Claremont Colleges [Scholarship @ Claremont](http://scholarship.claremont.edu)

[All HMC Faculty Publications and Research](http://scholarship.claremont.edu/hmc_fac_pub) [HMC Faculty Scholarship](http://scholarship.claremont.edu/hmc_faculty)

2-1-2008

A Combinatorial Approach to Fibonomial **Coefficients**

Arthur T. Benjamin *Harvey Mudd College*

Sean S. Plott '08 *Harvey Mudd College*

Recommended Citation

Benjamin, A.T., & Plott, S.S. (2008/2009). A combinatorial approach to Fibonomial coefficients. Fibonacci Quarterly, 46/47(1): 7-9.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [scholarship@cuc.claremont.edu.](mailto:scholarship@cuc.claremont.edu)

A COMBINATORIAL APPROACH TO FIBONOMIAL COEFFICIENTS

ARTHUR T. BENJAMIN AND SEAN S. PLOTT

Abstract. A combinatorial argument is used to explain the integrality of Fibonomial coefficients and their generalizations. The numerator of the Fibonomial coefficient counts tilings of staggered lengths, which can be decomposed into a sum of integers, such that each integer is a multiple of the denominator of the Fibonomial coefficient. By colorizing this argument, we can extend this result from Fibonacci numbers to arbitrary Lucas sequences.

1. INTRODUCTION

The Fibonomial Coefficient $\binom{n}{k}$ k ¢ The Fibonomial Coefficient $\binom{n}{k}_F$ is defined, for $0 < k \leq n$, by replacing each integer appearing in the numerator and denominator of $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots(1)}$ with its respective k $\frac{1}{1}$ $=\frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1}$ with its respective Fibonacci number. That is, \overline{a} \mathbf{r}

$$
\binom{n}{k}_F = \frac{F_n F_{n-1} \cdots F_{n-k+1}}{F_k F_{k-1} \cdots F_1}.
$$

For example, $\binom{7}{3}$ 3 ¢ $_{F}=\frac{F_{7}F_{6}F_{5}}{F_{3}F_{2}F_{1}}$ $\frac{F_7F_6F_5}{F_3F_2F_1} = \frac{13.8.5}{2.1.1} = 260.$

It is, at first, surprising that this quantity will always take on integer values. This can be shown by an induction argument by replacing F_n in the numerator with $F_kF_{n-k+1}+F_{k-1}F_{n-k}$, resulting in \overline{a} \mathbf{r} \mathbf{r} \overline{a} \mathbf{r}

$$
\binom{n}{k}_F = F_{n-k+1} \binom{n-1}{k-1}_F + F_{k-1} \binom{n-1}{k}_F.
$$

By similar reasoning, this integrality property holds for any Lucas sequence defined by $U_0 = 0, U_1 = a$ and for $n \geq 2, U_n = aU_{n-1} + bU_{n-2}$, and we define

$$
\binom{n}{k}_U = \frac{U_n U_{n-1} \cdots U_{n-k+1}}{U_k U_{k-1} \cdots U_1}.
$$

In this note, we combinatorially explain the integrality of $\binom{n}{k}$ k ¢ $F \nightharpoonup F$ and $\binom{n}{k}$ k ¢ \mathcal{U} by a tiling interpretation, answering a question proposed in Benjamin and Quinn's book, Proofs That Really Count [1].

2. Staggered Tilings

It is well-known that for $n \geq 0$, $f_n = F_{n+1}$ counts tilings of a $1 \times n$ board with squares and dominoes [1]. For example, $f_4 = 5$ counts the five tilings of length four, where s denotes a square tile and d denotes and domino tile: $ssss, ssd, sds, ds, ds, dds$. Hence, for n $\binom{n}{k}_F = \frac{f_{n-1}f_{n-2}\cdots f_{n-k}}{f_{k-1}f_{k-2}\cdots f_0}$ $\frac{n-1}{n-2\cdots f_{n-1}}$, the numerator counts the ways to simultaneously tile boards of length $n-1, n-2, \ldots, n-k$. The challenge is to find disjoint "subtilings" of lengths $k-1, k-2, \ldots, 0$ that can be described in a precise way. Suppose T_1, T_2, \ldots, T_k are tilings with respective lengths $n-1, n-2, \ldots, n-k$. We begin by looking for a tiling of length $k-1$.

FEBRUARY 2008/2009 7

THE FIBONACCI QUARTERLY

If T_1 is "breakable" at cell $k-1$, which can happen $f_{k-1}f_{n-k}$ ways, then we have found a tiling of length $k-1$. We would then look for a tiling of length $k-2$, starting with tiling T_2 .

Otherwise, T_1 is breakable at cell $k-2$, followed by a domino (which happens $f_{k-2}f_{n-k-1}$ ways. Here, we "throw away" cells 1 through k , and consider the remaining cells to be a new tiling, which we call T_{k+1} . (Note that T_{k+1} has length $n - k - 1$, which is one less than the length of T_k .) We would then continue our search for a tiling of length $k-1$ in T_2 , then T_3 , and so on, creating T_{k+2} , T_{k+3} , and so on as we go, until we eventually find a tiling T_{x_1} that is breakable at cell $k-1$. (We are guaranteed that $x_1 \leq n-k+1$ since T_{n-k+1} has length $k-1$.) At this point, we disregard everything in T_{x_1} and look for a tiling of length $k-2$, beginning with tiling T_{x_1+1} .

Following this procedure, we have, for $1 \leq x_1 < x_2 < \cdots < x_{k-1} \leq n$, the number of tilings T_1, T_2, \ldots, T_k that lead to finding a tiling of length $k - i$ at the beginning of tiling T_{x_i} is

$$
f_{k-2}^{x_1-1} f_{k-1} f_{n-x_1-(k-1)} f_{k-3}^{x_2-x_1-1} f_{k-2} f_{n-x_2-(k-2)} \cdots f_0^{x_{k-1}-x_{k-2}-1} f_1 f_{n-x_{k-1}-1}.
$$

Consequently, if we define $x_0 = 0$, then $F_n F_{n-1} \cdots F_{n-k+1}$

$$
= f_{n-1}f_{n-2}\cdots f_{n-k}
$$

= $f_{k-1}f_{k-2}f_{k-3}\cdots f_1 \sum_{1 \le x_1 < x_2 < \cdots < x_{k-1} \le n-1} \prod_{i=1}^{k-1} (f_{k-1-i})^{x_i-x_{i-1}-1} f_{n-x_i-(k-i)}$
= $F_kF_{k-1}F_{k-2}\cdots F_2F_1 \sum_{1 \le x_1 < x_2 < \cdots < x_{k-1} \le n-1} \prod_{i=1}^{k-1} (F_{k-i})^{x_i-x_{i-1}-1} F_{n-x_i-(k-i)+1}.$

That is,

$$
\binom{n}{k}_F = \sum_{1 \le x_1 < x_2 < \dots < x_{k-1} \le n-1} \prod_{i=1}^{k-1} F_{k-i}^{x_i - x_{i-1} - 1} F_{n-x_i - (k-i) + 1}.
$$

This theorem has a natural Lucas sequence generalization. For positive integers a, b , it is shown in [1] that $u_n = U_{n+1}$ counts colored tilings of length n, where there are a colors of squares and b colors of dominoes. (More generally, if a and b are any complex numbers, u_n counts the total weight of length n tilings, where squares and dominoes have respective weights a and b, and the weight of a tiling is the product of the weights of its tiles.) By virtually the same argument as before, we have

$$
\binom{n}{k}_U = \sum_{1 \le x_1 < x_2 < \dots < x_{k-1} \le n-1} \prod_{i=1}^{k-1} b^{x_{k-1} - (k-1)} U_{k-i}^{x_i - x_{i-1} - 1} U_{n-x_i - (k-i) + 1}.
$$

The presence of the $b^{x_{k-1}-(k-1)}$ term accounts for the $x_{k-1}-(k-1)$ dominoes that caused $x_{k-1} - (k-1)$ tilings to be unbreakable at their desired spot.

As an immediate corollary, we note that the right hand side of this identity is a multiple of b, unless $x_i = i$ for $i = 1, 2, \ldots, k - 1$. It follows that

$$
\binom{n}{k}_U \equiv U_{n-k+1}^{k-1} \pmod{b}.
$$

8 VOLUME 46/47, NUMBER 1

A COMBINATORIAL APPROACH TO FIBONOMIAL COEFFICIENTS

REFERENCES

[1] A. T. Benjamin and J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, Washington DC, Mathematical Association of America, 2003.

MSC2000: 05A19, 11B39.

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711 E-mail address: benjamin@hmc.edu

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711