �mR

mX ⇤ 1 � mS � mR.

In this system, the hospital (S, R, and X) is strongly coupled to the community
(mS, mR, and mX) but the community is only very weakly coupled to the
hospital. This weak coupling gives us an opportunity to simplify the
dynamics and obtain an analytical approximation. First however, let us
make the following transformations,

t0 ⇤ �t , mZ ⇤ (1 � mX) � ↵, Z ⇤ (1 � X) � ↵,

giving us (abusing notation to write µ ⇤ µ/�, ⌧ ⇤ ⌧/�, and ↵ ⇤ 1 � �/�)

Ṡ ⇤ µmS � S(Z + µ + ⌧) ṁS ⇤ ✏µS � mS(mZ + ✏µ)
Ṙ ⇤ µmR � R(Z + µ) ṁR ⇤ ✏µR � mR(mZ + ✏µ).

(4.16)

Now, since the community is only weakly coupled to the hospital, we can
assume that the hospital is always instantaneously at equilibrium with the
community. This allows us to treat mS and mR as slowly-varying parameters,
giving us:

S ⇤
µmS

Z + µ + ⌧

R ⇤
µmR

Z + µ .
(4.17)

However in order to solve for these equilibria we need a value for Z. To find
this note that Z ⇤ S + R � ↵, which implies

0 ⇤ (Z + ↵) � µmS

Z + µ + ⌧ �
µmR

Z + µ
⇤ (Z + ↵)(Z + µ)(Z + µ + ⌧) � µmS(Z + µ) � µmR(Z + µ + ⌧)
⇤ (Z + µ)

⇥
(Z + ↵)(Z + µ + ⌧) � µ(mR + mS)

⇤
� µ⌧mR . (4.18)

Initially, mR is very small. Setting mR ⇤ 0 we find that Z ⇡ �µ is a solution
to this equation. Since we know that R quickly reaches an appreciable value



A Weakly-Mixed Community: Early Dynamics 47

in the hospital, we know that Z + µ must be on the same order as mR so that
µmR
Z+µ can be between 0 and 1. If we assume this is the correct solution, we
may set Z ⇤ �µ + ✏A.

Plugging this into the polynomial above we find

mRA[(↵ � µ + mRA)(⌧ + mRA) � µ(mS + mR)] � µ⌧mR ⇤ 0. (4.19)

Neglecting second-order terms in mR we can solve for

A ⇤
µ⌧

(↵ � µ)⌧ � µmS
. (4.20)

Plugging this into our equations for S, R, and X we find that soon after
resistance emerges

S ⇡ µmS

⌧
, R ⇡ (↵ � µ) � µmS

⌧
, X ⇡ 1 + µ � ↵.

This gives us (to first order in mR), S + R + X ⇤ 1, confirming that this is a
valid approximation. Note that in terms of our original parameters

S ⇡ µmS

⌧
, R ⇡ 1 � � + µ

�
� µmS

⌧
, X ⇡ � + µ

�
. (4.21)

We can now plug these into our hospital equations to find how mS and
mR vary. For simplicity, we will actually find how mS and mZ vary and
define mR implicitly as mR ⇤ ↵ + mZ � mS. Consider

ṁZ ⇤ ṁS + ṁR

⇤ ✏µ(S + R) � (mS + mR)(mZ + ✏µ)
⇡ ✏µ(↵ � µ) � (mZ + ↵)(mZ + ✏µ). (4.22)

Then mZ will quickly reach the equilibrium point that solves

0 ⇤ (mZ + ↵)(mZ + ✏µ) � ✏µ(↵ � µ)
⇤ m2

Z + (↵ + ✏µ)mZ + ✏µ2 , (4.23)
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or
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2
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�
± 1

2
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2 (↵ + ✏µ)

s
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2 (↵ + ✏µ)
 
1 � 2✏

µ2

(↵ + ✏µ)2

!

⇡ �1
2 (↵ + ✏µ) ± 1
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↵

!

⇡
8>><>>:
�✏ µ

2

↵

�↵ � ✏
✓
µ � µ

2

↵

◆
.

Since the first root corresponds to a non-trivial solution for mS + mR we
select this solution. Calculating the dynamics of mS we find that

ṁS ⇤ ✏µS � mS(mZ + ✏µ)

⇡ ✏µ
2

⌧
mS � ✏µmS

✓
1 � µ
↵

◆

⇤ �✏µmS

✓
1 � µ
↵
� µ
⌧

◆
. (4.24)

Rescaling by � and returning to our original dimensional parameter set, this
gives us an approximate analytical solution of

mS(t) ⇤ mS(0)e�✏µ
⇣
1� µ↵��

µ
⌧

⌘
t . (4.25)

and a characteristic time scale of

Tshort ⇤
1
✏µ

 
1 � µ
↵�
� µ
⌧

!�1
. (4.26)

This solution relies on numerous approximations: namely that the
hospital dynamics are much faster than the community dynamics, and that
both ✏ and mR are very small. The approximation that mR is very small
will inevitably break down over time, but the other approximations are
relatively robust. Simulations (such as those in Figure 4.2) show that when
Tshort > 0, our approximation is extremely accurate over the initial phase
of an outbreak. For example, in one parameter set with Tshort ⇡ 38 years,
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this approximation remained valid for ⇡ 3 years. In the next section we will
derive an approximation for the late stages of an outbreak. In Section 4.4 we
will discuss what happens when Tshort < 0.

4.3 A Weakly-Mixed Community: Late Dynamics

Naturally over long time scales mR will grow too large to use our approxi-
mations from Section 4.2. However, mS will become small, so we will now
consider this limit. Since (↵ � mR) also becomes small, and this quantity
plays a key role in our late-stage dynamics, we must also consider this small
quantity. Then, using the same cubic polynomial as above (Equation 4.18)

(Z + µ)[(Z + ↵)(Z + µ + ⌧) � µ(mR + mS)] � µ⌧mR ⇤ 0

we may set both of these quantities to linear functions of ✏. Neglecting
second-order terms in ✏ we obtain the solution

Z ⇤ ✏µ
µmS � (µ + ⌧)(↵ � mR)

(µ + ↵)(µ + ⌧) . (4.27)

This gives us

S ⇤
µmS

Z + µ + ⌧ ⇡
µ

µ + ⌧mS

R ⇤
µmR

Z + µ ⇡ mR

"
1 � µmS � (µ + ⌧)(↵ � mR)

(µ + ↵)(µ + ⌧)

#
.

(4.28)

This solution correctly gives S + R � Z ⇤ ↵ + O(✏2) and is thus a valid
approximation. Plugging these values back into our differential equations
for mS and mR we find that

ṁZ ⇤ ṁS + ṁR

⇤ ✏µ(S + R) � (mZ + ↵)(mZ + ✏µ)

⇤ ✏µ

 
↵ +
µmS � (µ + ⌧)(↵ � mR)

(µ + ↵)(µ + ⌧)

!
� (mZ + ↵)(mZ + ✏µ)

⇤ �
 
m2

Z + (↵ + ✏µ)mZ � ✏µ2
 
µmS � (µ + ⌧)(↵ � mR)

(µ + ↵)(µ + ⌧)

!!
. (4.29)

Analogous to our solution for mZ above, this gives us a fast solution of

mZ ⇡ �
✏µ2↵

µ + ↵ . (4.30)
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Finally we may plug in our approximations for mS and mZ to our equation
for ṁS to find that

ṁS ⇤ ✏µS � mS(mZ + ✏µ)

⇡ ✏µ
 
µ

µ + ⌧mS

!
� mS

 
� ✏µ

2↵

µ + ↵ + ✏µ
!

⇤ �✏µmS

 
1 � µ↵

µ + ↵ �
µ

µ + ⌧

!
. (4.31)

Thus, rescaling by � we find that over longer periods of time our system
follows an approximate analytical solution of

mS(t) ⇤ mS(0)e�✏µ
⇣
1� µ↵
µ+↵��

µ
µ+⌧

⌘
. (4.32)

and a characteristic time scale of

Tlong ⇤
1
✏µ

 
1 � µ↵

µ + ↵� �
µ

µ + ⌧

!�1
. (4.33)

This time scale Tlong is always strictly larger than Tshort.
This gives us a far better approximation for long time scales. For a

general comparison of our Tlong approximation with numerical simulations
see Figure 4.2. This result does not match our long-term numerical results as
well as our Tshort approximation matches short-term results. Nevertheless it
is close enough to be useful. Moreover, in the next section we will derive a
threshold value for µ past which our exponential results are invalid and we
observe sigmoidal behavior. This is far preferable to the immediate-outbreak
behavior we see in our weakly-mixed model. Reducing ⌧ reduces this
threshold value, and it is our hope that at the very least ⌧ can be kept low
enough to avoid the exponential outbreaks we have derived in these past
two sections.

4.4 A Critical Value

Our Tshort approximation is very accurate over short time-scales. However, if
µ

↵�
+
µ

⌧
> 1,

or more simply if
µ > µcrit ⇤

⌧
1 + ⌧

↵�
, (4.34)
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then Tshort < 0. Past this critical value, our exponential results are invalid and
our system instead acts as though it were well-mixed. That is, when µ > µcrit
our numerical solution for mS qualitatively resembles the sigmoidal solutions
derived in Section 4.1, although with a very different time-to-outbreak. This
critical value thus gives us a way of measuring the mixedness of our system.
Of course, as we increase µ to very large values our numerical solution for
mS approaches our well-mixed solution, as expected.

An equivalent way of obtaining this result is through direct application
of the approximations from Section 4.2. Initially we found that

R ⇡ 1 � µ + �
�
� µmS

⌧
.

This solution may be negative, leaving only the trivial solution for R. In-
tuitively, µ artificially deflates the hospital reproductive number R0, and
past a certain point R0 < 1. In reality, of course, the cases being filtered
away by µ are being added to the surrounding community rather than truly
disappearing. To zero-th order in ✏, R0 < 1 precisely when µ > µcrit.

If µcrit < µ ⌧ 1 we obtain a sort of partially-mixed case. This case
exhibits sigmoidal behavior, but we have been unable to approximate its
time-to-outbreak Tpartial. Moreover the relationship between Tmixed and the
Tpartial is not consistent: for values of µ close to µcrit we find Tpartial < Tmixed
but for some larger values Tmixed < Tpartial. Since sigmoidal outbreaks
are observed in practice, reality is likely to be partially-mixed, making an
approximation for Tpartial an important avenue for future work.

4.5 Adding Stochasticity

Although we omit a thorough analysis of all the effects of stochasticity on
our model, we will offer a brief analysis of one simple stochastic problem:
by how much does stochastic extinction delay the average outbreak?

It is easiest to do this with a well-mixed system, since the large population
size of the community allows us to make useful approximations. First, we
can modify our differential equations to a stochastic system. We will assume
our time step �t is small enough that the probability of more than one event
happening in a single time step is negligible. We will also expand our non-
dimensionalized population variables mS and mR to dimensional variables
so that we can resolve the correct discrete steps. Then, letting N be the total
population and MR ⇤ NmS ,MR ⇤ NmR ,MX ⇤ NmX ⇤ N �MS �MR our
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Figure �.� A comparison of our numerical simulations around the value of
µcrit. Generated with ✏ ⇤ 10�3 , ⌧ ⇤ 1, � ⇤ 0.5, � ⇤ 1/10,N ⇤ 106. The
weakly-mixed curve has µ ⇤ 1

2µcrit. The partially-mixed curve has µ ⇤ 2µcrit.
The well-mixed curve is our analytical approximation for µ ⇤ 1.

transition probabilities become:

P[�MS ,�MR ,�t] ⇤

8>>>>>>><>>>>>>>:

�
N MSMX�t �MS ⇤ 1
�
N MRMX�t �MR ⇤ 1
(� + ✏⌧)MS�t �MS ⇤ �1
�MR�t �MR ⇤ �1

(4.35)

with the probability of no-change defined implicitly (as 1 minus the sum of
the probabilities above). Using this system we will investigate the effect of
stochastic emergence of resistance and die-off of resistance outbreaks on the
time-to-endemicity.

Unfortunately, this is a non-linear system, which we lack the tools to
directly deal with analytically. Instead, however, we can approximate
the initial outbreak of resistance as linear by assuming N � 1 and thus
that MX remains approximately constant even as MR grows. In fact this
approximation should be very robust, since even in deterministic simulations
with N relatively small (such as that in Figure 4.4) this approximation holds.
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This gives us the system

P[�MR ,�t] ⇤
8><>:
�
N MRMX(0)�t �MR ⇤ 1
�MR�t �MR ⇤ �1.

(4.36)

From here we can calculate the probability of the outbreak event O, given
an “initial” outbreak of MR ⇤ k. This we can calculate to be

P[O |MR ⇤ k] ⇤
X

i2{�1,0,1}
P[�MR ⇤ i ,�t]P[O |MR ⇤ k + i]k�t

P[O |MR ⇤ 0] ⇤ 0
P[O |MR ⇤ m] ⇤ 1,

(4.37)

where m  N is the number of cases at which we declare an outbreak has
occurred. Solving this recurrence gives

P[O |MR ⇤ k] ⇤ 1 � ⇠k

1 � ⇠m (4.38)

where
⇠ ⇤

N�
�MX(0)

.

Assuming that ⇠ < 1, m � 1, and k ⇡ 1 we can approximate this probability
as

P[O |MR ⇤ k] ⇡ 1 � ⇠k . (4.39)

Thus the probability that resistance outbreaks in the general community
given that it emerged in one sick individual is roughly 1 � ⇠. This approxi-
mation is very accurate�. However we can often evaluate ⇠ more effectively,
since the pre-outbreak fixed point is known to be

mX(0) ⇤
MX(0)

N
⇤
�
�

+ ✏⌧
�
,

which gives us
1 � ⇠ ⇤ 1 � 1

1 + ✏⌧�
⇡ ✏⌧
�
. (4.40)

�We ran 1000 simulations with 1 � ⇠ ⇤ 1/1.1 ⇡ 0.909. Each began with a single resistant
individual and did not allow susceptible individuals to evolve resistance. After 4 years, 9.2%
had outbroken, and after 8 years no further outbreaks had taken place.
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Armed with this result we can evaluate the expected time to outbreak.
Let r be the rate at which resistance evolves. Any particular evolution of
resistance will lead to outbreak only with probability ✏⌧/�. Thus the rate at
which outbreak begins is ✏⌧r/�. Note that this rate assumes that outbreaks
are independent events. If N is sufficiently large and r is sufficiently small
this is likely to be a good approximation.

This gives us an average time-to-outbreak of

E[Toutbreak] ⇡ Tmixed +
�
✏⌧r
. (4.41)

Evaluating r as we did in Chapter 3 to be

r ⇤ kM NrM

⇤ kM N(✏⌧mS)

⇤ kM N(✏⌧)
 
↵ � ✏⌧

�

!

⇡ kM N(✏⌧↵), (4.42)

we can then calculate the average-time-to-outbreak to be

E[Toutbreak] ⇡
1
✏⌧

ln(↵N) +
�

(✏⌧)2kM N↵
. (4.43)

It might at first seem that the new stochastic delay term is much larger than
the Tmixed term, since ✏2kM may be very small, but we have good reason to
believe that the Tmixed term may dominate. First, with NH on the order of
102 � 103 and NC on the order of 105 � 106, the term ✏2N cancels to roughly
order 1. This means that the stochastic term 1

(1�⇠)r scales primarily with
1/kM which to our knowledge is not a well-studied parameter. However,
resistance is often observed very soon� after an antibiotic is introduced.
Since outbreak appears to occur over a time-scale of decades, we conclude
that Tmixed is the dominant term.

In an attempt to verify our results numerically, we simulated the well-
mixed system using the Gillespie stochastic simulation algorithm (SSA)�.
An individual run of our stochastic simulation is shown in Figure 4.4 for
comparison with the deterministic simulation. Note that the stochastic

�Usually within two years (Coates et al., 2011).
�In reality we simulated a slightly different system, in which the mutation process is

included, so as to more correctly match our approximation.
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Figure�.� A comparison of our deterministic and stochastic simulations. Gen-
eratedwith ✏ ⇤ 10�2 , ⌧ ⇤ 1, � ⇤ 0.5, � ⇤ 1/10,N ⇤ 400. Stochastic simulation
begins with MR ⇤ 0 and assumes that with probability kM ⇤ 4 ⇥ 10�3 that a
patient in MS who is treated with antibiotics will develop a resistant infection.
The small value of N was necessary for timely evaluation of the Gillespie SSA.

simulation undergoes stochastic extinction several times� before undergoing
true outbreak several years later. Further investigation is also needed into
the width of the distribution of Toutbreak, which appears to be quite large in
our simulations, though this may be an artifact of our small value of N .

In Figure 4.5 we show the percentage out of 100 simulations that have
outbroken as a function of time�. The mean time-to-outbreak was roughly
1000 days. Since our deterministic model predicts a time-to-outbreak of
575 days, this evaluates to a stochastic delay of about 425 days. Our
approximation predicts a stochastic delay of about 860 days. It is perhaps not
surprising that our approximation is an overestimate; for time purposes we
had to simulate on a system with unrealistically small N and unrealistically
large kM . This will tend to break the major assumption that individual
outbreak events are independent. Thus while our result does correctly
predict the order of magnitude of the stochastic delay, further investigation
is needed into the accuracy of our estimated delay for realistic parameter
sets.

�A detailed look at the simulation reveals that it undergoes stochastic extinction 6 times!
�Specifically, we plotted the percentage at which R has reached half of its endemic-state

value.
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Figure �.� The percentage of simulations in which an outbreak has occurred
as a function of time. Generated with ✏ ⇤ 10�2 , ⌧ ⇤ 1, � ⇤ 0.5, � ⇤ 1/10,N ⇤

400 over ��� runs of the Gillespie SSA. Begins with MR ⇤ 0 and assumes
that with probability kM ⇤ 0.004 a patient in MS who is treated with antibi-
otics will develop a resistant infection. For these parameters our deterministic
Tmixed ⇡ 1.57 years and a stochastic Toutbreak ⇡ 3.71 years.
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4.6 Discussion

Above we derive approximate measures of time-to-outbreak for two simple
deterministic models of antibiotic resistance. First, we assumed well-mixing
between the hospital and the community and found that with an initially
small population of resistant infections the emergence of resistance followed
a sigmoidal pattern with outbreak time

Tapprox ⇤
1
✏⌧

ln
 

mS(0)
mR(0)

!
.

Then, we relaxed this assumption and separated the hospital from the
community. This allowed resistance to achieve rapid dominance in the
hospital, turning the hospital into a source population and driving resistance
back into the community. In this separated model, we found that the initial
outbreak of resistance followed an exponential decay towards an endemic
state, with characteristic time-scale

Tshort ⇤
1
✏µ

 
1 � µ
↵�
� µ
⌧

!�1
.

The long-term outbreak followed the same qualitative behavior, but with a
larger characteristic time-scale

Tlong ⇤
1
✏µ

 
1 � µ↵

µ + ↵� �
µ

µ + ⌧

!�1
.

However, if
µ >

⌧
1 + ⌧

↵�

then we found that outbreaks no longer follow an exponential pattern.
Instead, past this threshold even a coupled hospital-community system
exhibits sigmoidal emergence. Since epidemiological studies have observed
resistance following a sigmoidal emergence pattern we hypothesize that in
most cases µ exceeds this threshold.

We can think of our weakly-mixed approximations as a sort of worst-case
scenario. In these models, outbreak occurs immediately and there is little we
can do to slow it down. Consider, for example our (contrived) example from
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Chapter 3 of a high-traffic emergency room with the following parameters:

NH ⇤ 400
NC ⇤ 400, 000

µ ⇤
1

1.5 day�1

� ⇤
1
7 day�1

� ⇤ 1 infection per patient per day per fraction uninfected
⌧ ⇤ 1 per day.

In this scenario on average every patient receives antibiotics every day (or
half of all patients receive antibiotics twice a day, etc). This is of course far
more than the calculated 3.5% optimum use. With these parameters

Tlong ⇤
2
3 ⇥ 104 days ⇡ 20 years.

On the other hand a “best case scenario”� is embodied by Tmixed , which
under these parameters comes out to almost 35 years. Note that Tmixed
and Tlong represent fundamentally different quantities. In the well-mixed
case, the community will enjoy roughly 35 years of nearly resistance-free
life, while in the weakly-mixed case resistance increases slowly but steadily
over that time. Of course, neither scenario is sufficient for the needs of our
medical system. We hope to rely on effective antibiotics for generations to
come, but with characteristic time-scales of 20-35 years, resistance will be
ubiquitous in less than a century.

In their current form these results are theoretical and not of great practical
use in informing hospital policy. In particular, further analysis must be
conducted on the stochastic properties of these systems, which we have only
begun to address. Since there appears to already exist observational support
for the rough validity of our results (the observed sigmoidal outbreak pattern
mentioned above), it seems likely that with a few natural extensions this
work could prove quite useful. More discussion on such extensions will be
provided in Chapter 5.

�The partially-mixed case actually generates a larger time-to-outbreak for some interme-
diate values of µ. Estimating the optimal value for µ and the resulting time-to-outbreak is a
potential avenue for further study.



Chapter 5

Conclusions and Future Work

In this thesis we extend previous work on antibiotic-use strategies and pro-
pose a new avenue of inquiry: slowing the outbreak of antibiotic resistance
in the community. Previous work has analyzed the relative merits of cycling
vs. mixing using a variety of models and methods. Such work has, however,
generally neglected many important features of realistic hospital systems
in order to simplify their analysis. Four of these notable features are the
existence of more than two antibiotics, the stochastic dynamics of cycling
protocols, the stochastic evolution of new resistance, and the dynamics of
the surrounding community.

We have extended previous results to account for these four features,
though much work still needs to be done on all of these topics. In particular,
we found that:

• The existence of more than two antibiotics allows less-resistant strains
to compete with more-resistant strains, lending some advantages to
cycling.

• Stochastic local extinction lends significant advantages to cycling when
attempting to control rare resistant strains.

• The stochastic evolution of new resistance can be accounted for rela-
tively easily by calculating the expected value of the integral of a cost
function over a time interval [0, T].

• The outbreak of antibiotic resistance in the community can be delayed
by decreasing ⌧, and particularly by ensuring that ⌧ is low enough
that µcrit > µ.
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Much further work still remains to be done to solidify our results and
shape them into practical tools for hospital management. In the remainder
of this chapter we will discuss the many different ways to extend the ideas
presented in this thesis.

5.1 Extending Chapter 3

In Chapter 3 we concluded that cycling may hold significant advantages over
mixing when attempting to control diverse populations of multiply-resistant
strains. However, we presented little evidence of the generality of this claim,
choosing instead to analyze the three-antibiotic case and generalize our
results conceptually from there. A natural extension to our work would be
to systematically test our claims in simulation. Such an extension might
consider cases with higher numbers of antibiotics, or with varying levels of
multiple-resistance present (i.e., a simulation in which perhaps R123 and R14
have evolved but R24 has not yet). It also remains to be shown the extent
to which stochastic local extinction reduces the average prevalences of rare
resistant strains under cycling vs. mixing.

We also hope to see E[C] optimized for more realistic systems. This
would inevitably increase the complexity of our models, so that E[C]
would have to be optimized numerically. For example, with varying levels
of multiple-resistance one would have to account for multiple possible
evolution contingencies. However, provided sufficient computational power,
this method should be flexible enough to deal with relatively realistic
scenarios.

5.2 Extending Chapter 4

In order to obtain analytic results in Chapter 4 we constructed a simple model
that captured the behavior we wished to study. Much like previous models
of antibiotic-use strategies, this model relied on a number of assumptions.
While we hope these assumptions are accurate enough for our results to
have some theoretical legitimacy, many of them could be relaxed to obtain
more realistic results. For example:

• The rate of antibiotic use will likely vary between patients. Symp-
tomatic patients will receive more aggressive antibiotic treatment,
while asymptomatic patients may merely be given prophylactic antibi-
otics.
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• The rate of admission/discharge µ may also be dependent on symp-
toms. Symptomatic patients in the mS or mR class will be more likely
to enter the hospital, since they could be hospitalized as a result of
their infection. Likewise, symptomatic patients in the S or R class will
be less likely to exit the hospital�.

• The infection rate � may be different in a hospital. Patients are
vulnerable to infection, which will tend to increase �, but hygiene
standards are better which will tend to decrease �.

• The immune clearance rate � may be lower in a hospital, since patients
are immune-compromised.

Relaxing the first two assumptions would be relatively difficult, since we
would have to add several additional compartments to account for symp-
tomatic/asymptomatic infections. This does not lessen these importance of
accounting for the effects, but it is worth noting that relaxing the last two
assumptions would be fairly easy, and would only require us to reset a few
parameter values within our existing model.

Additionally, as we noted in Chapter 4 the largest time-to-outbreak in our
model actually occurs somewhere in the partially-mixed regime. Though we
have been unable to find a tractable analytic approximation for this regime,
this is a potential avenue for future study.

Finally we could extend our work in Chapter 4 by looking at multiple
antibiotics. As we saw in Chapter 3, behavior can change dramatically when
we add additional antibiotics to our system, even in the absence of substantive
changes to the rest of our model. Adding a second antibiotic would also
allow us to study the effect of cycling vs. mixing on the time-to-outbreak for
new resistance.

In fact, once multiple antibiotics have been added to our model, we could
combine the work of Chapters 3 and 4. In Section 3.4 we optimized E[C]
by assuming that mR ⇤ 0 throughout our period-of-interest. However in
Chapter 4 we relaxed that assumption and examined how mR might change
with time. This could naturally be incorporated into our E[C] framework to
obtain a more realistic result. In fact, by extending our community-hospital
model to large numbers of antibiotics, integrating it with ourE[C] framework,
and parameterizing it with real-world data we could potentially construct
a model of real practical use to hospital administrators. It is our hope that

�For example, patients infected with MRSA have stays on average almost 1.3 times as long
as those infected with the antibiotic-susceptible strains, MSSA (Cosgrove et al., 2005)
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eventually this sort of model is built and is able to help inform practical
hospital policy.

5.3 Integrating Stochasticity

Both Chapters 3 and 4 are based primarily on deterministic simulations.
However, stochasticity plays an important role in both systems. As we saw
in Chapter 3, small hospital sizes can lead to large stochastic variations.
Moreover, in the context of a cycling strategy, where deterministic variation is
already occurring, these stochastic variations have the potential to encourage
stochastic extinction of rare strains. Estimating the importance of this effect
for controlling multiple-resistance in hospitals will be a crucial area for
future research.

More work is also needed on the effect of stochasticity on time-to-
outbreak, particularly given the wide range of outbreak times shown in
our stochastic simulations. Is this wide range due to the small population
sizes we were forced to simulate for computational feasibility, or is it
fundamental to the system? In either case, future work should follow
(Cooper et al., 2004) and search for ways to utilize stochasticity to slow or
prevent outbreaks. For example, if macro-scale outbreaks are triggered by a
relatively small stochastic upticks in frequences, monitoring efforts could
detect these stochastic upticks in the hopes of suppressing the outbreak
before it happens — perhaps through the use of temporary isolation wards.

5.4 Risk-Structured Models

One final possibility not yet represented in the literature is the possibility of
grouping the population based on risk. For example, combination therapy�
is highly advantageous to the individual patient. Since some patients have
more vulnerable immune systems than others, it might make sense to treat
these patients using combination therapy. By stratifying the population
based on individual risk level we could potentially shift use of prophylactic
antibiotics more heavily onto those most in need, while simultaneously
reducing prophylactic antibiotic treatment on those with healthier immune
systems. The former change would have the effect of saving more lives,
while the latter would reduce selection for resistance. Hopefully these two

�Discussed in Chapter 1. Under combination therapy a single patient receives multiple
antibiotics simultaneously.
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would combine in order to, on net, save more lives and slow emergence of
new resistance.

This approach will be much closer to reality (Weinstein, 1998) than
models which assume a homogeneous population. Further, the problem
formulation is conducive to translation into a stochastic, individual-based
model. This type of model would be particularly useful, because it could help
provide insight into what thresholds doctors should use when determining
which patients to assign combination therapies to, and which patients to
avoid assigning unnecessary antibiotics to.

In the latter case — where some patients do not receive prophylactic
care — it is important that physicians are trained to be aware of their own
implicit biases. Implicit bias in healthcare has been repeatedly shown to be
a serious concern (Green et al., 2007; Teachman and Brownell, 2001). If we
implement a system where some patients receive prophylactic care while
others do not, the possibility of racial and other biases is not just present,
it is overwhelming. A quantitative system, carefully constructed with an
awareness of the implicit biases already encoded in existing medical data,
might be recommended to partially circumvent the many problems that
arise when decisions are left to the discretion of human beings who are
unfortunately but inherently biased.
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