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a b s t r a c t

We provide a combinatorial proof of the trigonometric identity cosðnyÞ ¼ TnðcosyÞ,
where Tn is the Chebyshev polynomial of the first kind. We also provide combinatorial

proofs of other trigonometric identities, including those involving Chebyshev poly-

nomials of the second kind.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Chebyshev polynomials have many beautiful properties and countless applications, arising in a variety of
continuous settings. They are a sequence of orthogonal polynomials appearing in approximation theory, numerical
integration, and differential equations. In this paper we approach them instead as discrete objects, counting the sum of
weighted tilings. Using this combinatorial approach, one can prove numerous identities, as is done in Benjamin and Walton
(2009), Benjamin and Walton (2010), Shapiro (1981), and Walton (2007). In this note we provide a combinatorial proof of
perhaps the most fundamental of Chebyshev properties, namely the trigonometric identity

cosðnyÞ ¼ TnðcosyÞ;

where Tn is the Chebyshev polynomial of the first kind. We also provide combinatorial proofs of other trigonometric
identities, including those involving Chebyshev polynomials of the second kind.

The Chebyshev polynomials of the first kind are defined by T0ðxÞ ¼ 1, T1ðxÞ ¼ x, and for nZ2,

TnðxÞ ¼ 2xTn�1ðxÞ�Tn�2ðxÞ:

The next few polynomials are T2ðxÞ ¼ 2x2�1, T3ðxÞ ¼ 4x3�3x, T4ðxÞ ¼ 8x4�8x2þ1, T5ðxÞ ¼ 16x5�20x3þ5x.
The Chebyshev polynomials of the second kind differ only in the initial conditions. They are defined by U0ðxÞ ¼ 1,

U1ðxÞ ¼ 2x, and for nZ2,

UnðxÞ ¼ 2xUn�1ðxÞ�Un�2ðxÞ:

The next few polynomials are U2ðxÞ ¼ 4x2�1, U3ðxÞ ¼ 8x3�4x, U4ðxÞ ¼ 16x4�12x2þ1, U5ðxÞ ¼ 32x5�32x3þ6x.
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2. Chebyshev polynomials of the first kind

Chebyshev polynomials have a simple combinatorial interpretation, which were first explored by Shapiro (1981). We
define an n-tiling to be a sequence of squares (of length one) and dominoes (of length two) with a total length of n. For
example, there are exactly five 4-tilings, namely ssss, ssD, sDs, Dss, and DD, where s denotes a square and D denotes a
domino. For Chebyshev polynomials of the first kind, we assign each of our square tiles, with one possible exception, a
weight of 2x, and each domino is assigned a weight of �1. The exception occurs if a square occurs as the first tile in the
tiling, and here we assign that initial square a weight of x, but all subsequent squares still get a weight of 2x. We define the
weight of the tiling to be the product of the weights of its tiles. For example, the aforementioned 4-tilings, ssss, ssD, sDs, Dss,
and DD, have respective weights 8x4, �2x2, �2x2, �4x2, and 1. Note that the sum of the weights of all 4-tilings is
8x4�8x2þ1, which is equal to T4ðxÞ.

In general, a simple induction argument on n reveals (or see Benjamin and Quinn, 2003, Chapter 3) the following
theorem.

Theorem 1. For nZ0, TnðxÞ is the sum of the weights of n-tilings where dominoes have weight �1 and squares have weight 2x,
except for a square at the beginning of the tiling, which has weight x.

Our first trigonometric identity concerns the case where x¼ cosy. Since 2 cosy¼ eiyþe�iy, we can refine the previous
theorem. Here, we allow squares to come in two colors, white and black, where, except for an initial square, white squares
have weight eiy, and black squares have weight e�iy. An initial square has half the weight given above, namely 1

2 eiy or 1
2 e�iy,

and all dominoes still have weight �1. For example, if we let D, w, and b, respectively, denote a domino or white square or
black square, then the 13-tiling bbbDwbwwDD would have weight

1
2 e�iye�iye�iyð�1Þeiye�iyeiyeiyð�1Þð�1Þ ¼�1

2e�iy:

In general, we have:

Corollary 2. For nZ0, TnðcosyÞ is the sum of the weights of n-tilings with dominoes, white squares, and black squares with

weights described above.

We are now ready to establish our first theorem of combinatorial trigonometry.

Identity 1. For nZ0, TnðcosyÞ ¼ cosðnyÞ.

Proof. Observe that the n-tiling consisting of all white squares has weight 1
2 einy and that the n-tiling with all black squares

has weight 1
2 e�iny, and so the sum of their weights is ðeinyþe�inyÞ=2¼ cosðnyÞ. The identity is proved by showing that the

sum of all the other n-tilings is zero.

Let X be an arbitrary n-tiling, and let j be the first cell of the tiling such that cells j and jþ1 are occupied by a domino or

cells j and jþ1 are occupied by squares of opposite colors. We consider two cases.

Case I: j41. Suppose that X has squares of opposite color on cells j and jþ1. Then let X0 be the tiling obtained by

replacing these two squares with a domino (and leaving the rest of the tiling unchanged). Alternatively, if X has a domino

on cells j and jþ1, then we obtain X0 by replacing that domino with two squares of opposite color, where the square on cell

j has the same color as the square on cell j�1. Note that this rule is reversible: ðX0Þ0 ¼ X. Since two squares of opposite color

multiply to a weight of eiye�iy ¼ 1 and dominoes have weight �1, then X and X0 have weights that are opposite in sign and

so the weights sum to zero.

Case II: j¼ 1. Here X must be of the form wbY or bwY or DY, where Y is an ðn�2Þ- tiling. But since an initial wb contributes

a weight of 1
2 and an initial bw contributes a weight of 1

2 and an initial domino contributes a weight of �1, then it is clear

that the weights of wbY, bwY, and DY must sum to zero. &

We note that using the same logic, and replacing 2 cosy with zþ1=z (as in Ericksen, 2008, 2010), gives us

Identity 2. For nZ0, and any real or complex number z,

Tn

zþ
1

z
2

0
B@

1
CA¼ znþ

1

zn

2
:

It should be noted that this identity can be proved directly by a simple induction argument.
Another immediate corollary to Identity 1, is the well-known composition theorem for Chebyshev polynomials.

Identity 3. For m;nZ0, TmðTnðxÞÞ ¼ TmnðxÞ.

Proof. When x¼ cosy,

TmðTnðcosyÞÞ ¼ Tmðcos nyÞ ¼ cosðmnyÞ ¼ TmnðcosyÞ:
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Since TmðTnðxÞÞ and TmnðxÞ are polynomials that agree for an infinite number of values of x, then they must be equal
for all x. &

The form of this theorem suggests that there may also be a bijective proof between mn-tilings and something like
m-tilings of n-tilings. Such a bijection is presented in Benjamin and Walton (2009) and Walton (2007).

3. Chebyshev polynomials of the second kind

Due to its ideal initial conditions U0ðxÞ ¼ 1 and U1ðxÞ ¼ 2x, Chebyshev polynomials of the second kind have a simpler
combinatorial interpretation (Benjamin and Quinn, 2003) where all squares are given the same weight, including a square
that occurs as the initial tile.

For example, the five 4-tilings ssss, ssD, sDs, Dss, and DD have respective weights 16x4, �4x2, �4x2, �4x2, and 1, with a
total weight of 16x4�12x2þ1¼U4ðxÞ. And in general,

Theorem 3. For nZ0, UnðxÞ is the sum of the weights of n-tilings where dominoes have weight �1 and squares have weight 2x.

Likewise, by giving all white squares a weight of eiy, all black squares a weight of e�iy, and all dominoes a weight of �1,
we have

Corollary 4. For nZ0, UnðcosyÞ is the sum of the weights of n-tilings with dominoes, white squares, and black squares with

weights described above.

Using ideas from the proof of Identity 1, it is easy to show:

Identity 4. For nZ0,

UnðcosyÞ ¼
sinððnþ1ÞyÞ

siny
:

Proof. Equivalently, we prove ðsinyÞUnðcosyÞ ¼ sinððnþ1ÞyÞ. Here we exploit the fact that siny¼ ðeiy�e�iyÞ=2i. Hence the
left side of our identity is the sum of the weights of all ðnþ1Þ-tilings, where the first tile is either a white square with
weight eiy=2i or a black square with weight �e�iy=2i, and is followed by an n-tiling where all white squares, black squares,
and dominoes, have respective weights eiy, e�iy, and �1.

As in the proof of Identity 1, let X be an ðnþ1Þ-tiling that does not consist of all white squares or all black squares. We let

j denote the first cell of X such that cells j and jþ1 contain either two squares of opposite color or a domino. When j41, we

pair up X with X0 as before. If j¼ 1, then X must be of the form X ¼wbY or X ¼ bwY , where Y is an ðn�1Þ-tiling. But since an

initial wb contributes a weight of ðeiy=2iÞe�iy ¼ 1=2i and an initial bw contributes a weight of ð�e�iy=2iÞeiy ¼�1=2i then the

weights of wbY and bwY must sum to zero.

Hence the only ðnþ1Þ-tilings that are not canceled out are wnþ1 with weight ðeiy=2iÞeiny ¼ eiðnþ1Þy=2i and bnþ1 with

weight ð�e�iy=2iÞe�iny ¼�e�iðnþ1Þy=2i. The combined weight of these two tilings is ðeiðnþ1Þy�e�iðnþ1ÞyÞ=2i¼ sinððnþ1ÞyÞ, as

desired. &

More generally, as in Ericksen (2008, 2010), the same logic gives us:

Identity 5. For nZ0, and any real or complex number z,

z�
1

z

� �
Un

zþ
1

z
2

0
B@

1
CA¼ znþ1�

1

znþ1
:

Identity 4 provides us with a composition theorem for Chebyshev polynomials of the second kind.

Identity 6. For m;nZ0,

Um�1ðTnðxÞÞUn�1ðxÞ ¼Umn�1ðxÞ:

Proof. It suffices to prove this when x¼ cosy. Here we have

Um�1ðTnðcosyÞÞUn�1ðcosyÞ ¼Um�1ðcosðnyÞÞ
sinðnyÞ

siny
¼

sinðmnyÞ
sinðnyÞ

sinðnyÞ
siny

¼Umn�1ðcosyÞ: &

4. More trigonometric identities

We conclude with two alternative expressions for cosðnyÞ and sinððnþ1ÞyÞ based on combinatorial arguments. First we
prove a more general identity.
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Identity 7. For nZ0,

TnðxÞ ¼
X
kZ0

n

2k

� �
ðx2�1Þkxn�2k:

Proof. For this proof, we use a slightly different combinatorial interpretation of TnðxÞ, as given in Benjamin and Walton
(2009), Benjamin and Walton (2010), and Walton (2007). Here we consider n-tilings with white squares, black squares, and
dominoes with respective weights x, x, and �1. But in order to accommodate the initial condition T1ðxÞ ¼ x, the first cell
must either be a domino or a white square. As usual, the weight of the tiling is the product of the weights of its tiles and
TnðxÞ is the sum of the weights of all n-tilings.

Next observe that any such n-tiling can be decomposed in a unique way into ‘‘intervals of darkness’’ and ‘‘intervals of

lightness,’’ where an interval of darkness is either of the form Dbk (a domino followed by k black squares) where kZ0, or of

the form wbk (a white square followed by k black squares) where kZ1. Note that an interval of darkness must have length

at least two. Everything outside an interval of darkness is necessarily a white square, and these comprise the intervals of

lightness. For example, the tiling

wwwwDDDDbbwbwwwbbbDwDbDw

would decompose as

wwww D D D Dbb wb ww wbbb D w Db D w

where the intervals containing only w are intervals of lightness, and the rest are intervals of darkness.

We claim that the summand gives the total weight of all n-tilings with exactly k intervals of darkness. To see this, note

that once you choose the endpoints for the k intervals (which can be done in ð n
2kÞways), we can give the first two cells of the

interval a weight of x2 (for a white square followed by a black square) or a weight of �1 (for a domino). There is exactly one

way to assign colors to the rest of the tiling, and those squares will contribute a weight of xn�2k. &

Substituting x¼ cosy then gives the following identity (which has a simpler non-combinatorial proof, given in Chentzov
et al., 1993).

Identity 8. For nZ0,

cosðnyÞ ¼
X
kZ0

n

2k

� �
ð�1ÞkðsinyÞ2k

ðcosyÞn�2k:

In a similar way, we can prove

Identity 9. For nZ0,

UnðxÞ ¼
X
kZ0

nþ1

2kþ1

 !
ðx2�1Þkxn�2k:

Proof. Here UnðxÞ has the same interpretation as in the preceding proof, but we no longer have a restriction on the initial
tile. This time, we choose 2kþ1 points from the set f0;1; . . . ;ng. We begin the tiling with j black squares where j is the
smallest chosen point ðjZ0Þ. Then we proceed as in the Tn identity with the remaining 2k endpoints. &

This time when we let x¼ cosy we get another identity from Chentzov et al. (1993).

Identity 10. For nZ0,

sinððnþ1ÞyÞ ¼
X
kZ0

nþ1

2kþ1

 !
ð�1ÞkðsinyÞ2kþ1

ðcosyÞn�2k:
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