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Some Effects of the Human Genome Project

on the Erdős Collaboration Graph

Chris Fields

Sonoma, CA 95476, USA
fieldsres@gmail.com

Abstract

The Human Genome Project introduced large-scale collaborations involving dozens
to hundreds of scientists into biology. It also created a pressing need to solve
discrete mathematics problems involving tens of thousands of elements. In this
paper, we use minimal path lengths in the Erdős Collaboration Graph between
prominent individual researchers as a measure of the distance between disciplines,
and we show that the Human Genome Project brought laboratory biology as a
whole closer to mathematics. We also define a novel graph reduction method
and a metric that emphasizes the robustness of collaborative connections be-
tween researchers; these can facilitate the analysis of both within- and between-
community connectivity in collaboration graphs.

1. Introduction

The structure of the Erdős Collaboration Graph, the graph of researchers
(vertices) and joint publications (edges) that contains Paul Erdős as a ver-
tex, provides a fascinating window into the relationships between academic
disciplines, and in particular into the relationships between mathematics and
the various sciences. The Erdős Number Project at Oakland University, for
example, lists Erdős numbers - minimum path lengths from a researcher
to Erdős in the Erdős Collaboration Graph - for Nobel Prize winners in
physics starting from 1914, Chemistry from 1936, Medicine from 1958 and
Economics from 1970.1 Given the prominent roles typically played by Nobel

1Data files and other information are available at http://www.oakland.edu/enp/,
accessed on June 24, 2014.
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4 Some Effects of the Human Genome Project

Prize winners in their respective research communities, the temporal depth of
these lists suggests that the collaboration graph spanning all of the sciences
has had a single, multi-disciplinary giant component for many years, and
that this giant component is the Erdős Collaboration Graph. It is natural,
moreover, to expect that individual disciplines and even subdisciplines form
distinctive clusters within this giant component. Consistent with this expec-
tation, Newman [29] showed that subdiscipline-specific collaboration graphs
have distinctive community structures, and in particular that collaborations
in the biomedical sciences exhibited far less clustering - and hence greater
apparent randomness - than collaborations in subdisciplines of physics or
the information sciences. Distinctive community structures and disciplinary
and subdisciplinary clustering have been confirmed by subsequent studies of
coauthorship in discipline-specific data sets [31] and of citation patterns in
multi-disciplinary data sets [22, 28, 40]. Such community structure is also
observed in metabolic, electronic, and other non-social networks (e.g. [21]).

The existence of community structure in coauthorship networks leads
naturally to the question of how distinct communities are connected. One
can ask, for example, whether connections between communities involve re-
searchers who are peripheral or central, by some appropriate definition, to
their primary communities, and whether communities are joined by one or a
few “weak links” or by robust subgraphs. These questions can be formulated
in terms of the notion of “betweenness centrality,” a measure of the num-
ber of paths between disparate researchers that traverse a given researcher
[6, 14] and the closely-related functional concept of “brokerage” of informa-
tion passing between two nodes in a network by some intermediate node that
the information-transfer path traverses [7, 23]. In these terms, one can ask
whether brokers of information and hence collaboration between communi-
ties tend to be peripheral or central within their primary communities, and
whether there tend to be few or many information brokers between pairs of
identified communities.

The present paper considers these questions of betweenness and broker-
age by examining the effects of a particular episode in the history of biology,
the Human Genome Project (HGP), on the local fine structure and conse-
quentially on the larger-scale community structure of the Erdős Collabora-
tion Graph. The initial genomic DNA sequencing component of the HGP
was completed in 2001 [25, 46]; for historical overviews, see [37, 50]. The
HGP introduced to molecular biology the kind of massive multi-institutional
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collaborations that had previously only characterized some areas of experi-
mental physics. The HGP also introduced, even in its early, pre-sequencing
stages, a data analysis problem new to biology: the problem of assembling
coherent networks of entities from noisy, error-ridden data on the relation-
ships between pairs of entities. The challenges posed by this novel network
assembly problem, and by the increasing demands for DNA sequence analysis
and laboratory data management, led to the emergence of the new interdis-
ciplinary field of bioinformatics. As Grossman in [17] noted, two prominent
participants in the HGP, E. Koonin and E. Lander, have Erdős numbers of
2, and hence many participants in the HGP have finite Erdős numbers due
to research collaborations with these two leaders of the bioinformatics move-
ment. Indeed, “it is probably possible to connect to Erdős a large fraction
of people who have published in the biological sciences” [17, page 41] due to
collaborative links leading back to the HGP.

The increasing size of highly-visible collaborative teams throughout the
sciences has been widely noted (e.g. [5]), and one might expect the existence
of such collaborations to have clearly-ascertainable effects on the large-scale
structure of the Erdős Collaboration Graph. However, large-scale studies of
several research communities over the relevant time frame have revealed only
modest increases in the average numbers of authors of published papers, a
rough guide to average collaborative team size. Newman [31], for example,
reports an average of 3.75 authors per paper in the biomedical sciences be-
tween 1995 and 1999 (inclusive); Porter and Rafols [36] report averages of
4.9 authors per paper in medical science and 6.1 in neuroscience in 2005,
while Wallace, Larivière and Gingras [47] report averages of 5.1 authors per
paper in biochemistry and molecular biology and 4.9 in neuroscience in 2006.
The impacts of large collaborations on average measures may, therefore, be
much smaller than their scientific or technological significance might suggest.
The studies reported in [36, 47] reveal, moreover, only modest increases in
citation-based, average measures of interdisciplinarity in both biological and
other disciplines over the past three decades. Global “map of science” mea-
sures show, in particular, a continuing separation between the large, dense
cluster of laboratory-based biological sciences and even “interdisciplinary”
mathematics [36, 28]. Investigating the effects of the HGP on the relation-
ship between laboratory biology and mathematics, and on the structure of
the Erdős Collaboration Graph in particular, would therefore appear to re-
quire a more focused and sensitive approach.
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While scientific disciplines and subdisciplines are often defined for the
purposes of large-scale studies by collections of scientific journals, the HGP
can at best be loosely defined as a collection of research groups, many of
which were assembled ad hoc, that were funded by public or private entities
under the HGP rubric. Therefore a historical approach centered on the lead-
ers of these groups provides an alternative, even if potentially biased, way of
examining the effects of the HGP. The present paper considers the network
of collaboration between five leading participants in the HGP with Erdős
numbers of 2 and six other scientists, four of whom are Nobel laureates in
Physiology or Medicine, who played early, prominent and well-acknowledged
scientific and leadership roles in the HGP. Collaborative links between these
eleven researchers and ten other Nobel laureates in Physiology or Medicine
are also described. These latter ten Nobel laureates all have Erdős numbers of
at most 5; with one exception (Francis H. C. Crick); their low Erdős numbers
can be traced to the HGP. As Nobel laureates are typically natural centers
of subfield-specific collaborative networks, the existence of numerous Nobel
laureates in Physiology or Medicine near a well-known center of collabora-
tion in discrete mathematics provides a striking illustration of convergence
between previously-distinct fields of research.

The collaborative structure of the HGP described here motivates a con-
jecture: that the numbers of distinct paths of each length connecting any two
researchers provides a more indicative measure of the robustness of research
collaboration than either minimal connecting path lengths or other single-
path measures employed in analyzing collaboration graphs. Guided by this
conjecture, we define in Section 4 a metric that measures all distinct paths be-
tween vertices in biconnected subgraphs and hence in the biconnected blocks
of a collaboration graph. We then describe the results of employing this met-
ric to characterize a subgraph of the Erdős Collaboration Graph containing
the intuitive center of the HGP. We finally conclude that interdisciplinary
collaborative links between central members of otherwise-disparate research
communities may be a common feature of collaboration graphs; brokerage
between disciplines or subdisciplines and hence high betweenness central-
ity at the scale of community structure may, in other words, be important
markers of centers of collaborative effort. If this is the case, it would suggest
that a multi-disciplinary education may prove increasingly valuable to both
mathematicians and other scientists who wish to be near the centers of their
communities.
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2. An HGP subgraph of the Erdős Collaboration Graph

Figure 1 shows collaborative links, labeled by joint publications, between
eleven leading participants (corresponding to bold-faced vertex labels) in the
HGP, chosen on the basis of both prominence and influence over the course
of the HGP. Five of these scientists have Erdős numbers of 2, conferred by
publications in 1990 (MSW), 1999 (ESL), 2002 (ERK), 2003 (DJG) and
2006 (CRC) respectively; all can be considered among the founders of bioin-
formatics. Another four of the eleven scientists shown are Nobel laureates
in Physiology or Medicine (JES, SB, JDW, HOS); however, none of these
awards were made on the basis of the HGP. The other two scientists shown,
JCV and FHC, were the leaders, respectively, of the two competing collab-
orations that simultaneously published complete “draft” sequences of the
human genome in 2001. (Table 1 below provides a list of the vertex labels.)

Table 1: Vertex labels for the HGP subgraph displayed in Figure 1.

NMA Noga M. Alon DB David Baltimore CRC Charles R. Cantor
SB Sydney Brenner MRC Mario R. Capecchi WAH William A. Haseltine

AZF Andrew Z. Fire FRKC Fan R.K. Chung DJK Daniel J. Kleitman
DJG David J. Galas FSC Francis S. Collins EVK Eugene V. Koonin
ERK Eric R. Kandel FHCC Francis H.C. Crick LAM Luc A. Montagnier
ESL Eric S. Lander HRH H. Robert Horvitz AMO Andrew M. Odlyzko
CCM Craig C. Mello HOS Hamilton O. Smith RJR Richard J. Roberts
JES John E. Sulston LAS Laszlo A. Szekely HEV Harold E. Varmus
JCV J. Craig Venter JDW James D. Watson MSW Michael S. Waterman

At most one link is shown in the graph for each pair of scientists. How-
ever, several of them have published multiple papers together (at least 50 in
the case of JCV and HOS, for instance). In such cases, the earliest coau-
thored paper is used as the edge label. One paper reporting the draft human
genome sequence [25] is the sole link between five pairs of coauthors.2 The
order-11 subgraph of the Erdős Collaboration Graph representing these HGP
participants has 19 edges and contains the complete graph K4 as a subgraph
(ESL-EKV-JCV-FSC). As expected for central figures in a research commu-
nity, all vertices in this subgraph have multiple additional incident edges in
the full Erdős Collaboration Graph that represent joint publications with
additional coauthors; some have hundreds of such incident edges.

2Based on searches on Google Scholar in September, 2011.



8 Some Effects of the Human Genome Project

Paul Erdős
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[35]
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JDW*
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Figure 1: HGP subgraph of the Erdős Collaboration Graph. The eleven vertices with
the bold-faced labels represent particularly prominent participants in the Human Genome
Project; asterisks indicate Nobel laureates. Edges are labeled by selected joint publica-
tions. Vertex labels are defined in Table 1 on the previous page. Data for collaborators
with Erdős are from the Erdős Number Project (http://www.oakland.edu/enp/).

http://www.oakland.edu/enp/
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The HGP’ subgraph comprising the 11 bold-faced vertices shown in Fig-
ure 1 and the links between them illustrates a common feature of acknowl-
edged centers of large-scale scientific collaboration: a kind of robustness that
results from multiple collaborative links between the leading players. While
one publication - [25] - links several vertices as noted, removing the edges
corresponding to this publication does not disconnect the graph. The rele-
vant scientists are, moreover, linked by multiple paths of length 2 or greater
in the full Erdős Collaboration Graph; for example, JES is linked to HOS,
JCV, FSC and MSW by paths of length 3 through C. Fields. The HGP
subgraph contains only one bridge (FSC-CRC); however, the vertex CRC
that would be disconnected by removing this bridge from the subgraph is
also connected (via coauthors M. Olson, L. Hood and D. Botstein of [34]) to
several other vertices of the HGP subgraph by paths of length 2 in the full
Erdős Collaboration Graph.

Five vertices of the HGP subgraph are linked to Paul Erdős, and hence
to an acknowledged center of discrete mathematics, by five distinct paths of
length two. As noted, these paths confer Erdős numbers of 2 on five of the
eleven HGP researchers shown (CRC, MSW, ESL, EVK, DJG); they confer
Erdős numbers of 3 on five others (FSC, JCV, HOS, JDW, JES) and an Erdős
number of 4 on SB, for an average of 2.6. This can be compared with the
average, 3.3 of the Erdős numbers of Fields Medal winners from 1990 to 2010
as listed by the Erdős Number Project. Two of the papers conferring these
extraordinarily low Erdős numbers ([16] and [35]) were published before the
publication of the initial human genome sequence; both report bioinformatics
research that contributed to the technical feasibility of the HGP. The other
three ([3, 8, 38]) were published after the draft human genome sequence;
all report research contributing to post-sequencing studies of gene-product
function. An increasing closeness between biology and discrete mathematics
as measured by Erdős numbers can, in these cases, plausibly be regarded as
both enabling and enabled by the HGP.

The HGP subgraph also shows collaborative links between the eleven
HGP scientists represented by the bold vertices and ten additional Nobel
laureates in Physiology or Medicine. Four of these Nobel laureates (DB,
ERK, CCM, and LAM) have Erdős numbers of at most five on the basis of
Figure 1; the rest have Erdős numbers of at most four. The specialties of
these scientists range from neuroscience (FHCC and ERK) and virology (DB
and LAM) to basic cellular (MRC and HEV), developmental (AZF, HRH,
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and CCM) and molecular (FHCC and RJR) biology. The HGP is, therefore,
closely linked to acknowledged centers of research and collaborative activity
in all of these areas. In most cases (eight out of eleven for the publications
shown here as edge labels), these collaborative links were established before
the 2001 publication of the initial human genome sequence.

Newman [31] reports an average distance of 4.6 between vertices of the
collaboration graph representing biomedical science between 1995 and 1999;
if one assumes that the average distance between authors decreases at the
same rate that the average number of coauthors per paper increases, one
would expect from the data of [36, 47] that the average distance between
biomedical scientists in 2005 was roughly 3.5. As average distances to cen-
ters such as Nobel laureates can be expected to be smaller than average
distances to more typical colleagues, one can speculate that most laboratory
(as opposed to field) biologists not only have finite Erdős numbers as Gross-
man has suggested, but have Erdős numbers of at most eight, i.e. within the
same range of most mathematicians [17]. If this is the case, it would indicate
that the distance within the Erdős Collaboration Graph between the cen-
ter of laboratory biology as a whole and the center of discrete mathematics
represented by Erdős has decreased since the initiation of the HGP to be
as close as physics has been historically. The average of the Erdős numbers
of Physiology and Medicine Nobel laureates since 1970 listed by the Erdős
Number Project (4.1) is, indeed, lower than the average for listed Physics No-
bel laureates since 1970 (5.0); while these lists are incomplete and may reflect
ascertainment bias, they also suggest that laboratory biology and physics as
disciplines have similar average distances from discrete mathematics.

3. Centers and minimally-redundant blocks in collaboration graphs

The structure of the HGP subgraph shown in Figure 1, its proximity
to Paul Erdős, and the close linkage of Nobel laureates in multiple sub-
disciplines of biology that it displays are interesting as sociological facts
about the life-sciences research community and its relation to the mathe-
matics research community. More interesting, however, is what the HGP
subgraph suggests about the structure of centers of collaboration in highly-
technological laboratory sciences. A center of a collaborative network can
be given a traditional graph-theoretic definition as a vertex from which the
greatest distance to any other vertex is the radius of the network; centers
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a)
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b b

b)
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b

Figure 2: Relations between distance, degree, and betweenness as measures of centrality.
a) All three measures coincide in a star graph; b) They do not coincide in general.

can also be characterized as vertices with maximum degree (degree central-
ity) or vertices through which maximum numbers of paths flow (betweenness
centrality). These three measures of centrality coincide in a star graph, but
as shown in Figure 2, do not coincide in general. The relevance of these mea-
sures to intuitive notions of centrality in collaboration graphs, as well as the
degree to which they correspond in such graphs, is a matter of considerable
debate [6, 14, 23, 26, 30, 32, 33, 39]. Consistent with previous observations
of research centers, Figure 1 shows that the center of the HGP is a cluster of
mutually-connected high-degree vertices. It also suggests, however, that rich
connectivity to other disciplinary centers is an aspect of centrality; the HGP
center is connected to Erdős, for example, not by a single path but by five
distinct paths even at length two. The close relationship between the HGP,
Erdős and his immediate collaborators, and Nobel laureates in other parts
of biology suggests that the tradeoff between disciplinary cohesion and inter-
disciplinary brokerage [23] may not be a tradeoff for the highly-productive
leaders of major collaborative research efforts; indeed interdisciplinary bro-
kerage may increasingly be a requirement of community leadership.

Any connected graph, and therefore any collaboration graph, exists some-
where on the architectural spectrum [11] between a tree, in which each vertex
is a cut vertex and each edge is a bridge, and a complete graph in which each
vertex is connected to every other. In the case of collaboration graphs, trees
represent the extreme case of communities in which a master works one-on-
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one with a set of disciples, each of whom in turn works exclusively with their
own sub-disciples, etc. Every member of such a community has a single, well-
defined lineage: that member’s single path back to the master that roots the
tree. Collaborations between (n+ 1)th-order disciples within the lineage of a
given nth-order disciple may introduce occasional cycles at distance n from
the root, but do nothing to alter the essentially sectarian structure of the
community as a whole. Complete graphs, on the other hand, represent com-
munities that have no lineage structure, even locally; every member of such a
community has multiple paths to every other member. Finite lifetimes, per-
sonal loyalties, and academic tradition assure that the collaboration graphs of
research communities have lineage structure; practices such as finding differ-
ent institutions and hence different collaborators for one’s graduate training,
postdoctoral work, and first faculty job tend to degrade it. It is interesting
to ask, especially from the perspective of collaborations between academic
disciplines, how such lineage structure degrades as the scale and scope of
research collaboration increases and hence the average degree of the vertices
in the collaboration graph increases toward the complete-graph limit.

The idea that betweenness provides a measure of centrality in collabo-
ration graphs is motivated by the observation that some individuals hold a
community together and so are traversed by multiple paths connecting indi-
viduals in one part of the community to individuals in another part [6, 26, 30].
Scientists whose collaborations bridge disciplines clearly have high between-
ness centrality. Betweenness centrality alone, however, does not distinguish
researchers who are weak links, i.e. who are the only connection between
two or more otherwise-isolated lineages, from researchers who are central
players in robust, multiply-connected collaborations like the HGP. A plau-
sible initial step toward characterizing the robustly connected components
of research communities is, therefore, to remove any lineages dependent on
weak links from their collaboration graphs. This can be done by deleting
bridges, thus breaking the collaboration graph into disconnected blocks. Such
a move decreases the betweenness centrality of the surviving vertices, but it
does not decrease the betweenness centrality within communities, and more
importantly, it does not reduce the betweenness centrality that measures
the significance of a vertex with respect to a robustly-collaborative multi-
disciplinary community. It removes from the collaboration graph papers by
lone cross-disciplinary pioneers that constitute weak links, but it more clearly
reveals the strong links that indicate robust interdisciplinary collaboration.



Chris Fields 13

The collaboration graph of any N -author publication P , considered in iso-
lation, is itself a complete graph KN , with each edge labeled “P .” Consider
the embedding of such a graph into an existing multi-publication collabora-
tion graph G. If at most one author of P is already represented by a vertex of
G, KN can be embedded in G with all edge labels preserved. If two or more
authors of P are already represented by vertices of G, the embedding can be
done in one of two uniform ways: either the edge labels already employed in
G are maintained for any edges of G that are redundant with (i.e. connect
the same vertices as) edges of the embedded KN , or such labels are replaced
by the label “P .” In the former case only the edges in the non-redundant
subgraph of KN maintain their original “P” labels, but these labels continue
to be maintained as additional publications with redundant edges are em-
bedded in the collaboration graph. In the latter case, KN is embedded as a
labeled subgraph, but some of its edge labels may be replaced as additional
publications with redundant edges are embedded in the collaboration graph.
Hence with either method of managing labels on embedding, the eventual
fate of any KN representing an N -author publication P that is embedded
into a collaboration graph that is dense in collaborative connections will be
that some of its edges will have their “P” labels replaced by other, either
older or newer, labels representing different publications.

In any collaboration graph, vertices whose edges all have a single label
“P” represent authors who have collaborated only with the coauthors of
some particular publication P . While the coauthors of P may have pub-
lished many papers together, any author who has collaborated only with the
other coauthors of P is not traversed by any shortest path joining authors of
papers other than P and therefore has low betweenness centrality within the
entire collaboration graph. Intuitively, such authors cannot be regarded as
central or even prominent within a collaborative network regardless of their
productivity, as they do not contribute to the overall connectedness of the
network. Removing all such vertices from a collaboration graph does not
affect its long-range connectivity. Hence one approach to identifying the ver-
tices that are plausible candidates for centrality in the robust sense being
sought here is to remove from the collaboration graph all of the vertices that
correspond to authors who have only collaborated with other coauthors of a
single multi-author paper. The vertices that remain are those that do con-
tribute to long-range connectivity, and hence those for whom the notion of
betweenness centrality is intuitively compelling.
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Let G be a connected graph with unique vertex labels but possibly non-
unique edge labels, and consider the subgraphs produced by the following
procedure: 1) delete all bridges, breaking the graph into disconnected blocks;
2) delete all vertices from these blocks for which all the incident edges have
the same label, together with their incident edges. Call a subgraph result-
ing from this procedure a minimally-redundant block in recognition of the
fact that edge labels appear redundantly in such a subgraph only when the
redundantly-labeled edges connect vertices required to preserve distinct edge
labels. Figure 3 illustrates this procedure.
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Figure 3: Construction of the minimally-redundant block of a graph. Edge labels have
been added in alphabetical order, and older edge labels are kept when new edges are
embedded. Labels on diagonal edges in the A and C subgraphs are suppressed for clarity.

A collaboration graph can have multiple minimally-redundant blocks of
various sizes. Whether the Erdős Collaboration Graph has a vertex-number
maximal minimally-redundant block is unknown; the large number of Nobel
laureates with known Erdős numbers suggests that it may. It is clear, at
any rate, that the Erdős Collaboration Graph does not split into minimally-
redundant blocks corresponding to the traditional academic disciplines; the
extent of cross-disciplinary collaboration, even in the 1970s, was too large for
this to occur.
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In the context of collaboration graphs, the identification of a minimally-
redundant block has two main effects. First, it removes from the collabora-
tion graph all lineages dependent on weak links. Second, it reduces the degree
of most if not all high-degree vertices, and altogether removes high-degree
vertices representing authors who have collaborated only with other coau-
thors of a single multiple-author paper, regardless of their total productivity.
As an example, the largest minimally-redundant block of the subgraph shown
in Figure 1 consists of all vertices and edges other than those below the bold-
faced vertices: the deletion of bridges in step 1 of the procedure removes all
vertices below the bold-faced ones except ERK, which is removed in step 2
because its two incident edges have the same label. The vertices deleted in
this construction would all be preserved in a minimally-redundant block con-
structed from the complete Erdős Collaboration Graph due to the existence
of additional paths; there are, for example, paths of length three connect-
ing each of MSW, FSC, JCV and HOS to either AZF or CCM through C.
Fields. On the other hand, a minimally-redundant block containing Erdős
constructed from the full Erdős Collaboration Graph would not include the
vertices representing a number of individuals with Erdős numbers of one but
no coauthors other than Erdős (e.g. N. Anning or D. T. Busolini, given the
data of the Erdős Number Project). In the region of the graph represent-
ing the HGP, constructing such a minimally-redundant block would delete
a number of vertices with degree greater than 100 but no coauthors beyond
those of a single paper (e.g. S. Wenning or D. Hostin, coauthors of [25] and
[46], respectively3) and significantly reduce the degrees of many other high-
degree vertices. Such effects would also be expected in other areas involving
big science collaborations, such as experimental high-energy physics.

4. A conductance metric for minimally-redundant blocks

Consider two distinct vertices x and y of a graph G with unique vertex
labels and possibly non-unique edge labels. List all paths from x to y, ordered
by their length i from the smallest value of i to the largest, with an arbitrary
order for paths of equal length. Delete from this list, in order from the
smallest value of i, all paths containing two or more edges with the same
label, and all paths containing any edge with the same label as any edge

3Based on searches on Google Scholar on 11 October 2011.
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contained in any path appearing earlier in the list. Then define a function
ζ(x, y) = (

∑
i(pi/i))

−1, where (1) terms are added in order of increasing i,
and (2) pi is the number of paths from x to y of length i that remain on the
list, i.e. paths with distinct edge labels that share no edge labels with any
paths already counted.

If x is a leaf vertex of a tree that is separated from the root y by n edges,
all with distinct labels, ζ(x, y) = n; if the path from x to y contains duplicate
labels, it cannot be counted and ζ(x, y) is undefined. If x is a vertex in KN ,
then for any other vertex y, ζ(x, y) = 1 if the edges all have the same label, as
only the single path of length 1 from x to y can be counted without re-using
edge labels. If x and y are distinct vertices in KN and all edge labels are
distinct, the path of length 1 from x to y can be counted, as can the paths
of length 2 from x to y via each of the remaining N −2 vertices. All paths of
greater length re-use edge labels and cannot be counted; hence in this case
ζ(x, y) = (1 + (N − 2)/2)−1 = 2/N .

The construction of ζ(x, y) nonlinearly rewards pairs of vertices x and y
that are connected by multiple paths, even if x and y are adjacent; however,
it does so only for paths that do not introduce edge-label redundancy. In
the context of a coauthorship graph, ζ(x, y) nonlinearly rewards pairs of au-
thors who have colleagues who are connected at any degree of collaboration
(e.g. by collaborations between colleagues of colleagues), provided that these
collaborations produced not-yet-counted publications. For example, in the
Erdős Collaboration Graph, the values of ζ(x, y) where y represents Erdős
range from less than 0.04 if x is F. Harary to values on the order of 20, assum-
ing that at least some non-mathematicians have finite Erdős numbers larger
than those of any mathematicians. The dynamic range of ζ(x, y) for the
Erdős Collaboration Graph is therefore on the order of 500, an improvement
in dynamic range of around 25 times over minimal path length. Similar im-
provements in dynamic range would be expected for any large social network
in which the degree distribution approximately follows a power law. This
increased dynamic range would, if ζ(x, y) could be employed as a metric,
result in a much more sensitive measure of closeness between x and y than
that provided by measures such as minimal path length.

In the case of arbitrary graphs with distinct edge and vertex labels, how-
ever, the function ζ(x, y) fails to satisfy the triangle inequality and is there-
fore not a metric. For example, in the graph shown in Figure 4, ζ(a, b) = 1,
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a ❍❍❍❍❍
b

d

✟✟✟

c

Figure 4: An example showing that ζ(x, y) is not a metric for arbitrary graphs.

ζ(b, c) = 2/3, and ζ(a, c) = 2 > 1 2/3 because the a − b edge can only be
counted once. However, for biconnected graphs, ζ(x, y) is a metric. To see
this, note that ζ(x, y) is a metric for complete graphs, with K3 as the simplest
case. For induction, consider a graph comprising a biconnected subgraph M
for which ζ(x, y) is a metric together with one additional vertex a that is
adjacent to two distinct vertices b and c of M . In this case, the values ζ(a, b)
and ζ(a, c) must be equal, so ζ(a, c) ≤ ζ(a, b) + ζ(b, c) regardless of the value
of ζ(b, c). It is clear, moreover, that an additional edge can be added to
any biconnected graph without violating the triangle inequality, as adding
an edge will decrease the value of ζ(x, y) for the two vertices it joins more
than for any other two vertices.

The biconnected graph metric ζ(x, y) is a special case of Kirchhoff’s
well-known metric for conductance in parallel electrical circuits. Because
it combines information about path lengths, vertex degrees, and between-
ness, employing it as a metric in collaboration graphs reveals structure that
is evident in high-resolution illustrations but difficult to see at low resolu-
tion or with other metrics. In the subgraph shown in Figure 1, for example,
ζ(ESL,Erdős) ' 0.71 while ζ(CRC,Erdős) ' 1.33 even though ESL and
CRC both have Erdős numbers of 2. Similarly, ζ(JCV,Erdős) = 0.80 while
ζ(HOS,Erdős) ' 1.88 even though JCV and HOS both have Erdős numbers
of 3. The differentiation obtained with ζ(x, y) is even greater in other parts
of the Erdős Collaboration Graph. For example, considering only paths up
to length 2, ζ(x,Erdős) ' 0.11 for x = L. Lesniak, but ζ(x,Erdős) = 1.0 for
x = E. Lesigne, even though both authors have Erdős numbers of 2. Con-
sidering only paths up to length four, ζ(x,Erdős) = 0.46 for x = C. Fields,
with Erdős number 3.4

4Values for C. Fields were computed using data available at http:

//chrisfieldsresearch.com/erdos.htm, accessed on June 24, 2014.

http://chrisfieldsresearch.com/erdos.htm
http://chrisfieldsresearch.com/erdos.htm
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5. Conclusion

As documented in [17], both collaboration in mathematics and the frac-
tion of collaborative mathematical papers with more than two authors have
been steadily increasing since the 1940s. These trends render the Erdős Col-
laboration Graph both increasingly interesting and, to the extent that papers
with more than two authors contribute edges with redundant labels, increas-
ingly messy with each passing decade. Extending the Erdős Collaboration
Graph to include collaborations outside of mathematics makes it even more
interesting, and particularly in areas that involve big science collaborations,
enormously messier. One response to this increasing messiness is to restrict
the graph to two-author papers, and hence to authors with Erdős numbers of
the second kind. While they still outnumber one-author papers [36], however,
two-author papers are relatively rare in the sciences; recent issues of Science,
Nature, Proceedings of the National Academy of Sciences of the USA and
Physical Review Letters, for example, have 16 two-author papers out of 175
total papers (9.1%) between them.5 Restricting the collaboration graph to
two-author papers thus enormously under-represents collaboration; in par-
ticular, it under-represents the impact of mathematics on science. It also
fails to capture one of the most salient features of collaborative networks in
the sciences: the robustness that results from the tendency of prominent sci-
entists to collaborate with each other both within and between disciplinary
communities.

This paper suggests an alternative way of dealing with the messiness
introduced by redundant edge labels, one that not only preserves but high-
lights the robustness of collaborative connections both within and between
research communities. Constructing the minimally-redundant blocks of a
collaboration graph trims away both vertices and edges that do not con-
tribute to a robustly-connected structure. Employing ζ(x, y) as a metric
on the constructed minimally-redundant blocks reveals pairs of authors who
are connected by large numbers of non-redundant paths in the collaboration
graph. Using these techniques, it becomes clear that despite their differences
in interests and methods from pure mathematics, contemporary molecular,
cellular, and developmental biology can plausibly be considered to be math-

5The issues canvassed are Science 345(6068), Nature 482(7383), Proc. Natl. Acad. Sci.
USA 109(5) and Phys. Rev. Lett. 108(5).



Chris Fields 19

ematical sciences to the same extent that physics is. It seems likely from the
Erdős Number Project’s survey of Erdős numbers of prominent scientists that
many of the other special sciences can be viewed in the same way. If this is
correct, it would suggest that a greater emphasis on interdisciplinary knowl-
edge and communication skills, as well as a greater exposure to mathematics,
may be beneficial in graduate programs across the sciences.
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and others, “A gene map of the human genome,” Science, Volume 274
Number 5287 (1996), pages 540-546.

[42] G. Seydoux, C. C. Mello, J. Pettitt, W. B. Wood, J. R. Priess and A.
Fire, “Repression of gene expression in the embryonic germ lineage of
C. elegans,” Nature, Volume 382 Number 6593 (1996), pages 713-716.

[43] C. M. Smith, S. K. Lawrance, G. A. Gillespie, C. R. Cantor, S. M. Weiss-
man and F. S. Collins, “Strategies for mapping and cloning macroregions
of mammalian genomes,” Methods in Enzymology, Volume 151 (1987),
pages 461-489.

[44] J. E. Sulston and S. Brenner, “The DNA of Caenorhabditis elegans,”
Genetics, Volume 77 Number 1 (1974), pages 95-104.



24 Some Effects of the Human Genome Project

[45] J. E. Sulston and H. R. Horvitz, “Post-embryonic cell lineages of the
nematode, Caenorhabditis elegans,” Developmental Biology, Volume 56
Number 1 (1977), pages 110-156.

[46] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.
Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt and others,
“The sequence of the human genome,” Science, Volume 291 Number
5507 (2001), pages 1304-1351.

[47] M. L. Wallace, V. Larivière and Y. Gingras, “A small world of citations?
The influence of collaboration networks on citation practices,” PLoS
One, Volume 7 Number 3 (2012), article # e33339.

[48] M. S. Waterman, R. Arratia and D. J. Galas, “Pattern recognition in
several sequences: Consensus and alignment,” Bulletin of Mathematical
Biology, Volume 48 Number 4 (1984), pages 515-527.

[49] J. D. Watson and F. R. C. Crick, “Molecular structure of nucleic acids,”
Nature, Volume 171 Number 4356 (1953), pages 737-738.

[50] J. D. Watson and R. M. Cook-Deegan, “Origins of the Human Genome
Project,” FASEB Journal, Volume 5 Number 1 (1991), pages 8-11.


	Some Effects of the Human Genome Project on the Erdős Collaboration Graph
	Recommended Citation

	Introduction
	An HGP subgraph of the Erdos Collaboration Graph
	Centers and minimally-redundant blocks in collaboration graphs
	A conductance metric for minimally-redundant blocks
	Conclusion

