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Abstract

How does the brain encode the spatial structure of the external world?
A partial answer comes through place cells, hippocampal neurons which
become associated to approximately convex regions of the world known
as their place fields. When an organism is in the place field of some place
cell, that cell will fire at an increased rate. A neural code describes the set
of firing patterns observed in a set of neurons in terms of which subsets
fire together and which do not. If the neurons the code describes are place
cells, then the neural code gives some information about the relationships
between the place fields–for instance, two place fields intersect if and only if
their associated place cells fire together. Since place fields are convex, we are
interested in determining which neural codes can be realized with convex
sets and in finding convex sets which generate a given neural code when
taken as place fields. To this end, we study algebraic invariants associated
to neural codes, such as neural ideals and toric ideals. We work with a
special class of convex codes, known as inductively pierced codes, and seek
to identify these codes through the Gröbner bases of their toric ideals.
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Chapter 1

Background

1.1 Neural Codes and Convexity

Suppose we have recorded the behavior of three neurons over a period of
a few minutes. We assume that at each time, the state of a neuron can be
described as either “on” or “off”. This is a reasonable assumption since
neural activity is well described by action potentials–when the voltage across
the cell membrane crosses a certain threshold, it will rapidly spike to a
higher voltage before rapidly returning to the baseline voltage, thus there
is a clear yes/no answer to the question, “did this neuron fire in this one
second interval?” We label our cells one, two, and three. At various times in
our interval, we sometimes find that all three cells are firing, sometimes find
that cells one and two are firing, sometimes find that cells one and three are
firing, sometimes find that cell one or cell two is firing alone, and sometimes
find that no cells are firing. We can record this behavior as a neural code. A
codeword is a binary vector of length n that describes the states of n neurons
(firing or not firing) at a given moment. A neural code is a collection of
codewords which describes all states a collection of n neurons takes over a
period of time. More formally:

Definition 1.1 (neural code). A codeword is a binary vector c ∈ F n
2 . A neural

code is a set of codewords, and therefore is a subset C ⊂ F n
2 .

For instance, the neural activity described above corresponds to the
neural code

C � {(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0)} ⊂ F n
2 .
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The codeword (1,1,1) describes all thee neurons firing, the codeword (1,1,0)
describes just neurons one and two firing, the codeword (1,0,0) describes
neuron one firing alone, and the codeword (0,0,0) describes no neuons firing.
For convenience, we typically discard vector notation for simpler binary
notation, writing C instead as

C � {111, 110, 101, 100, 010, 000}.
Instead of defining the neural code in terms of binary vectors, it is

sometimes convenient to describe the neural code in terms of sets of neurons
which fire together.

Definition 1.2 (support). The support of a codeword c � (c1 , . . . , cn) is the set
{i | ci � 1}. The support of a neural code C is supp(C) � {supp(c) | c ∈ C}.

For the neural code above,

supp(C) � {123, 12, 13, 1, 2, ∅}.
In the larger neuroscience literature, such codes are called combinatorial

neural codes, since they discard precise data about the timing and rate
of neural activity and retain only combinatorial information about which
subsets of cells fire together.

In general, patterns of neural activity do not occur in a vaccum. Instead,
our brains use these patterns to encode information about the external world
and our relation to it. This thesis is motivated by neural codes arising from
place cells, neurons which form part of the “neural GPS system”. In 2014,
John O’Keefe, Evard Moser, and May Britt Moser were awarded the Nobel
Prize in Physiology ormedicine for their discovery of the fascinating behavior
of these cells and a related class of cells known as grid cells (Burgess (2014)
). Taking advantage of technology which was revolutionary at the time,
O’Keefe recorded the activity of single neurons in the hippocampus, the part
of the brain involved in consolidation of memory and spatial navigation, in
freely moving rodents. He discovered a class of neurons with surprising
behavior–when the rodent was in a specific part of its enclosure, the neuron
he was monitoring would fire at a high rate. Otherwise, it would fire
slowly or not at all. Thus he named these neurons place cells. In familiar
environments, these place cells become associated to regions of space known
as their place fields or receptive fields. Since then, place cells have been
observed in a number of species, including humans (Burgess and O’Keefe
(2003)). If we, as researchers, have access to locations of place fields, then we
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can determine where the animal is in its environment by monitoring place
cell activity. However, this is not what the brain is doing: since the brain
does not have an external record of place field locations, all information the
animal has about the environment and its place within it must be somehow
recorded in patterns of neural activity (but not necessarily place cell activity).
Thus, we are interested in determining howmuch spatial information can be
recovered from the intrinsic structure of neural codes which arise from place
cell activity. A more thorough account of place cells and their behavior can
be found in Burgess (2014).

Experimentally, place fields are observed to be approximately convex.
That is, any straight line between two points in a place field is fully con-
tained within the place field. To avoid pathological behaviors such as two
dimensional place fields which intersect at a single point or along a line, we
generally require that place fields be open sets, though there has been some
investigation into models with closed convex place fields. In general, we are
trying to avoid codewords which correspond to sets of measure zero–this
is because if there is a region corresponding to a set of measure zero, then
the probability that the set of neurons corresponding to this region will fire
together is zero, so we will not actually include this codeword in our neural
code.

Given a collection of sets U1 , . . . ,Un , we can find the neural code C they
would generate when taken as place fields as follows:

For each σ ⊂ [n], ⋂
i∈σ

Ui \
⋃

i∈[n]\σ
Ui , ∅,

then c � (c1 , . . . , cn)with ci � 1 of and only if i ∈ σ is in C. If C is the code a
collection of setsU � {U1 , . . . ,Un}, then we say C � C(U). Another way to
describe this is to label each region wth the set of place fields it is contained
in, and then let the neural code be the set of all these labels. Inspired by this,
we say that U1 , . . . ,Un is a realization of a neural code C if C is the neural
code U1 , . . . ,Un generate. In other words,

Definition 1.3 (realization). Let C be a neural code. Then U1 , . . . ,Un is a
realization of C if c ∈ C if and only if⋂

ci�1
Ui \
⋃
ci�0

Ui , ∅.

Since place fields are approximately convex, we are interested in deter-
mining which neural codes can be realized with convex sets. We define open
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and closed convex neural codes, beginning with definitions of convex, open,
and closed sets.

Definition 1.4 (convex). A set A ⊂ Rn is convex if for all points a , b ∈ A, the
line segments between a and b stays within A.

Figure 1.1 The right two sets (red) are convex. The le� three sets (blue) are
not, as the pictured line segments demonstrate.

Definition 1.5 (open). A set U ⊂ Rn is open if for each u ∈ U, there exits an
ε > 0 such that if the distance d(u , x) < ε, then x ∈ U.

Definition 1.6 (closed). A set A ⊂ Rn is closed if its complement is open.

For instance, the set (a , b) :� {c ∈ R|a < c < b} is open, the set
[a , b] :� {c ∈ R|a ≤ c ≤ b} is closed, and the set (a , b] :� {c ∈ R|a < c ≤ b}
is neither open nor closed. Both the empty set and the whole real line are
both open and closed when viewed as subsets of R.

Definition 1.7 (convex neural code). A neural code C is open convex with
embedding dimension d if there exists a realization U1 , . . . ,Un of C such that
U1 , . . . ,Un are open convex subsets of Rd . Likewise, a neural code C is closed
convex with embedding dimension d if there exists a realization U1 , . . . ,Un of C
such that U1 , . . . ,Un are closed convex subsets of Rd . In either case, the smallest
such d minimal open (respectively, closed) convex embedding dimension of C.

For instance, we give a convex realization of the code
{000, 100, 010, 110, 101, 111} in Figure 1.2.

A number of natural questions in neuroscience and math arise from
these definitions.

1. Given a neural code, is there an (efficient) algorithm to determine
whether it is convex?

2. Is there a way to construct realizations of convex codes?

3. What are the algebraic and combinatorial signatures of convexity?
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Figure 1.2 A convex realization of the code C �

{000, 100, 010, 110, 101, 111}. If U1 ,U2 , and U3 were taken as place
fields, the activity of their corresponding place fields would be the neural code
C.

4. Given a neural code, is there an (efficient) algorithm to determine the
embedding dimension?

While these questions are mathematically interesting in their own right,
all have implications in neuroscience. While we motivated the introduction
of convex neural codes through place cell codes, convex coding is a plausible
paradigm for representing other types of information. For instance, there
are cells in the visual cortex which respond to the orientation of objects in
the environment. Like place cells, these cells have receptive fields which are
approximately convex sets of angles. In order to study convexity elsewhere
in the brain where the stimulus space is not well understood, such as the
olfactory system, we need to characterize convexity in terms of the intrinsic
structure of the neural code, rather than by reference to a realization in the
stimulus space, in order to determine whether convex coding plays a role.

Further, if we wish to understand how convex codes actually arise in the
brain, we wish to characterize the neural networks which give rise to convex
neural codes. Simple algebraic and combinatorial signatures of convexity
would simplify this problem significantly.
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1.2 Summary of Previous Work

There has been a body of work focused on convex neural codes which be
roughly divided into algebraic and topological or geometric lines of research.
This thesis will primarily use algebra, thus a summary of algebraic work
on neural codes is given, along with background material in algebra and
algebraic geometry, in Section 1.3. Here, we present a summary of progress
made using topological and geometric methods. The major object of study in
topological or geometric approaches to convex neural codes is the simplicial
complex of a code, defined as follows:

Definition 1.8 (Abstract simplicial complex). An abstract simplicial complex
is a collection ∆ of subsets of a vertex set, called simplices, which we take to be
[n] � {1, 2, . . . , n}, such that if σ ∈ ∆ and τ ⊂ σ, then τ ∈ ∆.

Definition 1.9 (Simplicial complex of a neural code). Let C be a neural code.
The simplicial complex of C is the minimal simplicial complex ∆(C) such that
supp(C) ⊂ ∆(C).
Definition 1.10 (Geometric realization). The geometric realization of an n-
simplex (a simplex with n − 1 vertices) is the convex hull of n affinely independent
points in Rn . For instance, a 0-simplex is a point, a 1-simplex is a line segment, a
2-simplex is a triangle, and a 3-simplex is a tetrahedron. If∆ is an abstract simplicial
complex, then the geometric realization is a collection of the geometric realizations
of simplices of ∆ on the same vertex set.

Perhaps the most interesting topological result on convex neural codes
is that of Curto and Itskov (2008), which proves that through the nerve
theorem, the stimulus space covered by a collection of convex place fields is
homotopy equivalent to the geometric realization of the simplicial complex
of the neural code, thus stimulus space topology can be recovered from
the neural code alone. The authors of Curto et al. (2017) defined a local
obstruction in terms of the topology of ∆(C), and proved that open and
closed convex codes have no local obstructions, and that, on up to four
neurons, all codes with no local obstructions are convex open. However,
Lienkaemper et al. (2017) proved that the converse is not true in general via a
counterexample on five neurons. Cruz et al. (2016) show that there does exist
a closed convex realization of this code and give an example of six neuron
code which is open convex but not closed convex. Furthermore, Cruz et. al
show that codes which contain all intersections of maximal faces are both
open and closed convex. Therefore, the only codes whose convexity cannot
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be determined by checking for local obstructions and for the presence of all
intersections of maximal faces are those codes which are missing at least one
intersection of maximal faces, but do not have local obstructions. Finally,
Cruz et. al showed that the set of open convex codes with the same simplicial
complex is closed under the addition of codewords–in other words, to find
all convex codes with a given simplicial complex, it is sufficient to find the
minimal convex codes on that complex.

Despite this progress, there is still no necessary and sufficient condition
for a neural code to be convex defined in terms of the intrinsic structure
of the code. Furthermore, even when a convex realization is known to
exist, it is often in a very high dimension, and it is not known how to
determine the minimal convex embedding dimension of an arbitrary convex
code. The overall difficulty of the general case motivates us to work in
special cases. In Chapter 2, we will define a class of convex codes known as
inductively pierced neural codes for which it is very easy to construct low
dimensional convex realizations and present some work towards identifying
these inductively pierced neural codes.

1.3 Algebraic Geometry Background

In this section, we give the necessary algebraic geometry background
and define several algebraic structures associated to neural codes. These
definitions are adapted from Dummit and Foote (2004) and Reid (1988).

Structures known as rings generalize the properties of sets such as the
integers, where operations of addition and multiplication are well defined
and play nicely together:

Definition 1.11 (ring). A commutative ring with identity is a set R together two
binary operations, + : R × R → R and × : R × R → R such that ,

• (a + b)+ c � a + (b + c) for all a , b , c ∈ R. (This is the associative property.)

• There exists 0 ∈ R such that a + 0 � a for all a ∈ R. (The element 0 is called
the additive identity.)

• For each a ∈ R, there exists −a ∈ R such that a + −a � 0. (The element −a
is known as the additive inverse of a. )

• For all a , b ∈ R a + b � b + a. (This the commutative property of addition.)

• For all a , b , c ∈ R, a× (b+ c) � a× b+ a× c (This the distributive property.)
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• There exits 1 ∈ R such that 1 × a � a for all a ∈ R. (The element 1 is called
the multiplicative identity.)

• For all a , b ∈ R, a × b � b × a. (This is the commutative property of
multiplication.)

The most familiar example of a ring is the set of integers under addition
and multiplication–one can check that all the properties in Definition 1.11
hold. If a set F is a commutative ring and for every f ∈ F, there exists f −1

such that f f −1 � f −1 f � 1, well call F a field and f −1 the multiplicative
inverse of f . Familiar examples of fields include the real, rational, and
complex numbers. The rings we will work with here will primarily be
polynomial rings. The elements of a polynomial ring are polynomials in
several variables with coefficients in some field k.

Definition 1.12 (polynomial ring). A polynomial ring in one variable, k[x], is the
set of formal combinations

∑m
i�1 ai x i with ai ∈ k. To define polynomial rings over

several variables, let x � (x1 , . . . , xn) be a tuple of variables and α � (α1 , . . . , αn)
be a tuple of integer exponents and define xα � xα1

1 · · · x
αn
n . Then the polynomial

ring k[x1 , . . . , xn] is the set of formal combinations
∑
α aαxα with ai ∈ k. Addition

and multiplication are defined as they typically are for polynomial functions.

For instance, the set Q[x1 , x2 , x3] of all polynomials in three variables
with rational coefficients forms a polynomial ring which includes elements
such as x1x2x3

3 +
7
8 x1x2

2 and x4
1x2 + 3x3.

A map between rings which respects the additive and multiplicative
structures is known as a ring homomorphism.

Definition 1.13 (ring homomorphism). Let R and S be commutative rings,
φ : R → S. Then φ is ring homomorphism if and only if for all p , q ∈ R,
φ(p + q) � φ(p) + φ(q) and φ(pq) � φ(p)φ(q).

For instance, consider the rings R[x] and R. For each a ∈ R, we can
define the evaluation at a map ea : R[x]→ R as follows:

ea *
,

m∑
i�1

bi x i+
-
�

m∑
i�1

bi a i .

The reader is encouraged to check that this is a homomorphism.
We define the kernel and image of a homomorphism φ : R → S to be the

sets
ker(φ) � {φ(r) � 0|r ∈ R}
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and
φ(R) � {s � φ(r)|s ∈ S}.

Definition 1.14 (ideal). Let R be a commutative ring, and I ⊂ R. We say I is an
ideal if I is a closed subgroup of R under addition and for all a ∈ I, b ∈ R, ab ∈ I.

For instance, the kernel of a homomorphism π : R → S is always an
ideal of R, since if r, q ∈ ker(φ), then φ(p) � φ(q) � 0, and since φ is a
homomorphism, φ(p + q) � 0 and p + q ∈ ker(φ). Likewise, if p ∈ ker(φ)
and r ∈ R, then φ(pr) � φ(p)φ(r) � 0φ(r) � 0. If we have a set of elements
S ⊂ R, we can consider the smallest ideal containing them, I � 〈S〉. We
say that S generates or is a basis for 〈S〉. For instance, if we take 2 ⊂ Z,
then 〈2〉 � 2Z, the ideal of even integers. As another example, the ideal
〈x2 , y〉 ⊂ k[x , y , z] is the set of all polynomials in x , y , and z such that each
term is divisible by either x2 or y. For instance, this ideal contains the
polynomials x2 + y , x yz + y2 , and x2z, but not x2z + x.

Elementary algebra focuses on graphing the solution sets to polynomial
equations. In algebraic geometry, we do much the same thing. We can
evaluate any polynomial f ∈ k[x1 , . . . , xn] at any point v � (v1 , . . . , vn) ∈ kn

by substituting the value vi for xi . Then we can talk about the set of points v
in kn where f (v) � 0 for some f ∈ k[x1 , . . . , xn]. We formalize this with the
notion of a variety:

Definition 1.15 (variety). Let I be an ideal of k[x1 , . . . , xn]. We define the variety

V(I) de f
� {v ∈ kn | f (v) � 0 for all f ∈ I .}

For instance, the ideal 〈y − x2〉 ⊂ R[x , y] has the variety {y � x2 |x , y ∈
R2}. Note that this is the graph of the function y � x2 in R2.

Likewise, if we begin with a set of points S ⊂ kn , we can define the ideal
of functions which vanish on this set as

I(S) de f
� { f ∈ k[x1 , . . . , xn]| f (v) � 0 for all v ∈ S}.

1.3.1 Gröbner Bases

A Gröbner basis is a particular set of generators for an ideal of k[x1 , . . . , xn]
which can be computed by standard methods and which has some nice
properties. In order to define Gröbner bases, we must define term orders,
total orderings on the set of monomials in a polynomial ring. If we are
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working in one variable, this is easy: over k[x], we can define a term order
≺ by demanding xa

≺ xb if a < b. How do we generalize this? Define
xa � xa1

1 · · · x
an
n . Over k[x1 , . . . , xn], we say that ≺ is a valid monomial order

if the following hold:

1. It is multiplicative: that is, xa
≺ xb implies xa+c

≺ xb+c for all a , b , c ∈
Nn .

2. The constant monomial is the smallest: that is, 1 ≺ xa for all a ∈ Nn .

For instance, a lexicographic order on the monomials in k[x1 , . . . , xn]
assigns an order to the variables of x1 , . . . , xn and extends this to other
monomials as follows. To compare monomials xa and xb we first compare
the exponents on x1 (a1 and b1) and say that xa

≺ xb if a1 > b1, xb
≺ xa if

b1 > a1. If a1 � b1, we move to comparing the exponents on b2, and so on.
Thus the polynomial x1x2x3 + x2

1x2 + x5
3 is written as x2

1x2 + x1x2x3 + x5
3 when

we order the terms lexicographically.
To obtain a greater diversity of term orders, we consider the class of

weighted term orders. Given a weight vector ω and an arbitrary “tie breaker”
term order ≺, say xa

≺ω xb if either a · ω > b · ω or a · ω � b · ω and xa
≺ xb .

For instance, for ω � (2, 1, 4) and ≺ the lexicographic order, we can see that
x2x3 ≺ω x1x2 and x1x2

2 ≺ω x3.
Once we have a monomial order, we can pick out the leading term of any

polynomial, that is, the term which is first in the term order. For instance,
x2

1x2 is the leading term of x2
1x2 + x1x2x3 + x5

3 . Define the initial ideal in≺(I)
of an ideal I to be the ideal generated by the leading terms of all polynomials
in I. A subset G ⊂ I is a Gröbner basis of I if

in≺(I) � 〈in≺(g) : g ∈ G〉.
A generating set is a univeral Gröbner basis if it is a Gröbner basis with
respect to any term order.

A more thorough treatment of Gröbner bases can be found in Sturmfels
(1996) and Cox et al. (1992). We introduce Gröbner bases here in order to
introduce Conjecture 2.3 of Chapter 2 relating to Gröbner bases of ideals
associated to neural codes.

1.3.2 The Gröbner Fan

The geometric objects polyhedral cones and fans can give us insight into the
ways the Gröbner bases of an ideal under different term orders relate to one
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another. We take the following definitions from Sturmfels (1996). Roughly,
polyhedral cones are the sets of non-negative linear combinations of a set of
vectors and polyhedral fans are “nice” collections of cones.

Definition 1.16 (Polyhedral Cone). A set P ⊂ Rn is a polyhedral cone if it can
be written in the form

P � {λ1u1 + . . . + λm um : λ1 , . . . , λm ∈ R
+}.

Figure 1.3 Apolyhedral cone inR2, generatedby the three green vectors. Note
that the middle vector is redundant.

Intuitively, a face of a polyhedral cone is the set of points in the cone
which are the most extreme in some direction. Formally, we have:

Definition 1.17 (Face). A face of a polyhedral cone P is the set f aceω(P) :�
{ω · u ∈ P ≥ ω · v for all v ∈ P}.
Definition 1.18 (Polyhedral Fan). A collection of polyhedral cones ∆ is a fan if:

• if P ∈ ∆ and F is a face of P, then F ∈ ∆

• if P1 , P2 ∈ ∆, P1 ∩ P2 is a face of P1 and P2.

Note the parallels with the definition of a simplicial complex.
Through the following standard theorems, cones and fans organize

information about the set of Gröbner bases of a given ideal. Fixing an ideal
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I ⊂ k[x1 , . . . , xn], we define two weight vectors ω and ω′ to be equivalent if
inω(I) � inω′(I). Then the following hold:

Proposition 1. Each equivalence class of weight vectors is a relatively open convex
polyhedral cone.

The Gröbner fan GF(I) is defined to be the set of closed cones C[ω] for
each ω ∈ Rn . Luckily, this terminology is valid:

Proposition 2. The Gröbner fan GF(I) is a fan.
For proofs and more details, see Sturmfels (1996).

1.4 The Neural Ideal

1.4.1 Definitions

We will show shortly that any neural code C ⊂ F n
2 is a variety in F n

2 . Thus,
we can study this variety by studying its vanishing ideal over the polynomial
ring F2[x1 , . . . , xn]. Given any neural code C ⊂ F2, we can find the ideal I(C)
of all polynomials which vanish on C.

Definition 1.19 (IC).

IC
de f
� I(C) � { f ∈ F2[x1 , . . . , xn]| f (c) � 0 for all c ∈ C}

For instance, for C � {00, 01, 11}, we can see that x1(1 − x2) ∈ IC . What
else is in IC? How does V(IC) relate to C? For any S ⊂ kn , S ⊆ V(I(S)),
however, is is possible that S ( V(I(S)). In this case, however, V(IC) � C. To
show this, we introduce indicator polynomials:

Definition 1.20 (indicator polynomial). Let v � (v1 , . . . , vn) ∈ F n
2 . Then the

indicator polynomial of v, ρv , is defined to be a polynomial such that ρv(v) � 1 and
ρv(v′) � 0 for v′ , v. We can construct ρv as

ρv �

∏
vi�1

xi

∏
vi�0

(1 − xi)

The indicator polynomial ρc of a codeword c � (ci , . . . , cn) is the polyno-
mial

∏
ci�1 xi

∏
ci�0(1 − xi). Note that ρc(v) � 1 if and only if v � c. Then

for any neural code, the indicator polynomial of every codeword c < C is
contained in IC , since pc vanishes on every point but c, and c < C, so pc



The Neural Ideal 13

vanishes at every point of C. This proves that V(IC) � C, since the only set on
which every pc for c < C vanishes is C. However, the indicator polynomials
are not the only elements of IC . Since x2 � x for any x ∈ F2, all polynomials
of the form xi − x2

i , known as the boolean relations, are contained in IC .
Lemma 3.2 in Curto et al. (2013) shows that the indicator polynomials and
the boolean relations are sufficient to generate IC.

Instead of working directly with IC , we reserve the term neural ideal for
the ideal JC , which does not contain the boolean relations. We construct the
neural ideal JC from this as follows:

JC � 〈ρc |c ∈ {0, 1}n
\ C〉.

Note that for each c < C, there is some polynomial ρ ∈ Jc such that ρ(c) � 1.
For each c ∈ C, however, ρ(c) � 0, since ρv(c) � 0 for all generators. This
goes to say that C is exactly the variety of JC . These definitions are taken
from Curto et al. (2013).

Example 1. Let C � {000, 100, 101, 111, 110, 010}. Then F3
2 \ C � {001, 011}.

Then
JC � 〈(1 − x1)(1 − x2)x3 , (1 − x1)x2x3〉.

1.4.2 The Canonical Form

Curto et al. (2013) introduce a cannonical form CF(JC) which allows one
to read off information about receptive field relationships from the neural
ideal. They define pseudo-monomials to be polynomials of the form f ∈
F2[x1 , . . . , xn],

f �

∏
i∈σ

xi

∏
j∈τ

(1 − x j)

for σ, τ ⊂ [n], σ ∩ τ � ∅. Note that for any v ∈ F n
2 , the indicator polynomial

pv is a pseudo-moonomial. A pseudo-monomial ideal is an ideal which
can be generated by pseudo-monomials. Since JC � 〈{pv |v < C}〉, it is a
pseudo-monomial ideal.

The canonical form of JC is defined as a generating set consisting of
minimal pseudo-monomials, where a pseudo-monomial f ∈ JC is minimal
if and only if there does not exist another pseudomonomial g ∈ JC with
de g(g) < de g( f ) such that f � h g for some h ∈ F n

2 [x1 , . . . , xn]. Curto
et al. (2013) show that the generators in the cannonical form are of three
kinds, each corresponding to a statement about the (minimal) relationships
between receptive fields in any realization (convex or not) of a given code:
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• Type 1:
∏

i∈σ xi ∈ JC implies that
⋂

i∈σ Ui � ∅, but for any lower order
intersection α ⊂ σ,

⋂
i∈α Ui , ∅.

• Type 2:
∏

i∈σ xi
∏

j∈τ(1 − x j) ∈ JC implies that
⋂

i∈σ Ui ⊂
⋃

j∈τ U j .

• Type 3:
∏

j∈τ(1 − x j) ∈ JC implies that the entire stimulus space X
satisfies X ⊂

⋃
j∈τ U j , but that X is not contained in any lower order

union
⋃

j∈α U j for α ⊂ τ.

By computing the cannonical form CF(JC), we thus arrive at a description of
the receptive field structure of any realization of C.

Example 2. Consider again the code C � {000, 100, 101, 111, 110, 010} with JC �

〈(1−x1)(1−x2)x3 , (1−x1)x2x3〉.Note that x3(1−x1) divides both (1−x1)(1−x2)x3
and (1− x1)x2x3, therefore 〈(1− x1)(1− x2)x3 , (1− x1)x2x3〉 ⊂ 〈x3(1− x1)〉. Thus,
the minimal relationhip describing this code is U3 ⊂ U1, which comes from the type
2 relation x3(1 − x1).

Curto et al. (2013) present an algorithm to find the canonical form of JC
using primary decompositions. Petersen et al. (2016) present and implement
a faster algorithm. Garcia et al. (2016) explore the relationship between
the canonical form and the Gröbner basis of the neural ideal, and finds
that though CF(JC) is not always a Gröbner basis, when it is a Gröbner
basis, it is always a reduced univeral Gröbner basis. Furthermore, when a
pseduo-mononial is contained in the Gröbner basis of the neural ring, it is
always an elment of the cannonical form.

1.5 Toric Ideals of Neural Codes

Another polynomial ideal associated to every neural code is the toric ideal,
introduced in this context by Gross et al. (2016). Roughly, toric ideals of
neural codes capture sets of codewords which balance out at each neuron.
Toric ideals are well studied outside of the context of neural codes, thus we
define toric ideals in the general case before exploring the particular case of
the toric ideal of a neural code.

If A is an n×m matrix with integer entries, we can define a familiar linear
map from Nm

→ Zn by matrix multiplication. Specifically, if the column
vectors of A are a1 , . . . , am , we have the map

φA∗ : Nm
→ Zd , u � (u1 , . . . , un) 7→ u1a1 + . . . + unan .



Toric Ideals of Neural Codes 15

We can define a ring homomorphism from k[x1 , . . . , xn] to k[y±1
1 , . . . , y±1

m ]
based on this linear map as follows (using the notational convention x �

(x1 , . . . , xn), ai � ai1 , . . . , ain , xai � xai1
1 · · · x

ain
n ):

φA : k[x1 , . . . , xn]→ k[y±1
1 , . . . , y±1

m ], xi 7→ yai .

The toric ideal is IA � ker(φA) ⊂ k[x1 , . . . , xn].

Example 3. Let A �

[
1 2 0
0 1 1

]
. Then the map φA is

φA : k[x1 , x2 , x3]→ [y1 , y2]
is given by

φA(x1) � y1 φA(x2) � y2
1 y2 φA(x3) � y2.

Thus, we see that x2
1x3 − x2 ∈ IA, since φA(x2

1x3 − x2) � y2
1 y2 − y2

1 y2 � 0.

Toric ideals have a number of applications in statistics, optimization,
and other fields, and the associated varieties, toric varieties, are important
objects in algebraic geometry. Therefore, toric ideals are well studied, and
have a number of convenient properties: basic results show that the toric
ideal is a prime ideal generated by binomials. Further, several software
packages such as 4ti2 (Hemmecke et al. (2003)) and Macaulay 2 (Grayson
and Stillman (2002)) have good support for computing with toric ideals.
Therefore, toric ideals of neural codes are promising objects of study, and
any general discoveries about toric ideals made in the proccess are likely to
be of broad interest.

The definition of a toric ideal of a neural code follows from the general
definition of a toric ideal: to define the toric ideal of a neural code C, we
can take the codewords to be the row vectors of a matrix and define IC to
be the toric ideal of this matrix. This is equivalent to the definition given
in Gross et al. (2016), which is the following: Let C be a neural code on
n neurons and C∗ � C \ (0, . . . , 0). Define the codeword ring of C to be
WC � k[{yc |c ∈ C∗}] and the neuron ring to be NC � k[x1 , . . . , xn]. Let a
homomorphism φC : NC →WC be given by

yc 7→
∏

i∈supp(c)
xi .

Then the toric ideal TC is the kernel of φC .
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Example 4. Let C � {00, 10, 01, 11}. Then
WC � k[y10 , y11 , y01]

and
NC � k[x1 , x2].

We have φC(y10) � x1 , φC(y11) � x1x2 ,, φC(y01) � x2. Then φC(y10 y01−y11) �
x1x2−x1x2 � 0, so y10 y01−y11 ∈ ker(φC) � IC . In fact, IC � 〈y10 y01−y11〉. First,
〈y10 y01− y11〉 ⊂ IC . Now, suppose that 〈y10 y01− y11〉 ( IC . Since IC is generated
by binomials, this implies that there exists some m1 − m2 ∈ IC \ 〈y10 y01 − y11〉.
Then φC(m1) � φC(m2). Unless y11 divides either m1 or m2, m1 � m2, thus
m1 − m2 � 0 ∈ 〈〈y10 y01 − y11〉〉. If y11 divides both m1 and m2, we can cancel
it out. Therefore, suppose y11 divides m1. Likewise, if y10 or y01 divides m1, we
can cancel out so that it does not divide m2. In order for φC(m1) � φC(m2), for
each power of y11 in m1, a power of y10 y01 must divide m2. Thus m1 � ym

11 and
m2 � ym

10 ym
01.

Now, we prove using strong induction that for all m ∈ N ym
11 − ym

10 ym
01 ∈〈y10 y01 − y11〉. The base case, for m � 1, is clear. Now, assume that for all

k ∈ 1, . . . ,m, the statement holds. Now, take

y11(ym−1
11 − ym−1

10 ym−1
01 ) + y01 y10(ym−1

11 − ym−1
10 ym−1

01 )
−y11 y10 y01(ym−2

11 − ym−2
10 ym−2

01 ) �
ym

11 − y11 ym−1
10 ym−1

01 + y01 y10 ym−1
11 − ym

10 ym
01−

y10 y01 ym−1
11 + y11 ym−1

10 ym−1
01 � ym

11 − ym
10 ym

01

Thus, sincewe have assumed ym−1
11 −ym−1

10 ym−1
01 , ym−2

11 −ym−2
10 ym−2

01 ∈ 〈y11−y10 y01〉
and we have expressed ym

11 − ym
10 ym

01 as a linear combination of these elements,
ym

11 − ym
10 ym

01 ∈ 〈y11 − y10 y01〉. Thus, we have shown that any potential generator
for IC is divisible by an element of the form ym

11 − ym
10 ym

01 and that any element of
this form is contained in 〈y10 y01 − y11〉, we have shown that

IC � 〈y10 y01 − y11〉.
Gröbner bases of toric ideals are well studied. A particular universal

Gröbner basis, the Graver basis, consists of the set of all primitive binomials.
A binomial xa

− xb is primitive in IC if xa
− xb

∈ IC and there is no other
xa′
− xb′

∈ IC such that xa′ divides xa and xb′ divides xb. Note that the Graver
basis is not neccesarily reduced, that is, it may contain binomials whose
leading terms are not neccesary to generate the initial ideal under any term
order.
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Example 5. Revisit the code C � {00, 10, 11, 01}.The proof in example 4 can be
simplified dramatically by this fact. If we suppose m1 − m2 ∈ IC is a primitive
binomial, then our argument that m1 � ym

11 and m2 � ym
10 ym

01 completes the proof,
since we must have m � 1 for m1 − m2 to be primitive.





Chapter 2

Inductively Pierced Neural
Codes and their Toric Ideals

Toric ideals are well suited to studying a class of neural codes known as
inductively pierced codes.

2.1 Inductively Pierced Codes

Here, we define and describe inductively pierced codes. First, we give the
definitions from Gross et al. (2016). Next, we give an equivalent set of
definitions and prove the equivalence. The authors of this paper define
inductively pierced codes in terms of well formed Euler diagrams.

Definition 2.1 (Euler diagram, zone). An Euler diagram D for n sets is a
collection of n simple closed curves in R2 labeled λ1 , . . . , λn . The interior of the
curve λi is the open set Ui . Nonempty intersections of the sets U1 , . . . ,Un and
their complements Ū1 , . . . , Ūn are known as zones. The word zone is also used to
refer to a set Z ⊂ {λ1 , . . . , λn} such that⋂

i∈Z

Ui ∩
⋂
j<Z

U j , ∅.

An Euler diagram is said to be well formed if each of the following are satisfied:

1. Each curve label is used only once.

2. All curves intersect generally (that is, curves intersect only in finitely many
points).
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3. A point in the plane is passed through at most two times by the curves in the
diagram

4. Each zone is connected

In figures 2.1 and 2.2, we give examples and nonexamples of well formed Euler
diagrams.

Figure 2.1 Here are some examples of well formed Euler diagrams.

We then define the abstract description of a Euler diagram as follows:

Definition 2.2 (abstract description). An abstract description D � (L ,Z)
of an Euler diagram D is an ordered pair specifying the curve labels L and the
zones Z ⊂ P(L). If C is a neural code on n neurons, the abstract description
which corresponds to the code, DC is defined as DC � {[n],ZC} where ZC �

{supp(c), c ∈ C}.
See Figure 2.3 for an example of a Euler diagram and its abstract de-

scription. Next, we define some structures that will be useful in defining a
k-piercing.
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Figure 2.2 Here are some examples of Euler diagrams which are not well
formed. The code on the le� has a disconnected zone, though the place field in
the center can bemoved either up or down in order to change this disconnected
zone into a triple intersection. The diagram on the right looks well formed at
first glance, however, the zone corresponding to the empty set is disconnected.

Definition 2.3 (abstract place field, Λ-cluster). The abstract place field of a
curve label in an abstract descriptionD � {(λ1 , . . . , λn),Z} is defined as

χλi � {Z ∈ Z : λi ∈ Z}.
See Figure 2.3 for an example of an abstract place field. The Λ-cluster of a zone
Z ∈ Z for some Λ ⊂ {λ1 , . . . , λn} is defined as

YZ,Λ � {Z ∪Λi : Λi ⊂ Λ}.
Note thatYZ,Λ is not neccesarily a subset ofZ.

Finally, we define the k−piercing of an abstract description:

Definition 2.4 (k-piercing). Let D � (L ,Z) be an abstract description. Let
Λ � (λ1 , . . . , λk) ⊂ L. Then λk+1 is a k-piercing of Λ inD if there exists a zone
Z ∈ Z such that:

1. λi < Z for all i ≤ k + 1.

2. χλk+1 � YZ∪λk+1 ,Λ, and

3. YZ,Λ ⊂ Z.
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Figure 2.3 The zones in this Euler diagram are the re-
gions {{1}, {1, 3}, {1, 2, 3}, {1, 2}, {2}}. We see that χ1 �

{{1}, {1, 3}, {1, 2, 3}, {1, 2}} in the abstract description of this Euler
diagram. In the Euler diagram, this corresponds to the regions with a blueish
tint.

Next, we definewhat it means for an abstract description to be inductively
pierced. In order to do this, we first describe the removal of a curve.

Definition 2.5 (Removal of a Curve). LetD � (L ,Z) be an abstract description
with λ ∈ L. We define

D − λ � {L \ {λ},Z − λ}
where

Z − λ � {Z \ {λ} : Z ∈ Z}
Definition 2.6. [k-inductively pierced] An abstract description D � (L ,Z) is
k-inductively pierced if D has a l-piercing λ for 0 ≤ l ≤ k such that D − λ is
k-inductively pierced. A neural code C is k-inductively pierced if its corresponding
abstract description,DC is k-inductively pierced.

There are very nice geometric interpretations of 0- and 1- piercings.
A curve is a 0-piercing if and only if it intersects no other curves in the
diagram. Then the interior of a 0-piercing must be completely contained
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Figure 2.4 The code {000, 100, 010, 110, 101, 111} is an inductively pierced
code. We see that the code {0, 1} is inductively pierced by defini-
tion, the code {00, 10, 01, 11} is a 1-piercing of {0, 1}, and the code
{000, 100, 010, 110, 101, 111} is a 1-piercing of {00, 10, 01, 11}.

within another zone. A curve is a 1-piercing if and only if it intersects
one other curve in the diagram and its interior is split into exactly two
zones. Because of these characterizations, inductively 0- pierced codes are
convex with minimal embedding dimension 1 and inductively 1-pierced
codes are convex with minimal embedding dimension 1 or 2. See Figure
2.4 for a geometric realization of the inductively 1-pierced neural code
{000, 100, 010, 110, 101, 111}.

In this work, rather than directly using these definitions, we work
only with neural codes (with no reference to abstract descriptions or Euler
diagrams) and rephrase a k-piercing as an operation, rather than a property
of a curve label: that is, we can apply a k-piercing to a neural code C on n
neurons to obtain C′ on n+1 neurons. We prove that these sets of definitions
provide an equivalent notion of a k-inductively pierced neural code.

To define the k-piercing operation, it will be useful to define the restriction
of a neural code on neurons x1 , . . . , xn to some subset of the neurons
xi1 , . . . , xik . The intuitive idea behind a restriction is that we will ignore
the behavior all neurons other than xi1 , . . . , xik , turning a neural code on
n neurons into a neural code on k neurons. We express this in terms of
matrices:

Definition 2.7 (restriction). Let C be a neural code on n neurons x1 , . . . , xn . The
restriction of C to {xi1 , . . . , xik } ⊂ {x1 , . . . , xn}, denoted C |xi1 ,...,xin

is the image
of C under the linear transformation rxi1 ,...,xik

, called the restriction map given by
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the matrix


ei1

ei2
...

eik



,

where ei j is the vector of length n which has a 1 at index i j and 0’s elsewhere.

For instance, the restriction of the neural code C � {000, 101, 110} to x2
and x3 is the image of C under the linear transformation rx2 ,x3 given by the
matrix

[
0 1 0
0 0 1

]
.

Then C |x2 ,x3 � {00, 01, 10}.
Note that the restriction of a neural code to all but one neuron corresponds

to the removal of a curve as defined inDefinition 2.5 in the abstract description
corresponding to the neural code, since we remove the deleted neuron from
the set of neurons and by removing index corresponding to the deleted
neuron from each codeword, we remove the deleted neuron from the support
of each codeword. With this, we are ready to define a k-piercing operation.

Definition 2.8 (k-piercing operation). Let C be a neural code on n neurons.
Assume there exists a codeword d ∈ C and a subset of neurons λ � {xi1 , . . . , xik }
such that

1. λ ∩ supp(d) � 0.

2. Dλ � F k
2 for D defined as the set of codewords c such that r[n]\λ(c) � d.

The k-piercing of C at λ with respect to background codeword c ∈ C is obtained as
follows:

3. Extend each c ∈ C with a 0 at the (n + 1)th index. (This is equivalent to
adding a neuron that never fires.)

4. For each c ∈ C such that supp(c)∩ λ , ∅ and r[n]\λ(c) � d, add a codeword
c′ which extends c with a 1 at the (n + 1)th index.

Definition 2.9. [inductively k-pierced] A neural code C is inductively pierced if
either
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• C � {0, 1}
• There exists a permutation of indices, an inductively k-pierced code C′ on n
neurons, and 0 ≤ m ≤ k such that C is a m-piercing of C′.

In other words, a code is inductively pierced if it can be built up from
the one neuron code C � {0, 1} through a series of piercings. Inductively
k-pierced codes were introduced because their geometric realizations are
particularly nice, especially when k is 0, 1, or 2.

Now, we prove that our definition of k-inductively pierced is equivalent
to that in Gross et al. (2016).

Theorem 1. A neural code satisfies definition 2.6 if and only if it satisfies definition
2.9.

Proof. To prove this, we first prove the following lemma:

Lemma 1. A curve n is a k-piercing in abstract descriptionDC of neural code C if
and only if C can be obtained from C |[n−1] by a k-piercing operation.

Proof. First, suppose curve n � λk+1 is a k-piercing ofΛ � {λ1 , . . . , λk} ⊂ [n]
with respect to background zone Z. Now, let λ � {x1 , . . . , xn} ⊂ [n] and d
be a codeword such that supp(d) � Z. Then condition (1) of the definition of
a k-piercing operation is satisfied, since λi < Z for each i ≤ k + 1 guarantees
supp(d) ∩ λ � ∅. Condition (2) of the definition of a k-piercing operator is
guaranteed by condition (3) of the definition of a k-piercing in a curve. Next,
note that the set of codewords in C with a 0 at the nth index is the set of
codewords of C |[n−1], each extended with a zero because conditions (2) and
(3) of the definition of a k-piercing,

χλk+1 � YZ∪λk+1 ,Λ ,

and
YZ,Λ ⊂ Z.

in an abstract description together that all codewords containing neuron n
also come in a version which does not contain neuron n. Thus condition (3)
of the definition of a k-piercing operation is satisfied. Finally, condition (2)
of the definition of a k-piercing in a curve,

χλk+1 � YZ∪λk+1 ,Λ ,

guarantees that the set of codewords in C which contain a 1 at position n are
exactly the codewords c of C |[n−1] such that supp(c)∩ λ , 0 and r[n]\λ(c) � d.
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Thus, if curve n � λk+1 is a k-piercing ofΛ � {λ1 , . . . , λk} ⊂ [n]with respect
to background zone Z in the abstract descriptionDC , then the neural code C
can be obtained from the neural code C |[n−1] through a k-piercing operation.

Now, suppose C can be been obtained from C |[n−1] through a k-piercing
operation at λ � {xi1 , . . . , xik } with respect to background codeword d.
Then let Λ � {λ1 , . . . , λk} and Z � supp(d). We prove that n � λk+1 is a
k-piercing of Λwith respect to background codeword Z in Euler diagram
DC . As before, condition (1) of the definition of a k-piercing in a curve is
guaranteed by condition (1) of the k-piercing operation. Condition (2) of
the definition of a k-piercing in a curve is guaranteed by conditions (2) and
(4) of a k-piercing operation–condition (2) guarantees that all codewords
whose zones composed of Z unioned with some subset of Λ are present
in DC[n−1] and condition 4 adds a 1 to these codewords and only these
codewords . Condition (3) of the definition of a k-piercing in a curve is
guaranteed by conditions (2) and (3) of a k-piercing operation, condition (2)
again guarantees that all codewords whose zones composed of Z unioned
with some subset of Λ are present inDC[n−1] and condition (3) preserves all
of these codewords inDC by adding a zero at the nth index. �

Now, we prove the Theorem 1 using induction. As a base case, consider
neural codes on one neuron. While no base case is explicitly mentioned
in the definition of inductively pierced given in Gross et al. (2016), if we
assume that they empty code is inductively pierced, then the codeword
{0, 1} is 1 1−piercing of the empty neural code, thus {0, 1} is inductively
pierced by Definition 2.6 (and is the only inductively pierced code on one
neuron). As our inductive hypothesis, we assume all n − 1 neuron codes
wich are inductively pierced by Definition 2.6 are inductively pierced by
Definition 2.9. Suppose C is a neural code on n > 1 neurons that satisfes
Definition 2.6. Then C − n is an inductively k-pierced code on n − 1 neurons
and n is a k-piercing in C, so, according to the inductive hypothesis, it is also
inductively pierced byDefinition 2.9, and C is a m−piercing of C−n for some
m ≤ k. Then by the lemma above, C can be obtained from C − n � C |[n−1]
by a k-piercing operation. Then C is inductively pierced by Definition 2.9
as well. Likewise, suppose C is a neural code on n > 1 neurons such that
C is inductively pierced according to definition Definition 2.9. Then it can
be obtained from C |[n] � C − n by a k-piercing operation, by the inductive
hypothesis, we assume C − n is inductively pierced by definition Definition
2.6 as well. By the lemma above, n is a k-piercing in C, thus C is inductively
pierced by Definition 2.6 as well. Therefore, since a neural code is inductively
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pierced by Definition 2.6 if and only if it is inductively pierced by Definition
2.9, these definitions are equivalent.

�

2.2 An Algorithm to Identify Inductively k-Pierced
Neural Codes

This characterization of inductively k-pierced codes suggests a recursive
algorithm to identify inductively k-pierced codes and exhibit an ordering of
the neurons in which piercings can be peformed. At each step, we look for
neurons which may have been added at the most recent piercing, remove
them and all codewords they appear in from the code, and recurse. We
describe this algorithm in general and have implemented it for 0- and 1-
pierced codes. We also describe connections to the algorithm for identifying
0- and 1- pierced codes using the cannonical form of the neural ring and an
associate graph.

To identify zero pierced codes, observe that a neuron appears in exactly
one codeword of a well formed neural code if and only if it has been added
as a zero piercing and has not been pierced since it was added. Therefore,
any neuron which appears in only one codeword could have been added as
a zero piercing at the last step. Thus, we can remove all these neurons by
deleting all codewords which contain them in their support and by deleting
the indices of these neurons. This gives us a neural code on fewer neurons
which we can apply the same proccess to until we have either removed all
neurons or found that each neuron is found in more than one codeword. In
the first case, we have shown that the code is inductively pierced and found
a piercing order.

We can extend this to 1- piercings as follows: once we have removed all
neurons which appear in only one codeword, we turn to looking at neurons
which appear in two codewords. At this point, note that a neuron shows
up in exactly two codewords (which may differ from each other at exactly
one index) if and only if it has been added as a 1-piercing and has not been
pierced since it was added. Therefore, we can remove each neuron which
appears in exactly two codewords which differ at only one index, and then
return to finding zero piercings.

If we wish to identify k-pierced codes, we continue this proccess, remov-
ing neurons if they appear in 2k codewords which are arranged in the right
way and declaring that the code is not inductively pierced otherwise. In
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order to find the piercing order, we keep track of the neurons we remove
at each step: as we remove a neuron, we add it to the front of a list of the
neurons. Thus, the list becomes sorted in an order which makes the code
inductively pierced.

2.3 Toric Ideals of Inductively Pierced Codes

Can we use toric ideals to identify inductively k-pierced codes? Gross et al.
(2016) prove that a well formed neural code C is zero-pierced if and only
if IC � 〈0〉 and that if a neural code is 1-inductively pierced, then the toric
ideal IC is generated by quadratics or IC � 〈0〉. However, the converse is not
true–there is a counterexample on as few as three neurons: the well formed
neural code C � {000, 100, 010, 001, 110, 101, 011, 111}, realized in Figure
2.5, is not inductively 1-pierced (though it is inductively 2-pierced), but has
a quadratic generating set. They make the following conjecture:

Figure 2.5 The neural code C � {000, 100, 010, 001, 110, 101, 011, 111}
is not inductively 1-pierced, but is generated by 〈y110 − y100 y010 , y101 −
y100 y001 , y011 y010 y001 , y111 − y110 y001〉, which is quadratic.

Conjecture 1. For each n, there exists a term order such that each well formed
neural code is 0- or 1- inductively pierced if and only if the reduced Gröbner basis
contains only binomials of degree 2 or less.

We prove the “only if” direction of this conjecture. An outline of our
proof is as follows: first, we define inductively built codes, a broader class
of codes including all inductively k−pierced codes. We show that the toric
ideals of these codes have a nice inductive decomposition, and that there is
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a natural way to use this decomposition to describe the Graver basis of the
code. From here, we show that if we can find a term order satisfying certain
properties, the intial ideal generated by the set of quadratic binomials will
match the initial ideal generated by the Graver basis, which is sufficient to
establish that the quadratic binomials form a Gröbner basis. Finally, we
show that a certain lexicographic order satisfies our properties.

Our definition of inductively built codes generalizes definition 2.9 of an
inductively k-pierced code by relaxing the requirement that the set of old
codewords to which the new neuron is added is no longer required to be
the full set of 2k codewords on k neurons, but can be any set of potentially
adjacent codewords. Instead, all we require is that the new neuron be added
such that its place field does not cover any existing zone.

To be more concrete, we give the following definition:

Definition 2.10 (inductively built neural code). A neural code is inductively
build if it can be built up from the empty code using the following operation:

Let C be a neural code on n neurons. Let C′ � C. Now, adjoin a 0 to each
codeword of C′–this is equivalent to adding a new neuron which never fires. Finally,
choose some subset of the codewords in C, adjoin a 1, and add them to C′.

Equivalently, we are requiring every codeword of C′ to be a codeword of C with
a 0 or 1 adjoined and every codeword of C to be found in C′ with a 0 adjoined.

Now, we describe the toric ideals of inductively built codes with the
following theorem:

Theorem 2. If C′ can be built from C in one step, then there exists an ideal J ⊂ NC′
such that

IC � J ⊂ I′
C
.

Proof. Let C′ be built from C using the operation in definition 2.10. Let
c′ ∈ C′ be the codeword which is a zero adjoined to c ∈ C. Define the maps

w : WC →WC′ , yc 7→ yc′

and
n : NC → NC′ , xi 7→ xi .

Our aim is to show IC � w(IC) ⊂ IC . In order to so this, we wish to show
that these maps commute with φC and φC′, that is, that

n ◦ φC � φC′ ◦ w.
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Recall that φC , φC′ are defined by

φC(yc) �
∏
ci�1

xi

and
φC′(y′c) �

∏
c′i�1

xi .

Thus,
n ◦ φC(yc) � n(

∏
ci�1

xi) �
∏
ci�1

xi

and
φC′ ◦ w(yc′) � φC′ ◦ pc′ �

∏
c′i�1

xi �
∏
ci�1

xi

because c′i � 1 if and only if ci � 1. Therefore, the maps commute (on
generators). Therefore, they commute overall. Then if q ∈ IC , w(q) ∈ IC .
Therefore, w(IC) ⊂ IC′.

Next, note that the map w is injective, since c′ � d′ if and only if c � d.
Therefore, IC � w(IC). Thus

IC � w(IC) ⊂ IC′ .

�

Corollary 1. If C′ is a k-piercing of C, there exists J such that

IC � J ⊂ I′
C
.

Proof. This follows from the previous theorem because any k-piercing oper-
ation is an inductive building operation as well. �

Lemma 2. Let C be an inductively 1-pierced neural code on n neurons such that
the final neuron is added in a 1-piercing. Let the two codewords added at the last
step be denoted by n and n′, where n′ is the codeword with the larger support. Let
IC be the toric ideal of C. If there exists a term order ≺ such that

f yn ≺ g yn′

for all f , g such that f yn − g yn′ is a primitive binomial in IC and such that the
Gröbner basis for IC |1,...,n−1 with respect to the restriction of ≺ to IC |1,...,n−1 is quadratic.
Then the Gröbner basis for IC with respect to ≺ is quadratic.
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Proof. To prove that there exists a quadratic Gröbner basis, it is sufficient
to prove that the set of all quadratics is a Gröbner basis. Let B be the set
of quadratics in IC . Then we wish to show that in≺(IC) is generated by
{in≺(b) | b ∈ B}. Since we are guaranteed that the set of primitive binomials,
the Graver basis, is a universal Gröbner basis for a toric ideal, it is sufficient
to show that the leading term of each primitive binomial is contained in
〈{in≺(b | b ∈ B}〉.

Since we have assumed that the Gröbner basis for IC |1,...,n−1 is quadratic,
if an element of the toric ideal does not include either yn or yn′, then its
leading term is contained in 〈{in≺(b | b ∈ B}〉. Therefore, we only need to
show that leading terms of primitive binomials of the form f yn − g yn′ are
contained in 〈{in≺(b | b ∈ B}〉.

Since the last neuron is added in a 1- piercing, the difference in support
between yn and yn′ is the index of the pierced neuron. Equivalently,

φ( f )
φ(g) �

φ(yn′)
φ(yn) � xi .

In the first case, assume that the neuron n is the first piercing of the neuron
i. Then the only codewords whose support contains i are yi , y′i , and y′n . (If i
was addded as a 0-piercing rather than a 1-piercing, we omit yi′.) We can
assume that the binomial f yn − g yn′ is primitive, therefore, yn′ does not
divide f .

Therefore either yi or yi′ divides f . Let i∗ � i′ − ei and i′∗ � i′ − ei . Then
both

yi yn − yi∗ yn′ ∈ B

yi yn ∈ {in≺(b) | b ∈ B}
yi′ yn − yi′∗ yn′ ∈ B

yi′ yn ∈ {in≺(b) | b ∈ B}.

Then since either yi yn or yi′ yn divides f yn , thus f yn ∈ 〈{in≺(b) | b ∈ B}〉.
In the second case, assume that the neuron i has been pierced before.

Then the set of codewords with i in their support contains all codewords
which arise through 0 and 1 piercings of i. We can ignore 0 piercings or
piercings of 0 piercings which stay within the place field of neuron i, since
we can order the piercings such that all piercings which use place field i as
part of the background zone occur after all 1-piercings of place field i. Thus,
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we consider 1-piercings of place field i. If neuron j is added as a 1-piercing
of i, then the codewords j and j′ can be defined as the codewords whose
supports match the supports of the two codewords which were added when
neuron j was added, and such that

φ(y j′)
φ(y j) � xi .

Then

y j′ yn − y j yn′ ∈ IC .
y j′ yn ∈ {in≺(b) | b ∈ B}

Therefore, as above, if f yn − g yn′ , either yi yn , yi′ yn , or some y j′ yn such that
j is a piercing of i divides f . Therefore, f yn ∈ 〈{in≺(b) | b ∈ B}〉. �
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Theorem 3. Let C be an inductively 1- pierced neural code. Then there exists a
term order ≺ such that the Gröbner basis for IC with respect to ≺ is quadratic.

Proof. We can satisfy the conditions of the previous lemma with a lexico-
graphic term order. Assume the neurons are labeled such that the mth

neuron is added in a 0- or 1- piercing at the mth step. Note that max(supp(c))
gives the highest index in the support of a codeword; our choice of guaran-
tees that this is also the step of inductive piercing where that codeword was
added. Now, order the variables {yc |c ∈ C} such that yc ≺ yd if and only if
either max(supp(c)) > max(supp(d)) or max(supp(c)) � max(supp(d)) and
|supp(c)| ≤ |supp(d)|. Let ≺ be the lexicographic monomial order induced
by this ordering of the variables.

We use induction to prove that the Gröbner basis G≺ for IC is quadratic if
C is an inductively pierced code on n neurons. As a base case, we consider
the only inductively 1-pierced neural code on one neuron, C � {0, 1}. Since
IC is empty in this case, the Gröbner basis with respect to any term order
contains only quadratic binomials. Now, suppose the theorem holds for all
inductively pierced neural codes on m neurons. We wish to show it holds
for all neural codes on m + 1 neurons. Let C be an inductively pierced neural
code on m + 1 neurons. Then by definition C is either a 0- or 1- piercing of
a neural code Cm on m neurons. If C is a 0-piercing of Cm , then IC � ICm .
Specifically, IC � w(ICm ). Then f ≺ g in IC if and only if w( f ) ≺ w(g) in
ICm , since the order of the variables in IC induces the correct order on the
variables in ICm .

Otherwise, assume that C is a 1-piercing of Cm . As in the proof of the
previous lemma, assume that we perform all 1-piercings of a neuron before
performing 0-piercings of that neuron or 1- piercings whose place fields
are entirely contained within this neuron. By our inductive hypothesis
and the fact that the order of the variables in IC induces the correct order
on the variables in ICm , the Gröbner basis for ICm quadratic. Now, note
that if f yn − g yn′ ∈ IC and is primitive, then yn′ does not divide f and yn
does not divide g. Observe that yn is the variable with smallest support in
the codeword ring which contains the most recently added neuron. Thus
f yn ≺ g yn′, since our lexicographic order guarantees that any monomial
divisible by yn precedes any other monomial.

Therefore, this term order satisfies all conditions of the preceding lemma.
Now, note that using this term order on k[F n

2 ] induces the correct term order
for WC for all neural codes C on n neurons. Therefore, the “only if” direction
of is true: for each n, there exists a term order ≺ such that each well formed
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neural code is inductively pierced only if the reduced Gröbner basis for this
term order contains only binomials of degree 2 or less.

�

Note that since this proof does not reference the fact that there exists a
quadratic generating set for inductively 1-pierced neural codes, it provides
an indepentent proof of this fact, first prove in Gross et al. (2016) using edge
coloring of hypergraphs.

However, this term order is not sufficient to prove the converse of this
theorem, as the following counterexample demonstrates:

Example 6. Let C � {000, 001, 011, 101, 111, 010, 110, 100}. Abbreviating with
z0 � y001, z1 � y011 , z2 � y101 , z3 � y111 , z4 � y010 , z5 � y110, and z6 � y100
and using the lexicographic order, the reduced Gröbner basis is

〈z1z2 − z0z3 , z0z4 − z1 , z2z4 − z3 , z3z4 − z1z5 , z0z5 − z3 ,

z2z5 − z3z6 , z0z6 − z2 , z1z6 − z3 , z4z6 − z5〉,
which is quadratic. However, C is a well formed neural code that is not inductively
1-pierced.

In investigating converse of this theorem, we phrase it in terms of Gröbner
fans. We define the k-fan of an ideal, GFk(I), to be the subset of the Gröbner
fan GF(I) consisting of equivalence classes of weight vectors which define
a Gröbner basis consisting of polynomials of degree k or less. Let Wn be
the set of all well formed neural codes on n neurons and P(1,n) be set of
inductively 1-pierced neural codes on n neurons. To phrase the theorem in
the language of Gröbner fans, we note the following:

Theorem 4. For each n, there exists a term order such that a well formed neural code
is inductively 1-pierced if and only if the reduced Gröbner basis contains binomials
of degree 2 or less if and only if the following holds:

For each n, ⋂
C∈Pn

GF2(IC) \
⋃

C∈Wn\Pn

GF2(IC) , ∅.

Proof. Suppose for each n, there is some term order for which the conjecture
holds. This term order is given by some weight vector. Since this term
order gives a quadratic Gröbner basis for every toric ideal of an inductively
1-pierced neural code,

⋂
C∈Pn GF2(IC) is nonempty.
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However, since this term order does not yield quadratic Gröbner bases
for well formed neural codes that are not inductively 1-pierced, this distin-
guishingweight vector lies outside

⋃
C∈Wn\Pn GF2(IC). Thus, if the conjecture

holds, ⋂
C∈Pn

GF2(IC) \
⋃

C∈Wn\Pn

GF2(IC) , ∅.

Now, suppose ⋂
C∈Pn

GF2(IC) \
⋃

C∈Wn\Pn

GF2(IC) , ∅.

Then there exists at least one weight vector ω such that ≺ω yields a quadratic
Gröbner basis for each inductively 1-pierced nerual code on n neurons and
does not yield a quadratic Gröbner basis for any other well formed neural
codes. �

2.4 Examples and Computations

We compute the minimum and maximum degree of the Gröbner basis of
the toric ideal of each neural code on 3 neurons. This computation was
performed in Sage using the interface to the package Gfan.

Analysis of this table reveals that a well formed neural code on three neu-
rons is inductively pierced if its minimal and maximal Gröbner degrees are
2. In other words, a well formed neural code on three neurons is inductively
pierced if and only if it has a quadratic univeral Gröbner basis. Is this true in
general? No. The neural code C � {0001, 0011, 0010, 0110, 0100, 1100, 1000}
is 1-inductively pierced, but has maximum Gröbner degree 3.
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code min degree max degree
[[1, 0, 0] , [0, 1, 1] , [1, 1, 1]] 2 2
[[1, 0, 0] , [0, 1, 0] , [0, 0, 1] , [1, 1, 1]] 3 3
[[1, 0, 0] , [0, 1, 0] , [1, 1, 0] , [1, 0, 1]] 2 2
[[1, 0, 0] , [0, 1, 0] , [1, 1, 0] , [1, 1, 1]] 2 2
[[1, 0, 0] , [0, 1, 0] , [1, 0, 1] , [1, 1, 1]] 2 2
[[1, 0, 0] , [1, 1, 0] , [1, 0, 1] , [1, 1, 1]] 2 2
[[1, 0, 0] , [1, 1, 0] , [0, 1, 1] , [1, 1, 1]] 2 2
[[1, 1, 0] , [1, 0, 1] , [0, 1, 1] , [1, 1, 1]] 3 3
[[1, 0, 0] , [0, 1, 0] , [0, 0, 1] , [1, 1, 0] , [1, 0, 1]] 2 2
[[1, 0, 0] , [0, 1, 0] , [0, 0, 1] , [1, 1, 0] , [1, 1, 1]] 2 3
[[1, 0, 0] , [0, 1, 0] , [1, 1, 0] , [1, 0, 1] , [1, 1, 1]] 2 2
[[1, 0, 0] , [0, 1, 0] , [1, 0, 1] , [0, 1, 1] , [1, 1, 1]] 2 2
[[1, 0, 0] , [1, 1, 0] , [1, 0, 1] , [0, 1, 1] , [1, 1, 1]] 2 3
[[1, 0, 0] , [0, 1, 0] , [0, 0, 1] , [1, 1, 0] , [1, 0, 1] , [0, 1, 1]] 2 3
[[1, 0, 0] , [0, 1, 0] , [0, 0, 1] , [1, 1, 0] , [1, 0, 1] , [1, 1, 1]] 2 3
[[1, 0, 0] , [0, 1, 0] , [1, 1, 0] , [1, 0, 1] , [0, 1, 1] , [1, 1, 1]] 2 3
[[1, 0, 0] , [0, 1, 0] , [0, 0, 1] , [1, 1, 0] , [1, 0, 1] , [0, 1, 1] , [1, 1, 1]] 2 3

Table 2.1 Minimum and maximum degrees of Gröbner bases for all neural
codes on 3 neurons.



Chapter 3

Codes in General Position and
Approximation With Polytopes

The authors of Cruz et al. (2016) introduce the idea of realizations of neural
codes which are in general position. To give their definition, we need to define
the Hausdorff Distance.

Definition 3.1 (Hausdorff Distance). Let X and Y be subsets of a metric space
U. The Hausdorff distance between X and Y is defined by

dH(X,Y) � max{sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)}.

Definition 3.2 (General Position). A realizationU � {U1 , . . . ,Un} is in general
position if there exists ε > 0 such that for all coversV � {V1 , . . . ,Vn} such that
Ui and Vi are within Hausdorff distance ε, the neural codes C(V) and C(U) are
equal.

In other words, if a realization is in general position, we can deform the
place fleids a little bit without changing the neural code. While Cruz et.
al. show that general position is too strong a condition for their purposes
(detecting when a neural code has both a closed convex and an open convex
realization), it is reasonable to assume biologically meaningful neural codes
are in general position.

We prove that if a neural code posseses a convex realization in general
position, it posseses a realization with convex polytopes. We take the
following definition of a convex polytope:
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Definition 3.3 (Convex Polytope). The convex hull of a set of points is the smallest
convex set containing these points. A convex polytope is the convex hull of a fine
number of points in Rn .

Note that a convex polytope in two dimensions is an ordinary convex
polygon.

Lemma 3. Let U be a compact convex set and U′ �
⋃

x∈U Bε(x). Then there exists
a convex polytope P such that U ⊂ P ⊂ U′.

Proof. Let U ⊂ Rd . For each x ∈ U, let v1 , . . . , vd+1 ∈ U′ \U such that their
convex hull is an d simplex Sx such that x is contained in the interior of Sx .
Note that the set {int(Sx)}x∈U forms an open cover of U. Since U is compact,
there exists a finite subcover S � {int(S1 , . . . , Sm}. Now, let V be the set
of vertices of the simplices whose interiors get used in our open cover, let
P be the convex hull of V . We claim that U ⊂ P ⊂ U′. To prove P ⊂ U′,
note that each v ∈ V is contained in U′. Then since P is the smallest convex
set containing V and U′ is a convex set containing V , P ⊂ U′. Next, we
show that U ⊂ P. Note that since S is a cover of U, each x ∈ U is contained
in int(Si) for some i, there exist v1 , . . . , vd+1 ⊂ V such that x is contained
in the interior of the convex hull of v1 , . . . , vd+1. Then x is contained in
conv(V) � P. Thus U ⊂ P, completing our proof. �

Figure 3.1 An illustration of the procedure used to construct P in lemma 3.

Theorem 5. Let C be a neural code such that there exists a convex realization
U � {U1 , . . . ,Un} in general position. Then there exists a convex realization
P � {P1 , . . . , Pn} such that each Pi is a convex polytope.
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Proof. Let U � {U1 , . . . ,Un} be in general position for some ε > 0. We
show that we can find Pi is within Hausdorff distance ε of Ui . Let (Ui)ε �⋃

Bε(x)x∈Ui
. Then (Ui)ε is in Hausdorff distance ε of Ui , since each point of

Ui is a point of (Ui)ε, and each point of (Ui)ε is within distance ε of some
point in Ui . Now, using our lemma, we find Pi such that Ui ⊆ Pi ⊆ (Ui)ε.
Then dH(Ui , Pi) ≤ ε. This follows because Ui ⊂ Pi ⊂ (Ui)ε, so every point of
Ui is distance 0 from a point of Pi and every point of Pi is distance at most ε
from a point of Ui .

Since we required the realization to be in general position, C(P) �

C(U) � C. Thus, there is a realization of C using convex polytopes.
�

Note that the converse of this proof isn’t true: there exist neural codes
which cannot be realized in general position, but can be realized with convex
polytopes. For instance, the code

C � {111000, 110001, 100011, 000111, 001110, 011100,
110000, 100001, 000011, 000110, 001100, 011000, ∅},

introduced in Cruz et al. (2016), is convex open but not convex closed.
Therefore, it cannot be realized in general position. However, we give a
realization with convex polygons based on the orignal open realization in
Figure 3.2.

We have not yet found an example of a neural code for which there exists
a convex realization, but not a convex realization with convex polytopes.
This motivates the following question:

Question 1. Is a neural code convex if and only if there exists a realization with
convex polytopes?
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Figure 3.2 A neural code which is realizable with convex polygons, but not
in general position. Note that the region labels which fall outside the hexagon
refer to regions along the boundaries of the nearest triangles.



Chapter 4

Future Work

A number of open questions remain. First and foremost, we intend to settle
Conjecture 2.3, perhaps through further exploration of the 2-fan. After
this, several interesting generalizations of this conjecture remain. Are there
similar ways to characterize inductively k-pierced codes, for k > 1? A guess
at how to extend Conjecture 2.3, proposed in Gross et al. (2016), would be to
conjecture the following:

Conjecture 2. For each k and n, there exists a term order such a code on n neurons
is m-inductively pierced, for m ≤ k, if and only if the reduced Gröbner basis contains
binomials of degree k + 1 or less.

In our proof that inductively pierced neural codes have quadratic Gröbner
bases, we showed that neural codes which are inductively built–that is, in
which new place fields are added in ways which do not cover up old zones–
have nice relationships between toric ideals of intermediate codes. That is,
recall theorem 2 that IC � J ⊂ IC′ if C′ is obtained from C using an inductive
building operation. What more can we say about toric ideals of inductively
built codes? Can we identify codes built in this way or identify which codes
built in this way are convex via the toric ideal?

A problem with seeking to distinguish inductively pierced codes from
other well formed codes is that it is difficult to determine which neural
codes are well formed in the first place. Furthermore, it would be interesting
to identify inductively pierced neural codes because, while a number of
biologically feasible neural codes are not inductively pierced, it is likely
that biologically realistic neural codes should be well formed. Each of the
three ways a convex neural code can fail to be well formed is problematic
biologically. If place fields are chosen with any degree of randomness, even
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subject to environmental constraints, the probability that a triple intersection
of place fields will occur is zero, thus we should not expect to see triple
intersections in real life neural codes. Similarly, the probability that the
boundaries of two place fields intersect in an infinite number of points would
be zero if place fields are laid down randomly, however, we might expect two
place fields to share a portion of their boundary if, for instance, this shared
boundary represented a barrier in the environment. Finally, a disconnected
zone would be disadvantageous to an animal relying on place fields for
navigation, since it would not be able to distinguish between two or more
spatially separated regions.

Here, note the parallels to convex codes and codes in general position.
While well formed nerual codes are not explicitly required to be convex,
since the boundaries of place fields are required to be simple closed curves
in R2, all place fields are required to be contractible. However, intersections
between place fields are not required to be contractible. Thus, well formed
neural codes are not required to be good covers. Note that realizations
of neural codes as good covers–that is, where every place field and every
nonempty intersection of place fields is contractible–are not required to be
well formed, since zones only have to be connected, not simply connected.
Requiring place fields to be convex does not fix this problem. If a neural code
is convex and in general position, then it can be realized without a triple
intersection and without two place fields sharing a boundary. However,
again, it can have disconnected zones. Therefore convex codes, convex codes
in general position, and well formed codes are distinct, but related, classes
of neural codes.

Codes which can be realized with convex polytopes are also worthy of
further study. Since polytopes have discrete descriptions, it seems likely they
are easier to understand than general convex sets. Other more restricted
cases, such as codes realizable with convex polygons inR2, have the potential
to be tractable while being broadly applicable and shedding insight into the
wider class of convex neural codes.
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