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Abstract

How can we apply mathematical notions of complexity and emergence to
music, and how can these mathematical ideas then inspire new musical
works? Using Steve Reich’s Clapping Music as a starting point, we look for
emergent patterns in music by considering cases where a piece’s complexity
is significantly different from the total complexity of each of the individual
parts. Definitions of complexity inspired by information theory, data
compression, and musical practice are considered. We also consider the
number of distinct musical pieces that could be composed in the same
manner as Clapping Music. Finally, we present a new musical compositions
to demonstrate some of these ideas.
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Chapter 1

Introduction

Emergence . . . refers to the arising of novel and coherent struc-
tures, patterns, andpropertiesduring theprocess of self-organization
in complex systems.

— Jeffrey Goldstein (Goldstein (1999))

Emergence is a concept that is hard to pin down, but can be seen
in contexts throughout science, mathematics, and art. Many systems
in nature have been described as emergent: flocking behaviors of birds,
synchronization of fireflies flashing, and even the social behavior of humans.
Music is another example of such a domain. Since many types of music are
governed by simple rules that lead to complex output (for example, classical
symphonies guided by rules of counterpoint), it seems natural that music
could display emergent properties.

In this thesis, we wish to identify music with emergent properties and
create new music with these properties. Thus, we need to consider some
concrete definitions of emergence.

1.1 Definitions of Emergence

There is little agreement about what is precisely meant by “emergence”.
Different authors cite various qualitative aspects that characterize emergence
such as “radical novelty”, “dynamical” (Goldstein (1999)), or “recognizable
and recurring” (Holland (1998)).

Some authors also distinguish between notions of strong emergence and
weak emergence. The most common definitions of these two ideas is that
strongly emergent phenomena are not deducible given the starting state
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of a system, while weakly emergent phenomena are simply unexpected
(Thorén and Gerlee (2010)). By this definition, there are very few examples
of strong emergence. Philosopher and cognitive scientist David Chalmers
points to mathematical examples such as the behavior of cellular automata
as examples of weak emergence, while the one observable example of strong
emergence is the phenomenon of consciousness (Chalmers (2008)). Mark
Bedau also puts forth the idea of “normal emergence”, which is simply “a
macro property that is the kind of property that cannot be a micro property”
(Bedau (2002)).

Emergence can also be defined in terms of what is knowable only by
simulation. For example, the behavior of certain cell patterns in Conway’s
Game of Life, such as the bounded growth of the R-pentomino, can only
be determined by simulating the system, thus marking their behavior as
emergent (Baker (2010)).

Following this idea of simulation, we can also consider the amount of
computation needed to simulate a system as compared to other methods of
finding the system’s final state. Vince Darley defines two functions: s(n),
the amount of computation needed to simulate a system to the desired state,
and u(n), the amount of computation needed to arrive at the state of the
system by another means—for example, by using known physical laws to
determine the state of a physical system. Here, n is the number of elements
of the system, such as the number of cells in a finite cellular automaton.
According to Darley, if u(n) < s(n), then the system is non-emergent, and if
u(n) ≥ s(n), the system is emergent. That is, a system is emergent if the best
way to understand it is to simulate it (Darley (1994)).

Finally, emergence can be understood in terms of complexity. According
to Henrik Thorén and Philip Gerlee, whose work links complexity to notions
of weak emergence, complex objects “lie somewhere in between complete
order and randomness.” A useful measure of complexity therefore doubles
as a measure of how difficult a system is to forecast. However, there is
often a disconnect between the complexity of the fundamental rules of a
system and the complexity of its observed behavior: simple rules can cause
complex behavior, and complicated rules can give rise to simple behavior.
We can therefore consider both the “emergence of complexity” and the
“emergence of simplicity” (Thorén and Gerlee (2010)). Given a way to
measure complexity, we can use it to measure the emergent properties of a
system.

With this in mind, we create the following definition: emergence occurs
when the resultant behavior of a system is significantly more or less complex than
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Figure 1.1 An excerpt from The Clod and The Pebble.

the sum of the complexities of system’s components. This definition has a few
advantages. First, given a definition of complexity, it provides a simple way
to check for the presence of emergence. It is also particularly suited for
music because we wish to create music of varying degrees of complexity.
For example, we might want to compose a piece with a high complexity to
create musical interest, or a piece with a low complexity to be performed by
beginning musicians.

In order to use this definition of emergence, we must find a suitable
way to define complexity. Notions of complexity based on randomness,
compressibility, and cognitive difficulty are discussed in Chapter 3, and a
new complexity metric for music is proposed in Chapter 4.

1.2 Composing Emergent Music: The Clod and The
Pebble

Evenwithoutdefining aparticularmetric, it is possible to consider complexity
as a way to create emergence in music in a more general way. To give an
example, considerTheClod andThe Pebble, an originalmusical piece composed
for this thesis. The score and performance notes are found in Appendix A,
and Figure 1.1 contains an excerpt of the score.

This piece is written for two soprano soloists with accompaniment. The
text is taken fromWilliam Blake’s poem “The Clod and the Pebble”, which
discusses two contrasting ideas about love. The piece begins with each singer
performing the text of one of the stanzas in its entirety. The singers then
perform a “divided” version of the text of the first stanza, in which the words
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are broken into approximate syllables and divided between the performers.
For example, the text written in IPA (the International Phonetic Alphabet, a
way of representing phonetic sounds unambiguously) corresponds to the
text “Love seeketh not itself to please, nor for itself ha. . . ”, which is a portion
of the first two lines of the original poem. However, the text has been divided
between the two singers, so the line is essentially performed as “Love seeketh
not itself to please, nor for itself ha. . . ”, where the text in bold is performed
by the first singer, and the remaining text is performed by the second. This
technique is similar to the one found in Daniel Lentz’s Can’t See the Forest
. . . Music, a piece for solo vocalist, wine glass, and electronics (Lentz (1984)).
The performer says single syllables from well-known phrases, spaced apart
in time and punctuated by taps on a wine glass that vary in pitch as the
wine is consumed over the course of the performance. A recording device
then plays back the performer’s sounds, allowing the phrases to be slowly
reconstructed. (The wine also adds some distortion to the performer’s voice,
and perhaps some additional cognitive difficulty.)

In both The Clod and the Pebble and Can’t See the Forest . . . Music, each
vocalist has a cognitively complex part, since it is more difficult to sing
or speak gibberish than English text. However, the result heard by the
audience is relatively simple—the text is familiar, and the words are still
understandable when divided and then reassembled. This is an example of
the idea of “the emergence of simplicity”, or a situationwhere the complexity
of a whole is less than the sum of its parts. In fact, one might consider that
a hypothetical single performer with two voices might have an easier time
with The Clod and the Pebble than would one of the two ordinary singers.

While the complexity metrics discussed in Chapter 3 and Chapter 4 are
not capable of evaluating the complexity of a piece of music such as this, it
is still an example of how the mathematics of complexity and emergence
can inspire musical composition.

1.3 Musical Objects

We now move away from abstract notions of complexity and begin to fix
a notion of a particular type of musical object that we will use to evaluate
and develop complexity metrics. For our purposes, we wish to consider one
very specific type of music, inspired by Steve Reich’s Clapping Music (Reich
(1980)).

Clapping Music is a work for two performers, both of which create sound
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Figure 1.2 The first three measures of Clapping Music by Steve Reich Reich
(1980).

only by clapping their hands. The piece begins with both players playing a
specific pattern in unison. After a specified number of repeats, the second
player shifts the pattern forward by one beat, effectively skipping a beat at
the beginning of the next section. The first player’s pattern remains constant.
Since the original pattern is 12 beats long, the second player repeats the
shifting process a total of 12 times, the last of which brings the players back
into unison. The first three measures of Clapping Music are reproduced in
Figure 1.2.

We consider a generalization of this piece. We want to have an arbitrary
number of players who can either clap or not clap on any given beat, so
each player’s part can be rendered as a binary string, where a 1 represents a
clap and a 0 represents a rest (a beat without a clap). We can then add m
of these parts together to create an m-ary string, which would represent a
piece being played by m musicians. For instance, if one player plays [1101]
while another plays [0100], the piece will sound like [1201].

We assume that a listener without access to the musical score can tell
how many players are clapping on a given beat, but not which players are
clapping. For example, two players, one playing [1110] and one playing
[0111] will together sound like [1221], which is indistinguishable from one
player playing [1111] and one playing [0110]. Thus there are often multiple
ways to create individual parts that sum to the same sounded piece.

We also wish to have players undergo a similar shifting process to that
found in Clapping Music. We generalize this as well. All players are given
identical starting measures consisting of n beats. At the end of each measure,
each of the musicians shifts forward by skipping some number of beats. This
number may differ between players, but a given player’s shifting number
may not change over the course of a piece. Finally, a piece is over after n
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measures are played, so the total number of beats in a piece is n2. Note that
this is a different formulation from Steve Reich’s original Clapping Music,
since we do not play the first pattern again but instead end a measure before
we would hear the new pattern. This distinction is mainly made for ease
of computation, as used in Chapter 2. Our generalization also differs from
Clapping Music in that there are no repeats—while each measure is repeated
12 times in the original Reich piece, we will play each measure only once.

In summary, a “clapping music” for m musicians with n measures can
be represented in two ways: as a musical score or as a sounded piece. A
musical score is an m × n2 matrix with binary entries, where a 1 in the i jth
entry indicates that musician i is clapping on the jth beat, and a 0 means that
musician i is resting on the jth beat. A sounded piece is the information that
is recovered by a listener who can distinguish volume changes but not the
identity of a particular performer, i.e. it is a list of n2 entries, each of which
contains an integer in {0, . . . ,m} representing the number of musicians
clapping on that beat. The sounded piece can be computed from the score
by adding the entries in each column.

Finally, a clapping music is realizable if it has the following properties:

1. All musicians have identical parts for the first n-beat measure of the
piece, and

2. For the ith musician, each subsequent measure is a shift by ki beats of
the first measure, where ki remains constant throughout the piece.

If we consider realizable clapping musics as a subset of all possible
pieces that could be written for m clapping performers, it seems that these
realizable pieces make up a relatively small part of our musical universe.
This idea is made more precise in Chapter 2.



Chapter 2

Counting Clapping Musics

Now that we have defined a general type of Clapping Music in Section 1.3, it
is natural to consider the relationship between these objects and others in
a more general musical universe. It seems that we have created a heavily
restricted type of music, and that it might not be possible to compose very
many distinct pieces that meet all of our requirements. To demonstrate that
we have actually isolated a very small subset of the possible pieces of music
that could be written for clapping musicians, we will consider the ratio of
the number of possible realizable Clapping Musics to the number of more
general pieces.

To do this, we will consider a piece of music for m performers as a list
of n measures, each of which contains n beats. We wish to compare the
number of such pieces that are realizable to the total number of such pieces.
By realizable, we mean that these pieces begin with all players playing the
same pattern, and that each player’s part consists only of shifted versions of
the first measure.

We will consider two separate cases: the written case, in which we have
a complete description of which musician is playing on each beat, and the
sounded case, in which we can only determine the number of musicians
playing on each beat, but not the identities of the individual musicians.

2.1 Written Music

First, consider the case of written sheet music (i.e., we can tell which player
is playing on a given beat). For the case of an arbitrary piece of music
(potentially unrealizable), we can consider a piece of sheet music as an
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m × n2 array with binary entries, where a 1 in the i jth entry indicates that
musician i plays on beat j, and a 0 means the musician rests on that beat.
Thus the number of unrestricted sheet musics is 2n2m .

In contrast, the number of realizable pieces is constrained by the first
measure—given the first player’s first measure in a realizable piece, we can
reconstruct the entire piece if we know the way each player is shifting. Thus,
the number of realizable sheet musics with a given shifting pattern and
number of musicians is 2n .

Now we must determine how many possible shifting patterns there are
for n musicians. Suppose musician i shifts by ki beats at the end of every
measure. We know that 0 ≤ ki < n, since a shift of at least n beats is the
same as some shift of less than n beats. We assign one ki to each of the m
musicians, and there are nm ways to do this. Thus, the number of written
clappingmusics is bounded by 2n nm . Note that this is certainly an overcount.
For example, consider a clapping music for m musicians with the starting
measure [0000]. No matter how the ki are assigned, the resulting written
music will be the same.

Finally, we consider the ratio of the number of realizable pieces to the
number of unrestricted pieces. This ratio is given by

2n nm

2n2m
. (2.1)

We now wish to find the limit of this ratio as m and n tend to infinity.
First, we rewrite the ratio:

2n nm

2n2m
�

2n nm

2n2n2m−n
�

nm

2n2m−n
. (2.2)

By inspection, we can see that the limit as n tends to infinity of this ratio
is zero, since the numerator grows as a polynomial and the denominator
grows exponentially. Thus, we have

lim
n→∞

2n nm

2n2m
� 0. (2.3)

Now consider the limit as m tends to infinity. We begin by rewriting the
ratio further:

nm

2n2m−n
�

(
2log2(n)

)m

2n2m−n
�

2log2(n)m

2n2m−n
�

2log2(n)m2n

2n2m
. (2.4)
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The limit of this ratio as m tends to infinity will tend to zero if n2 > log2(n),
which is true for all n ≥ 1. Therefore, we have

lim
m→∞

2n nm

2n2m
� 0. (2.5)

Since the limit of this ratio tends to zero as either m or n goes to infinity, we
conclude that realizable written pieces constitute a small subset of the total
number of written pieces.

2.2 Sounded Music

Now consider the case of sounded music (i.e., we can tell how many people
are clapping, but not which ones). In the unrestricted case, each of the n2

beats in the piece can contain a number in {0, 1, . . . ,m}, so there are (m+1)n2

distinct pieces.
Since we can consider a sounded music as an equivalence class of written

music, we can use our result in Section 2.1: the number of realizable sounded
pieces is bounded by 2n nm . Note that this overcounts the number of sounded
pieces, but this works for our purposes since we want to compare this value
to the total number of sounded pieces.

Again we consider the ratio of realizable pieces to unrestricted pieces.
This yields

2n nm

(m + 1)n2 . (2.6)

By inspection, we see that the limit of this ratio tends to zero as n tends
to infinity, since the numerator is exponential in n and the denominator is
exponential in n2. That is, we have

lim
m→∞

2n nm

(m + 1)n2 � 0. (2.7)

Unfortunately, the limit as m tends to infinity does not exist. It would
be useful to have a better way to count the number of realizable sounded
pieces, since we wish to show that the ratio tends to zero as both m and n
tend to infinity. Despite our inability to show this for m, our progress for
the written case is promising.





Chapter 3

Complexity Measures

As discussed in Section 1.1, our definition of emergence relies on a notion
of complexity. This chapter contains an exploration of several types of
complexity metrics and a proposal for a new metric specifically constructed
for the evaluation of clapping musics.

3.1 Shannon Entropy

Our first complexity metric is Shannon entropy, first described in 1948 by
Claude E. Shannon (Shannon (1948)). Strictly speaking, Shannon entropy is
not a measure of string complexity, but rather a measure of the information
content of a discrete random variable. However, we can use it on strings by
pretending eachmusical event (a note or rest) is drawn from some probability
distribution, and calculating theprobabilities by simplyobserving the relative
frequency of each event’s occurrence.

The Shannon entropy of a discrete random variable X with possible
values {x1 , . . . , xn} and probability mass function P(x) is given by

H(X) �
n∑

i�1
P(xi) logb

1
P(xi)

� −
n∑

i�1
P(xi) logb P(xi). (3.1)

Different values for b can be used—in general, H(X) gives the minimal
number of bits per symbol to encode the information in base b, so we might
want to use b � m where m is the number of musicians.

As a brief example, consider the first two measures of Clapping Music. If
we take a rest, a single clap, and a double clap as three separate symbols, we
can calculate the Shannon entropy of the first player’s part as follows.
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Sounded Pattern Entropy
222022020220 0.918
221121111211 0.918
212112021121 1.325

Table 3.1 Calculation of the Shannon Entropy of the first three measures of
Clapping Music.

First, we write the part as the string [111011010110] (claps are 1s, rests
are 0s). Note that four of the twelve symbols are 0s while eight are 1s.
Thus we say P(0) � 1/3 and P(1) � 2/3. Using the above formula, we have
H(X) ≈ 0.918.

The first player’s part does not change throughout the piece, so its entropy
does not change between measures. Since entropy is independent of order,
the second player’s entropy is also constant and equal to the first player’s.
The entropy of first three measures of the sounded piece is shown in Table
3.1.

This complexity metric does make intuitive sense in some ways—the
more different types of notes there are, and the more randomly distributed
these notes seem, the more difficult and possibly complex the music will be.
We can also think about the “flatness” of a probability distribution (which
Shannon entropy measures): the flatter a distribution, the more interesting
it is to choose from (Toussaint (2013)).

However, there are some clear drawbacks to using Shannon entropy for
musical purposes. The sequences evaluated as most complex are entirely
random, which is contrary to both musical intuition (random music is
just white noise) and notions of emergence as a sort of order. Shannon
entropy’s independence of the order inwhich events occur is also particularly
problematic from a musical standpoint—re-ordering the notes of a musical
piece can clearly change its complexity. For example, imagine ordering all
the notes in a symphony by pitch.

Despite these issues, we can take some useful information from this idea.
We want to consider sequences that display some amount of “sameness”
or “repetitiveness” less complex than sequences with more varied content.
This concept is explored more in Section 4.3, where we define a repetition
parameter that reduces the complexity of a sequence that repeats a pattern.
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3.2 LZ-Complexity

Another possible way to think about complexity is to consider the compress-
ibility of a sequence, i.e., the amount of information needed to reconstruct a
given string. For instance, we might think that [1010101010] is less complex
than [0110101111], since the former can be described as “[10] five times”,
while the latter does not have an obvious description.

This idea is made more precise with the idea of Kolmogorov com-
plexity, or algorithmic complexity, first proposed by Andre Kolmogorov
(Kolmogorov (1968))). Under this metric, the complexity of a string is the
length of the shortest computer program that outputs the string. This metric
seems to capture many of the intuitive ideas that we want in a complexity
metric. Unfortunately, Kolmogorov complexity is not computable in general.
Thus, we need to find a more practical way of measuring compressibility.

One such measure is LZ78-complexity (Ziv and Lempel (1978)). This
metric can be considered as a measure of how repetitive a sequence is. The
measure is computed by writing down a string from left to right and noting
the number of new substrings that occur in this process.

There are several variants of this process, with slightly different emphases
and applications. We choose to use the method used by Godfried Toussaint
specifically to evaluate music (Toussaint (2013)). The process works by
passing over a string from left to right and noting the start of a new substring
if the current pattern does not occur to the left of our current position.

This canbest be shownwith anexample. Consider the string 212112021121
(the third sounded measure of Clapping Music). Passing over the string from
left to right, we first encounter a 2, which forms the first substring in our
decomposition, and then a 1, which becomes the second. The next symbol
is a 2, which we have already seen, so we proceed to the next character,
yielding the string 21. However, 21 has already occurred to the left of our
marker (even though it is not in our dictionary), so we continue on to the
next symbol, giving 211. This string has not yet occurred, so we write it
down. We continue in this manner until we have passed over the entire
string. This process is outlined in Table 3.2. Since there are five substrings in
our decomposition, we conclude that the LZ-complexity of this string is 5.

We calculate the LZ-complexity of the first three measures of Clapping
Music in Table 3.3.

This measure makes intuitive sense for music: music that is highly
repetitive is easier to play, and thus somehow less complex. However, there
is not much variation in this metric—in particular, short strings are likely to
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String seen so far Current decomposition
2 2
21 2 · 1

21211 2 · 1 · 211
2121120 2 · 1 · 211 · 20

212112021121 2 · 1 · 211 · 20 · 21121

Table 3.2 Example calculation of LZ-complexity.

Sounded Pattern LZ-complexity
222022020220 4
221121111211 4
212112021121 5

Table 3.3 Calculation of the LZ-complexity of the first three measures of Clap-
ping Music.

be given approximately the same complexity.
To illustrate this problem, consider thehighly repetitious string 121212121212.

This has a LZ-complexity of 4, the same value as assigned to the seemingly
more complex strings in the first two rows of Table 3.3. This poses a problem
if we wish to compare measures of music, which contain a relatively small
number of beats.

3.3 Pressing Complexity

A third notion of complexity comes from the field of psychology and deals
with the cognitive difficulty of performing various rhythms. Created by
Jeffrey Pressing, Pressing complexity is a measure of the “cognitive cost” of
rhythmic patterns (Pressing (1999)).

The basic idea of Pressing complexity is to define five fundamental types
of rhythm and to locate these patterns at different musical hierarchical levels.
We begin by defining these hierarchical levels. In Pressing’s work, this is
done by considering the prime factorization of the number of beats in our
selection. For example, since 8 can be factored as 2 · 2 · 2, we have levels
consisting of 2 beats, 2 ·2 � 4 beats, and 2 ·2 ·2 � 8 beats. These can be thought
of as corresponding to considering a pattern on a quarter note, eighth note,
and sixteenth note level. Figure 3.1 demonstrates a decomposition of a
particular 8-beat pattern.
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0 1 1 0 0 11 1

0 1 1 0 0 11 1

01 11 00 11(c)

(b)

(a)

Figure 3.1 An example of computing the Pressing metric on a 8-beat pattern.
The complexity is computed for each sub-rhythm, and these complexities are
averaged across a level of subdivision. Then these averages are added to give
the sum of the total rhythm.

Once the complexity is determined for each sub-rhythm, we use an
averaging process to determine the overall complexity of the rhythm. This is
done by averaging the complexity scores at each level and then adding these
together. To illustrate this with an example, consider Figure 3.1. To evaluate
this rhythm using the Pressing metric, we would need to compute the
complexity of each of the seven sub-rhythms shown, including the top level
“sub-rhythm” that includes all 8 beats. Once we have these complexities,
we average them across each level. For instance, we average the complexity
of each of the 2-beat sub-rhythms in level (c) of the figure. Once we have
the average complexity of each level of the decomposition tree, we add
these averages together to yield the complexity of the rhythm. To put
it another way, if the complexities of each sub-rhythm in Figure 3.1 are
given by a1 , b1 , b2 , c1 , c2 , c3 , c4, according to the corresponding level of the
decomposition tree, the complexity of the rhythm is given by

a1 +
b1 + b2

2 +
c1 + c2 + c3 + c4

4 .

Note that Pressing’s work deals only with patterns whose length is a
power of two, so there is no unique way to resolve the question of order – for
instance, should a pattern of length 12 be decomposed as 2 · 2 · 3 or 3 · 2 · 2?
For our purpose of evaluating the complexity of Clapping Music, which is
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Pattern Name Description Pattern Form Difficulty
Null A pattern containing only

rests or a single note on the
first beat

[0n] or [1 0n−1] 0

Filled A note occurs on every beat [1n] 1
Run A note occurs on the first beat

and a series of subsequent
beats

[1k 0n−k] 2

Upbeat A note occurs on the first beat,
and there are one ormore pick-
ups into the next downbeat

[1k 0` 1n−(k+`)] 3

Syncopated A pattern that both starts and
ends on off beats

[0k 1` 0n−(k+`)] 5

Table 3.4 Di�iculty types in the Pressing Metric.

composed of 12-beat measures, we choose to make the smallest subdivisions
as close to powers of two as possible. Thus we will consider three sets of
two quarter notes, each of which contains a set of four eighth notes.

We will call the pattern of length n at the level we are working at a
sub-rhythm, and the pattern at the next level down a sub-sub-rhythm, as in
the work of Eric Thul (Thul (2008)). With this decomposition, we can fix a
pattern of length n and look for it at quarter note, eighth note, or sixteenth
note levels by considering which pattern type is shown in each sub-rhythm.

The five types of rhythm and their difficulty scores are summarized in
Table 3.4. Note that the sub-rhythm patterns as described by Pressing are not
sufficient to cover all possible rhythmic patterns—for example, consider the
string [0101], which does not have the structure of any of the named patterns.
To account for this, we will consider all patterns that do not fit into one of
these categories as syncopated and having difficulty 5. In addition, another
difficulty level, subbeat, which corresponds to a score of 4, is mentioned by
Pressing but not defined, so we omit it here.

With this information, we can compute the Pressing complexity of
sectionsClappingMusic. Since themetric is defined only on binary sequences,
we will consider the first musician’s part in the first measure: [111011010110].
We write this as a set of three four-beat sub-rhythms: [1110], [1101], and
[0110]. At the quarter note level, the first string is a run (difficulty 2), the
second string is an upbeat pattern (difficulty 3), and the third string is a
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First Player’s Part Pressing Complexity Second Player’s Part Pressing Complexity
111011010110 31/3 ≈ 10.3 111011010110 31/3 ≈ 10.3
111011010110 31/3 ≈ 10.3 110110101101 25/3 ≈ 8.3
111011010110 31/3 ≈ 10.3 101101011011 32/3 ≈ 10.7

Table 3.5 The Pressing complexity of each musician’s part of the first three
measures of Clapping Music.

syncopated pattern (difficulty 5). We then repeat this process and find the
difficulties of each of the six patterns of two eighth notes. We then average
the scores of the eighth note patterns (yielding 2) and add this to the average
of the scores for the quarter note patterns (yielding 16/3). Finally, we need
the score of the total pattern – since the measure does not have any of the
structures suggested by Pressing, we say it is syncopated and has difficulty
5. Adding these together, we arrive at 31/3 ≈ 10.3 as the total complexity of
the first measure of the first musician’s part of Clapping Music.

The complexity for each musician’s part of the first three measures of
Clapping Music are displayed in in Table 3.5. Note that we are unable to
compute the Pressing complexity of the sounded measures, since this metric
does not have a way of distinguishing beats containing a 1 from those
containing a 2.

Despite the difficulties with this metric, it shows considerable promise.
It is grounded in mathematics, music, and psychology, and will serve as a
starting point for the new metric developed in Section 4.





Chapter 4

Toward a NewMusical
Complexity Metric

Based on the ideas of complexity discussed in Chapter 3, we wish to
create a new metric for rhythmic complexity that is easily computable,
mathematically interesting, and musically meaningful. We begin by taking
inspiration from a common musical situation.

Suppose there is a long rhythm that a musician wishes to play. To make
the task easier, they might choose to think of the rhythm as a series of
very short sub-rhythms that they might already know how to play. If the
partitioning into sub-rhythms is done in a clever manner, the piece might
be revealed to be simply a list of very easy rhythms or a highly repetitious
pattern, for example. This idea is already used inmusical pedagogy: teachers
will often instruct students to think of a rhythm as a series of smaller, easier
rhythms. James Morgan Thurmond writes that modifying “note groupings”
can be advantageous for both musical expression and technical performance
of rhythms by students. For example, he argues that the common dotted
eighth-sixteenth note pattern can be accurately mastered by practicing the
rhythm both with the dotted eighth note as a downbeat and with the
sixteenth note as a downbeat (Thurmond (1982)).

This idea allows us to create a new sort of complexity metric. If we can
decompose a rhythm into short sub-rhythms, andwe can assign a complexity
value to each possible sub-rhythm, then we can assign a complexity to any
rhythm by considering the sum of these complexities.

This is the basic idea of this new metric: we will consider the various
ways of breaking a rhythm into two- and three-beat sub-rhythms, where
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each sub-rhythm has an associated complexity score. We will then find
the decomposition that results in the smallest total complexity, and that
complexity is the complexity for the rhythm. In addition, we will introduce a
repetition parameter ρ which expresses a decrease in difficulty for repeated
patterns, and difficulty parameters d1 and d2 which express the differences
in difficulty when playing accented and unaccented beats.

4.1 Complexity of Sub-Rhythms

To begin, we will assign a difficulty to each possible sub-rhythm that we
might encounter. For a variety of reasons, we will only consider sub-
rhythms of length 2 or 3. Sub-rhythms of length 1 are too short to be
musically meaningful, while sub-rhythms of length 4 are difficult to deal
with mathematically because they could also be viewed as two sub-rhythms
of length 2, and viewing the sub-rhythms as a set of 4 is almost always
unnecessary in the metric developed in this chapter, since it results in a
non-optimal decomposition. In addition, a huge amount of real-world music
is based around rhythms in groups of 2 or 3 (Toussaint (2013)), so these
numbers make sense from a musical perspective as well.

The complexities of each possible sub-rhythm are largely based on the
Pressing complexity metric. However, there are some necessary changes.
The Pressing metric does not work with strings whose length is not a
power of two, but since we are considering only sub-rhythms of length 2
and 3, we do not need to worry about dividing our sub-rhythms and can
use the characterizations presented in Table 3.4. Due to the absence of
examples for the patterns of difficulty 4 in Pressing’s original work, we have
assigned a score of 4 instead of 5 to all patterns classified as syncopated. We
continue classifying rhythms that do not fit one of the designated patterns
as syncopated and also assign them a score of 4.

Another problem with the original Pressing metric is that it only consid-
ered binary strings: a rhythmic pulse could either contain a sound or not.
For our purposes we wish to consider at least two types of sound in addition
to the empty beat – this corresponds to zero, one, or two people clapping in
a piece like Clapping Music, or a single player who can play both accented
and unaccented beats. Thus we must make another modification.

We consider a 1 to be an ordinary sounded beat, and a 2 to be an accented
beat. We begin by computing the difficulty of a sub-rhythm with our
modified Pressing metric, considering both 1s and 2s as 1s. We then use
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our two difficulty parameters d1 and d2: we add d1 to the sum if the first beat
of the sub-rhythm is accented, and we add d2 for every beat other than the
first that is accented. With d1 < d2, this represents the relative difficulty of
accenting a downbeat (the first beat of a sub-rhythm) and an upbeat (other
beats in a sub-rhythm), since it is generally easier to accent a downbeat than
an upbeat. For example, if the string [222] received a base score of s, its total
score would be s + d1 + 2d2, since there are three accented beats: one on the
downbeat and two on the upbeats.

Values for d1 and d2 can vary based on musical context, proficiency of
performers, and personal preference. This is one of the strengths of this
metric: it can be adapted for many different contexts.

The complexity scores for all 2-beat rhythms are given in Table 4.1, and
the scores for 3-beat rhythms consisting of 0s and 1s are given in Table 4.2.
3-beat rhythms containing 2s have been omitted in the interest of space, since
their scores can be easily calculated.

While the ordering of these rhythms by complexity would depend on
the particular values chosen for d1 and d2, it is worth checking to see if the
complexity scores make sense. For instance, the rhythm [12] has complexity
1 + d2, so it is more complex than [21], which has complexity 1 + d1 since
d1 < d2. This makes sense because of the difficulty of accenting an upbeat.
In addition, note that the rhythm [21] has complexity 1 + d1, while [22] has
complexity 1 + d1 + d2, so [22] is more complex. This can be understood by
considering the physical and cognitive difficulty of performing an accented
beat—even if all of the beats in a particular rhythm are accented, it is still
more difficult to perform accented beats.

With these in place, we can now move on to consider the decomposition
of a particular rhythm.

4.2 Decomposition into Sub-Rhythms

The other unique feature of this metric is that it deals explicitly with how
a rhythm is parsed into sub-rhythms. We wish to find the partition into
sub-rhythms that yields the lowest total complexity.

In general, there are manyways to do this. For example, an 8-beat pattern
could be written as four 2-beat patterns or two 3-beat patterns and one
two-beat pattern. This is shown in Figure 4.1, which shows that there are a
total of four ways to decompose an 8-beat rhythm.

We can count the number of ways to partition a number in this fashion
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Rhythm Complexity
00 0
01 4
02 4 + d2
10 0
11 1
12 1 + d2
20 d1
21 1 + d1
22 1 + d1 + d2

Table 4.1 The complexity values of all possible 2-beat rhythms using our new
metric.

Rhythm Complexity
000 0
001 4
010 4
011 4
100 0
101 3
110 2
111 1

Table 4.2 The complexity values of all possible 3-beat rhythms without ac-
cents using our newmetric.

8

2+6

2+2+2+2 2+3+3

3+5

3+2+3 3+3+2

Figure 4.1 A tree showing the ways an 8-beat rhythm could be decomposed
into 2- and 3-beat sub-rhythms.
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(a)

(b)

(c)

Figure 4.2 An example of how partitioning a rhythm into sub-rhythms can be
seen as a tiling problem.

by considering a recurrence relation. Consider the representation in Figure
4.2. For each beat in our rhythm, we draw a single box – in this case, we have
six beats, so we draw six boxes. We then consider the number of ways we
can tile this with tiles of size 2 (the red tiles shown in (b)) or 3 (the green
tiles in (c)).

Call the number of such tilings of a n-beat sequence f (n). Because we
can start by placing a tile of length 2 or 3 at the beginning of the sequence,
we can obtain f (n) by adding f (n − 2) and f (n − 3). Thus, we have the
recurrence relation

f (n) � f (n − 2) + f (n − 3) (4.1)

with initial conditions f (1) � 0, f (2) � 1, and f (3) � 1. This sequence is
a slightly modified version of A000931 from the On-Line Encyclopedia of
Integer Sequences (Sloane (2010)), which contains much information about
this sequence. For example, we have the identity

(n) � rn

2r + 3 +
sn

2s + 3 +
tn

2t + 3 , (4.2)

where r, s, and t are the three roots of x3 − x − 1. Because the magnitudes of
the two complex roots s and t are less than one, the latter two terms tend to
zero as n increases. Thus the formula is asymptotic to rn

2r+3 , where r ≈ 1.325
is the real root of x3 − x − 1.
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Since we currently have no algorithm to determine what decomposition
of a rhythm will be the least complex, it is important to know how many
decompositions we will have to try. For example, since f (12) � 12, there are
12 partitions of a measure of Clapping Music that we will need to check. This
is still fairly small, but the amount of computation does increase quickly—if
we wanted to compute the complexity of the first three measures of Clapping
Music, we would need to check over 10,000 partitions of the 36 beats.

It is possible that musical and mathematical knowledge and intuition
could be used to greatly reduce the amount of computation needed, as certain
decompositions could be judged as non-optimal before even computing their
complexity. For example, the string [101021] is likely to be better parsed as
[10]+[10]+[21] than [101]+[021], since the former partition results in every
sub-rhythm beginning with a sounded beat, while the latter partition has
one sub-rhythm that begins on an upbeat and incurs an additional penalty
for having an accented note on an upbeat.

4.3 The Repetition Parameter

The last component of this metric is the repetition parameter ρ. By setting
0 < ρ < 1, we can multiply the difficulty of a component sub-rhythm by ρ to
represent a decrease in difficulty to the performer – and therefore a decrease
in complexity – if a sub-rhythm is repeated.

For example, suppose we have the rhythm [011011011], and we have
chosen to decompose this as [011] + [011] + [011]. The complexity of the
sub-rhythm [011] is 4, as given in Table 4.2. However, since it is repeated
three times, the complexity of this sequence is 4+4ρ+4ρ2, as we accumulate
a factor of ρ for each time the sequence is repeated.

A consequence of this property is that the complexity of a sufficiently
repetitious infinite rhythm is bounded. For example, consider the pattern
[11111111 . . .], which we will parse as [11] + [11] + · · · . Each of these sub-
rhythms has complexity 1, so the complexity of this infinite rhythm is given
by the geometric series

1 + ρ + ρ2
+ · · · � 1

1 − ρ , (4.3)

since 0 < ρ < 1.
Having ρ as a parameter that can vary among performers and musical

contexts, like the parameters d1 and d2 which represent the difficulty of
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accenting downbeats and upbeats, makes this model more flexible and more
widely applicable. For example, beginning musicians might gain a great
benefit from having a single rhythm to play over and over again, while more
experienced performers might be equally comfortable with a constantly
changing pattern, so ρ might be smaller for beginners.

4.4 Example: Clapping Music

Finally, we consider a concrete example of computing the complexity of a
piece of music: Steve Reich’s Clapping Music. We will walk through the
computation of the score of one particular decomposition of the first sounded
measure (i.e., the sum of both player’s parts in the first measure), and then
present the overall scores of the first three measures in a table.

The sounded first measure of Clapping Music is [222022020220]. Suppose
we decompose this as [22]+[20]+[220]+[20]+[220]. Consulting Table 4.1 and
Table 4.2, we find the scores for each sub-rhythm and add them to find the
complexity score for this decomposition of this measure:

(1+d1+d2)+(d1)+(2+d1+d2)+ρ(d1)+ρ(2+d1+d2) � 3+2ρ+(3+2ρ)d1+(2+ρ)d2
(4.4)

This particular expression isn’t very meaningful without values for ρ, d1 ,
and d2. In fact, it is impossible to compare the complexity scores of various
decompositions of a rhythm without fixing these parameters. Thus, we will
choose the following arbitrary values: ρ � 0.75, d1 � 0.5, d2 � 1. Note that
these values are not chosen to align with any real-world data. The need
to find reasonable parameters is one example of the potential future work
discussed in Chapter 5.

Using these values, our complexity score for this decomposition of this
measure is 9.5. To find the actual complexity of this measure, we would
need to compute the scores for each of the 12 possible decompositions
of this measure and take the lowest. We happen to have chosen the best
decomposition in this case, however.

The complexities of the first and second players’ parts are given for each
measure of ClappingMusic in Table 4.3, and the complexities of each sounded
measure are given in Table 4.4. In addition, we give the decomposition that
results in the minimal complexity score. These results are also given in
Figure 4.3.
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Part Rhythm Complexity Decomposition
1st player, all measures 111011010110 4.5 [11]+[10]+[110]+[10]+[110]
2nd player, 2nd measure 110110101101 8.5 [110]+[110]+[101]+[101]
2nd player, 3rd measure 101101011011 4.5 [10]+[110]+[10]+[110]+[11]
2nd player, 4th measure 011010110111 7 [01]+[10]+[10]+[110]+[111]
2nd player, 5th measure 110101101110 4.5 [110]+[10]+[110]+[11]+[10]
2nd player, 6th measure 101011011101 6 [10]+[10]+[110]+[11]+[101]
2nd player, 7th measure 010110111011 7.75 [010]+[110]+[11]+[10]+[11]
2nd player, 8th measure 101101110110 4.5 [10]+[110]+[11]+[10]+[110]
2nd player, 9th measure 011011101101 5.75 [01]+[10]+[11]+[10]+[11]+[01]
2nd player, 10th measure 110111011010 4.5 [110]+[11]+[10]+[110]+[10]
2nd player, 11th measure 101110110101 4 [10]+[11]+[10]+[10]+[101]
2nd player, 12th measure 011101101011 8.5 [01]+[110]+[110]+[10]+[11]

Table 4.3 The complexity of the individual parts of each measure of Clapping
Music using our newmetric, with ρ � 0.75, d1 � 0.5, and d2 � 1.

Part Rhythm Complexity Decomposition
Sounded, 1st measure 222022020220 9.5 [22]+[20]+[220]+[20]+[220]
Sounded, 2nd measure 221121111211 6.875 [22]+[11]+[211]+[11]+[211]
Sounded, 3rd measure 212112021121 5.75 [21]+[211]+[20]+[211]+[21]
Sounded, 4th measure 122021120220 8 [12]+[20]+[211]+[20]+[220]
Sounded, 5th measure 221112111220 9.5 [22]+[111]+[21]+[11]+[220]
Sounded, 6th measure 212022021211 8.125 [21]+[20]+[220]+[21]+[211]
Sounded, 7th measure 121121221121 8.875 [12]+[11]+[21]+[22]+[11]+[21]
Sounded, 8th measure 212112120220 8.125 [21]+[211]+[21]+[20]+[220]
Sounded, 9th measure 122022111211 7.5 [12]+[20]+[22]+[111]+[211]
Sounded, 10th measure 221122021120 9 [22]+[11]+[220]+[211]+[20]
Sounded, 11th measure 212121120211 5.75 [21]+[21]+[211]+[20]+[211]
Sounded, 12th measure 122112111121 7.125 [12]+[211]+[211]+[11]+[21]

Table 4.4 The complexity of each soundedmeasure of Clapping Music using
our newmetric, with ρ � 0.75, d1 � 0.5, and d2 � 1.
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Figure 4.3 A graph of the complexity of the sound and component parts of
each measure of Clapping Music.
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Part Rhythm Complexity Decomposition
Sounded, 1st measure 222022020220 26 [22]+[20]+[220]+[20]+[220]
Sounded, 2nd measure 221121111211 15.5 [22]+[11]+[211]+[11]+[211]
Sounded, 3rd measure 212112021121 15 [21]+[211]+[20]+[211]+[21]
Sounded, 4th measure 122021120220 23.5 [12]+[20]+[211]+[202]+[20]

Table 4.5 The complexity of the first four soundedmeasures of ClappingMusic
using our newmetric, with ρ � 0.5, d1 � 0.5, and d2 � 2.

As shown in Figure 4.3, the complexity of a given sounded measure is
almost always less than the sum of the component complexities. In only
three cases does the sounded complexity match or exceed the sum of the
components. This is suggestive of the notion of the “emergence of simplicity”
discussed in Section 1, as we here have a piece that is more complex for two
players than it would be for one player playing both parts.

It is also important to note that the numeric complexities assigned to
each measure, and thus the complexities of each measure relative to one
another, are highly dependent on the chosen parameter values. To illustrate
this, consider Table 4.5, which contains the complexity results for the first
four sounded measures of Clapping Musicwith a different set of parameter
values: d1 � 2, d2 � 3, and ρ � 0.5.

By comparing these results to those in Table 4.4 we can see the impact of
changing the parameters. While we havemaintained our ordering of the first
four measures by complexity (i.e. measure 1 is the most complex, followed
by measure 4, then 2, then 3), the difference between the complexities of
each measure is greater with the new parameters. In addition, the optimal
decomposition of the 4th measure into sub-rhythms has changed from
[12]+[20]+[211]+[20]+[220] to [12]+[20]+[211]+[202]+[20].

We have now created a new complexity metric for rhythmic patterns that
incorporates many of the advantages of earlier metrics. However, due to our
metric’s reliance on parameters, there is much work that remains to be done
to ensure that this metric aligns with real musical experiences.



Chapter 5

Next Steps

By considering a very specific type of music and some ways complexity has
been defined in different context, we have created a new complexity metric
that could be used to look for emergent properties in some kinds of music.

This research leads naturally to awide variety of topics for future research
in both mathematics and music.

5.1 Mathematical Work

While the idea of decomposing rhythms into sub-rhythms of length 2 and 3
is certainly useful, the ideas could still be extended. First, there is no real
reason to stop at 3 beats—a 4-beat sub-rhythm seems natural from a musical
perspective, and skilled musicians may be comfortable using sub-rhythms
of length 5 or more. The main difficulty with this approach is that it is
tempting to give higher complexity to longer sub-rhythms in general, but
this approach basically ensures that the lowest-complexity decomposition
will only contain the shortest possible sub-rhythms, making the longer
sub-rhythms worthless. This could be fixed with careful refinements of the
basic Pressing metric idea and perhaps the use of more parameters.

Because of this metric’s reliance on the repetition parameter ρ and the
accent difficulty parameters d1 and d2, there is a wide variety in the potential
complexity scores for various pieces of music. Without concrete values for
these parameters, it is difficult to find meaningful complexity scores for
musical pieces. Therefore, it would be worthwhile to collect data about these
parameters, perhaps by surveying musicians about the relative difficulty
of various rhythmic passages. It would also be interesting to see if these
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values changed based on the musicians’ preferred genres or instruments.
This work could also reveal the need for new parameters or adjustments in
the base sub-rhythm complexity scores if there is no reasonable way to align
our results with collected data.

In addition to refining our metric, it would be useful to have an efficient
way to calculate it. We would like to have an algorithm to find optimal or
near-optimal decompositions of various rhythms. There are some useful
heuristics: in general, it is better to choose a decomposition that results
in the largest accents falling on downbeats most often. If this idea is
formalized, it could greatly speed up the computation time needed for
scoring the complexity of a particular piece. We could also examine this
topic with empirical data, as we could compare the decompositions created
by musicians to those this metric designates as “optimal”.

While we have considered the existence of some emergent phenomena
in Clapping Music, it remains to be seen if emergence is more common
in generalized clapping musics than in arbitrary rhythmic patterns. This
problem could be approached at least partially using computationalmethods,
since the space of clapping musics is relatively small, as shown in Chapter 2.

5.2 Musical Work

While there is one piece of music based on these ideas (see Chapter 1
and Appendix A), there is much room for new musical compositions. For
example, a piece based on the most simple or most complex possible rhythm
of a given length could be very interesting. Alternatively, a composer could
attempt to create maximally emergent music by composing pieces where
the individual musicians’ parts are much more or much less complex than
the sounded piece.

The metric developed in Chapter 4 is obviously limited in the music it
can analyze—only pieces consisting of a maximum of two types of sound in
addition to silence. To extend this to more types of music, more parameters
could be used, perhaps denoting the difficulty of moving between two types
of sounds instead of the difficulty of performing the sounds themselves. For
example, it might be easier for a vocalist to sing a very fast passage that stays
in one part of their range than a slower piece that crosses through registers.
Again, these parameters could be adjusted for all types of instruments,
performers, and musical contexts.

There is also a potential for this metric to be used as a tool by musicians
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learning new pieces of music. Sometimes, the easiest or best way to think
about a piece ofmusic is not readily apparent, and knowing the complexity of
a piece and a good decomposition into sub-rhythms could enable a musician
to learn more quickly and perform more comfortably.





Appendix A

The Clod and the Pebble

A.1 Background and Performance Notes

This piece is based on the idea of the emergence of simplicity from complexity.
The text is taken fromWilliam Blake’s poem The Clod and the Pebble, which
presents two different views about love (Blake (1967)). The piece iswritten for
two soprano soloists, who each first sing through a stanza of the poem in its
entirety. Then, the words of the first stanza are broken up into syllables and
distributed among the two singers. The end effect is that each singer’s text is
gibberish—a very cognitively difficult part—but the audience’s perception
is of one voice broken into two parts with a simple melodic/harmonic
structure.

Singers should strive tomatch their tone asmuch as possible to contribute
to the illusion of a single voice. The accompaniment here is not specified,
but can be performed on any instrument capable of playing chords – for
instance, a guitar or piano, and should be kept light.
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A.2 Vocal Score

The Clod and the Pebble
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