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Galileo and Aristotle’s Wheel

Olympia Nicodemi

Department of Mathematics, SUNY Geneseo, Geneseo, NY 14454
nicodemi@geneseo.edu

Abstract

At the beginning of his last major work, Galileo tackles an old paradox, Aristotle’s
Wheel, in order to produce a model of the continuum that explains (at least
to him) how line segments of different length could be put into a one-to-one
correspondence. His argument seems like a playful digression. However, it is
precisely this type of a one-to-one correspondence that he needs to support his
work on free fall. In this article, we investigate how Galileo’s model for the wheel
paradox informs his work on free fall. We also examine some of the reasons his
results on free fall—results that were grounded in his notion of the continuum—
were not readily accepted in his time.

1. Introduction

In 1638, Galileo was infirm, blind, and under house arrest by the Catholic
Church for his defense of the heretical Copernican cosmological view. It was
at that time that he wrote his magnum opus, The Discourses on the Two
New Sciences, in which he offered his refined and final thoughts on topics that
he had pondered over a lifetime. At the center of that work we find what
Galileo finally deemed to be a satisfactory mathematical proof of his law for
bodies uniformly accelerated by free fall: the distance x that a body falling
from rest travels in time t is given by x = gt2/2 where g is a proportionality
constant that depends on the units chosen.

What seems so unremarkable now was ground-breaking at the time. While
natural philosophers of the middle ages had studied uniformly accelerated
motion per se, their models for bodies in free fall were very different. (We
return to this later.) Galileo deduced his model of free fall experimentally
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and then investigated its consequences mathematically. The rest is physics
history.

[S]ince nature does employ a certain kind of acceleration for de-
scending heavy things we decided to look into their properties so
that we might be sure that the definition of accelerated motion
that we are about to adduce [i.e., uniform acceleration] agrees
with the essence of naturally accelerated motion.1

Here is Galileo’s own statement of the law of free fall (Proposition II,
Theorem II, Day 3):

If a moveable descends from rest in uniformly accelerated motion,
the spaces run through in any times whatever are to each other
as the duplicate ratios of their times; that is, as the squares of
those times.

The simple phrase, “through in any times whatever,” is critical to Galileo’s
model of free fall. It implies a continuous and scale-free dependence of dis-
tance on the continuum of time. But here is how Galileo refers to time as he
is describing uniform acceleration in his prelude to Proposition II:

Thus, taking any equal particles of time whatever from the first
instant in which a moveable departs from rest and descent is be-
gun, the degree of swiftness acquired in the first and second little
parts of time [together] is double the degree that the moveable
acquired in the first little part [of time].

We see a struggle between a model of time in which time is made up
of “particles,” one following another like the frames of a movie, versus the
continuous model implied by unlimited divisibility of any measurable span
time. It’s a struggle as old as Zeno. A resolution, or at least a certain
reconciliation of these models, was important to Galileo as he laid out his
“new science” of motion. How Galileo thought about the continuum comes
early in the Two New Sciences in his analysis of the paradox known as
Aristotle’s Wheel. As we shall see, his internalization of this model informed
both his refutation of the then current model of free fall and his mathematical
justification of his own results on uniform acceleration.

1All quotes are from [5] unless otherwise noted.
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2. The Wheel

The paradox of the wheel is found in The Mechanical Problems, a book
of unknown authorship but attributed to Aristotle in Galileo’s time. (For a
history of the paradox see [2].) The paradox is embodied in the Figure 1.2

The length of AB is equal to the circumference of the outer circle. Imagine
that the wheel makes one complete revolution so that the point on the wheel
initially in contact with the line at A lands on B, a smooth roll. Now look at
the roll of the inner circle. The length CD equals that of AB, but it should
also equal the length of the shorter circumference of the inner circle. The
paradox: AB = CD and AB 6= CD.

Figure 1: Aristotle’s Wheel.

Any real system of concentric wheels would screech loudly because the
inner wheel could not be carried by a smooth roll of the outer wheel without
slipping. However, to the mathematician, there seems to be no problem.
Let’s say the inner circle is of radius 1 and the outer is of radius 2. Any
point on either circle can be named uniquely by θ, the angle that the common
extended radius makes with the perpendicular as in Figure 2 (see the next
page). So the points on the two circles are in one-to-one correspondence. In
a smooth roll of the outer circle, a point named θ maps to a point a distance
2θ away from A in Figure 1. The mathematician running Aristotle’s wheel
simply maps the point on the inner circle named θ to a point a distance 2θ
away from C: f(θ) = 2θ. Each and every point on each of the spans AB and
CB is touched exactly once by a point named θ, putting the points of CD
in one-to-one correspondence with the points of AB. Easy.

2All figures except for Figure 3 were produced by the author.
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Figure 2: Points named by θ.

But “f(θ) = 2θ” does not get to the heart of the paradox because it does
not explain how the rotation of the wheel can simultaneously lay out the
points of each circumference—points that are in one-to-one correspondence
via the parameterizing angle—one at a time, one after another, yet have
them map out different spaces, one twice the length of the other. Galileo
developed a model of the continuum that accommodates, if not explains, the
paradox.

To understand the motion of the inner and outer circles, Galileo analyzed
the motion of concentric regular polygons. In his diagram (see Figure 3) he
uses concentric hexagons.

Figure 3: Galileo’s diagram. Image from [4]. See http://galileoandeinstein.physics.
virginia.edu/tns_draft/tns_001to061.html (pages 1-61: Text and figures, part of the
First Day) for the diagram in context.

http://galileoandeinstein.physics.virginia.edu/tns_draft/tns_001to061.html
http://galileoandeinstein.physics.virginia.edu/tns_draft/tns_001to061.html
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Imagine rolling the outer hexagon so that it stamps out the base with line
segments that have no gaps or overlaps, the polygonal equivalent of a slide-
free roll of the outer circle. The inner polygon does something very different.
It stamps out discontinuous flat segments, with gaps or “voids” in between.
If a polygon with more sides is used, as the number of sides increases, the
number of gaps increases, and their lengths shorten. In a complete rotation,
the number of footprints that the n sides of the smaller polygon leave is in
one-to-one correspondence with the number of footprints that the n larger
sides leave. Also, the total length of smaller sides together with the lengths
of the n − 1 voids in between sums to the length that the larger polygon
stamps out.3 These two observations form the basis for Galileo’s model of
the continuum.

By thinking of a circle as a polygon with an infinite number of sides,
Galileo develops his model:

And just so, I shall say, in circles (which are polygons with in-
finitely many sides), the line passed over by the infinitely many
sides of the large circle, arranged continuously [in a straight line],
is equal in length to the line passed over by the infinitely many
sides of the smaller, but in the latter case, with the interposition
of as many voids between them. And just as the “sides” [of the
circles] are not quantified, but there are infinitely many, so the
interposed voids are not quantified, but are infinitely many. But
imagining the line resolved into unquantifiable parts—that is, into
its infinitely many indivisibles—we can conceive it immensely ex-
panded without any quantified void spaces, though not without
infinitely many indivisible voids.

In Galileo’s vocabulary, a line segment with nonzero length is “quanti-
fied.” Such a segment is divisible into two similarly divisible quantified seg-
ments. The process of dividing can be iterated any number of times, but at
the nth stage, no matter how big n is, we are left with a set of quantified in-
tervals of finite length. Alternatively, an “unquantified part” such as a point
has no length and cannot be bisected. It is an “indivisible”. To imagine

3Roughly. It’s missing a bit at the beginning and end (for example HT versus AS
in Figure 3) that becomes negligible as the number of sides of the considered polygon
increases.
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“the line resolved” is to imagine how we pass from a line made up of finite
(but divisible) segments to a line made up of an infinite number of indivisible
points. The circle, an infinite-sided polygon with unquantified points as its
sides, lets us accomplish such a resolution. When concentric polygons roll
along, the segments stamped out by the smaller polygon need quantized voids
in between in order to be in one-to-one correspondence with the segments
stamped out by the larger polygon and to span the same total length when
the roll is completed. Galileo asserts that, in the same way, the unquantified
points of the continuous segment touched by the smaller circle need unquan-
tified voids among them in order to be in one-to-one correspondence with the
continuous segment touched by the larger circle and (most importantly) to
span the same length. Galileo imagines a continuous line segment to be an
aggregate of an infinite number of indivisible points, with the points of any
two segments in one-to-one correspondence. The interspersed unquantified
voids accommodate for different lengths.

Certainly, Dedekind is not anticipated here, nor the calculus of infinites-
imals. Galileo offers no arithmetic of unquantified points and voids. His is
a mental model with which he can justify the one-to-one correspondence be-
tween segments of different lengths. The introduction of unquantified voids
does this for him. It is the careful use of precisely these one-to-one corre-
spondences that allows him to refute the theory of free fall current in his
time and then go on to prove his own results on free fall. Galileo offers us a
model, but not necessarily an understanding:

Let us remember that we are among infinities and indivisibles, the
former incomprehensible to our finite understanding by reason of
their largeness and the latter by their smallness. Yet we see that
human reason does not want to abstain from giddying itself about
them.

3. Ideas Uprooted

Before he presented his theory of free fall, Galileo first argued against the
then current notion that, in free fall, “[s]peed goes increasing according to
the increase of space traversed,” which is to say that the speed of an object
falling is proportional to distance fallen. We would model this as dx/dt = kx.
With x measured from the point of release, the initial condition is x(0) = 0
and the solution is x(t) = 0, leaving our rock suspended in midair.
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To disprove this notion, Galileo first reminds us that if one object travels
a certain distance at a fixed speed and another object travels double the
distance at double that speed, the time it takes for both trips is identical.
Comparing the distances traveled by objects moving at non-constant speeds
is less straightforward. Galileo thinks in terms of “degrees of speed” and of
“total speed.” A degree of speed is a quantifiable attribute of a body at a
point of time and location. The intensities of different degrees of speed allow
for ratios between them. Total speed is the aggregate of all the degrees of
speed that an object has acquired over the time passed during its trip. The
total speed “consumed” determines how far an object has gone. Galileo’s
task is to find the ratio between total speeds consumed, a task made difficult
because total speed is the aggregate of infinitely many degrees and so the
usual operations are not available.

Galileo considers two objects in free fall, the first falling a span of 2 meters
from rest and the second a span of 4 meters. As per the model he seeks to
refute, he assumes that the speed of the second object is twice that of the first
when it has gone twice as far. He must then determine the ratio of their total
speeds so that he can determine the ratio of the times taken. To do so, he
puts the positions in the two spans into one-to-one correspondence: position
x in the two meter span corresponds with position 2x in the four meter span.
This puts individual degrees of speed into one-to-one correspondence: the
speed at position x of the first object corresponds to the degree of speed at
position 2x of the second object. Since the speed at 2x is twice the speed
at x, at each and every x, the total speed of the second object is twice that
of the first. So they complete their journeys in the same time. But that is
impossible!

To see how Galileo’s resolution of Aristotle’s Wheel lies behind his argu-
ment, let’s first think about how we might approach the problem of finding
total speed. In Figure 4 displayed on the next page, the vertical legs of the
triangles represent the 2 and 4 meter spans respectively. At any position x
along a span, the degree of speed is represented by the length of the horizon-
tal line from x to the hypotenuse. To find and compare the total speeds—the
aggregate of the horizontal lines— we would be inclined to compute and com-
pare the areas of the two triangles. But since the area of the second triangle
is four times that of the first, the total speed of the object falling 4 meters
would be four times the total speed of the first object. It would complete its
journey in half the time of the object falling 2 meters. Galileo puts the span
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of 2 meters and the span of 4 meters in one-to-one correspondence in the same
way he corresponded the points on the line traced out by the inner circle of
Aristotle’s wheel to those traced out by the outer circle, a correspondence
made possible to him because of his unquantified voids. The points in each
span are in one-to-one correspondence; the speeds at each point are in one-
to-one correspondence; corresponding speeds are doubles; the total speed is
doubled. The paradoxes are similar: the line traced out by the smaller circle
is the same length as that traced out by the larger, just as the time it takes
an object to fall 2 meters is the same as the time it would take it to go 4
meters.

Figure 4: Speed in proportion to distance traveled.

A bit of the spirit of Galileo’s model lives with us in our calculus-based
approach to the same problem. Suppose that we have two objects that
traverse two intervals, [0, a] and [0, 2a], and that their velocities at position
x are v1(x) and v2(x), respectively. Also suppose that v2(x) = 2v1(x/2).
Now compute the times T1 and T2 that it takes to complete each trip. So
T1 =

∫ a

0
1/v1(x) dx and T2 =

∫ 2a

0
1/(2v1(x/2)) dx. To compute T2 we make

the u-substitution u = x/2. The times are identical; the role of the voids in
providing the stretch to the intervals is taken by the u-substitution 2du = dx.

Another prevalent idea Galileo challenged was the notion that a heavy
object falling arrives immediately at great speed. Instead, Galileo argues:

There will be no degree of speed, however small, . . . such that
the moveable will not be found to have this [at some time] after
its departure from infinite slowness, that is, rest.
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In other words, on the way down, before an object falling from rest has
reached a certain speed s, it will have passed through all possible speeds from
0 to s, continuously. He argues first from symmetry. An object dropped from
rest from a certain height travels with the same speeds as that with which
an object falls back to earth after it was thrown up to exactly that height.
On the trip down, the speeds gained by the thrown object will mirror (in
reverse order) the speeds it lost (or consumed) on the way up. And these he
cannot imagine as not passing through every degree of slowness. Anticipating
the argument that, if there are infinitely many degrees of slowness to go
through, then nothing could come to rest, Galileo counters that, since the
object remains at a speed for only an (unquantified) instant, and “[s]ince
in any finite time there are infinitely many instants, there are enough to
correspond to the infinitely many degrees of diminished speed.” Here he
places the continuum of possible speeds in one-to-one correspondence with
the instants in an interval of time.

4. Free Fall

As early as the 14th century, medieval scholastic philosophers such as
Nicole Oresme and the Merton School at Oxford, had deduced the Mean
Speed Rule [1, pages 199–219 and 340–344]. This rule asserts that a body
uniformly accelerated from rest over an interval of time goes as far as a body
traveling at a uniform speed that is half the terminal speed of the accelerated
body. Galileo’s proof of the same law occurs in Proposition I, Theorem I on
Day Three of the Two Sciences. It is not known if Galileo knew the older
results. What he did that his medieval predecessors did not do is to link free
fall and uniformly accelerated motion:

Proposition I. Theorem I. The time in which a certain space is
traversed by a moveable in uniformly accelerated movement from
rest is equal to the time in which the same space would be tra-
versed by the same moveable carried in uniform motion whose
degree of speed is one-half the maximum and final degree of speed
of the previous, uniformly accelerated motion.

The proof of his Theorem I is carried out with an argument the resembles
his disproof that speed in free fall is proportional to distance fallen. At its
center is a one-to-one correspondence. The essence of his proof is captured
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by the following excerpt and is accompanied by Galileo’s diagram (Figure 5).
In that diagram, the “line AB represent(s) the time in which the space CD
is traversed by a moveable in uniformly accelerated movement from C.”

Since each instant and all instants of time AB correspond to each
point and all points of the line AB, from which points the paral-
lels drawn and included in the triangle AEB represent increasing
degrees of the increased speed, while the parallel contained within
the parallelogram represent in the same way just as many degrees
of speed not increased but equable, it appears that there are just
as many momenta of speed consumed in the accelerated motion
according to the increasing parallels of triangle AEB, as in the
equable motion according to the parallels of the parallelogram
GB. For the deficit of the first half of the motion (the momenta
represented by the parallels in triangle AGI falling short) is made
up by the momenta represented by the parallels of triangle IEF.

Figure 5: Galileo’s Diagram, as found in The Two Sciences [5], redrawn by the author.
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To compare the total speed consumed by an object traveling with constant
velocity to that of the object that is constantly accelerated, Galileo invokes
the one-to-one correspondence of the parallels in AIG with the parallels in
IEF. The excesses are in one-to-one correspondence with the deficits. In
short, the total of the speeds in the rectangle AGFB is the same as the total
in the triangle AEB.

If we extend our triangle as in Figure 6, marking the tick of each time
unit by a horizontal parallel, we can see that the distances (like the boxes)
traversed increase as 1, 3, 5,. . . . After t units of time the space traversed
adds up to 1+3+5+ · · ·+(2t−1) = t2. Galileo called this the Odd Number
Rule. The rule holds no matter what unit of time is chosen; it is independent
of scale. In so far as time is a continuum, distance and velocity also vary
continuously with time.

Figure 6: The Odd Number Rule.

5. The Struggle

The idea that velocity increased continuously during free fall was a major
impediment to the acceptance of Galileo’s model. Those who objected in-
cluded familiar names in the history of mathematics, such as Mersenne and
Descartes. The questions were deep. What is the nature of an instant of
time? Is it quantized, with duration? Is physical time different from mathe-
matical time as modeled by the lines of Euclid’s geometry? And what causes
fall? A common answer to the last question was “intrinsic heaviness,” which
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suggests that, with the removal of what holds an object up, a nonzero de-
gree of velocity is immediately available, without the object passing through
every smaller possible degree. Further, for that velocity to occur, a change
of time is necessary, which in turn suggests that a moving object stays at
uniform speed for a nonzero measure of time. Velocity in free fall would then
be modeled by a step function—a discrete model rather than a continuous
one.

Let’s look at an alternative discrete model for free fall as it was posed by
the Jesuit Honorè Fabri and others to refute Galileo’s assertions.4 Grounded
in the medieval theory of impetus, it harked back to a 14th century model
formulated by Buridan [3, pages 19-22]. In this model, there is a smallest
atom of time—an instant—that has nonzero duration, however small. In
free fall, speed is accumulated in discrete quanta, at discrete and sequential
instants of time, and it increases as the natural numbers. In the first instant,
the body has a certain velocity, say v. In the second instant, it has velocity
2v, then 3v, and so on. So in the first instant of time, the body travels v
units of space; in the second instant, 2v units of space, etc. In t units of time,
the total distance traveled is 1v + 2v + · · · + tv = vt(t + 1)/2. Notice that
this discrete model requires that the initial velocity be nonzero. If not, the
falling body just hangs there! And it could not pass continuously through
“every degree of speed” as Galileo asserts it must.

How does this discrete model compare to the Odd Number Rule model?
At the scale of Fabri’s atomic instant, they are very different. In Galileo’s
model of free fall from rest, the ratio of the distance traveled in the nth

instant to the distance traveled in the first would be 2n−1, the Odd Number
Rule. In Fabri’s model, that ratio is simply n. Galileo’s model is scale
free. For any length of time t, the ratio of the distance traveled in the nth

interval of length t, namely [(n− 1)t, nt], to the distance traveled in the first

interval [0, t] is n2t2−(n−1)2t2
t2

= 2n − 1, the Odd Number Rule again. But
Fabri’s model is not scale free. For example, suppose that an instant is 10−9

sec., a nanosecond, and let f(t) = t(t+1)
2

. Then in the first, second, and
third seconds, an object would travel f(109) = 500000000500000000v units,
f(2·109)−f(109) = 1500000000500000000v units, and f(3·109)−f(2·109) =
2500000000500000000v units, respectively. The ratios of these distances to

4For a lovely account of the history of free fall, see [3]. For an account of counter-
arguments to Galileo’s model, see [6].
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the distance traveled in the first, second, and third seconds are not 1, 2, and
3, but 1, 2.999999998, and 4.999999996, very close to the Odd Number Rule.

In fact, lim
t→∞

f(nt)− f((n− 1)t)

f(t)
= 2n − 1, exactly the Odd Number Rule.

At the macro level, the models converge.

Limits on precision in any 17th century experiment, would have made it
impossible to distinguish between Fabri’s discrete model and Galileo’s con-
tinuous model, even though their fundamental assumptions are markedly
different. Mersenne said as much: without causation established, we could
not tell the difference.

You see therefore that of these descents of bodies, which are com-
monly called heavy bodies, nothing deeper can be demonstrated
as long as the principle, or true an immediate cause is unknown
(Mersenne as translated and quoted in [6, page 271]).

Galileo did not address the cause of acceleration, neither with prime
causes such as “things move towards their source,” nor with mechanistic
causes such as “air pushes down.” The lack of such philosophical underpin-
nings undermined Galileo’s theories for those who sought to account for free
fall philosophically, with more than a mathematical formula that predicts
position. But Galileo was deliberate. After rehearsing what was offered as
cause for acceleration in his day, Galileo said:

Such fantasies, and other like them, would have to be resolved,
with little gain. [It] suffices to demonstrate some attributes of
motion so accelerated (whatever be the cause of its acceleration).

Galileo felt that the reason for the position-time relation in the law of free
fall could not be deduced or explained from philosophical postulates. It was
a repeatable phenomenon, established and credentialed by experimentation.

6. Conclusion

Galileo’s conception of the continuum was not a significant step (or even
a step at all) in the evolution of mathematics. Rather, it was a step in his
own evolution from natural philosopher to physicist. It helped him refine his
thoughts about how the continuum worked. His genius was then to model
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motion in terms of the continuum of time, to observe that, indeed, his model
worked, and then to use its mathematics to deduce the ramifications of his
model. His theory of motion led to, and was in turn subsumed under, the
continuum-based physics of Isaac Newton, physics that would explain free
fall near the earth and the motions of the heavens with the same theory—the
universal law of gravitation. The change of scope was enormous. It prompted
a deep re-imagination of how the universe is configured.
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