
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2018

Iterative Matrix Factorization Method for Social
Media Data Location Prediction
Natchanon Suaysom
Harvey Mudd College

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Suaysom, Natchanon, "Iterative Matrix Factorization Method for Social Media Data Location Prediction" (2018). HMC Senior Theses.
96.
https://scholarship.claremont.edu/hmc_theses/96

https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

Iterative Matrix Factorization Method for

Social Media Data Location Prediction

Natchanon Suaysom

Arthur Benjamin , Advisor

Puck Rombach, Reader

Department of Mathematics

May, 2017

Copyright © 2017 Natchanon Suaysom.

The author grants Harvey Mudd College and the Claremont Colleges Library the

nonexclusive right to make this work available for noncommercial, educational

purposes, provided that this copyright statement appears on the reproduced

materials and notice is given that the copying is by permission of the author. To

disseminate otherwise or to republish requires written permission from the author.

Abstract

Since some of the location of where the users posted their tweets collected

by social media company have varied accuracy, and some are missing. We

want to use those tweets with highest accuracy to help fill in the data of

those tweets with incomplete information. To test our algorithm, we used

the sets of social media data from a city, we separated them into training

sets, where we know all the information, and the testing sets, where we

intentionally pretend to not know the location. One prediction method

that was used in (Dukler, Han and Wang, 2016) requires appending one-

hot encoding of the location to the bag of words matrix to do Location

Oriented Nonnegative Matrix Factorization (LONMF). We improve further

on this algorithm by introducing iterative LONMF. We found that when

the threshold and number of iterations are chosen correctly, we can predict

tweets location with higher accuracy than using LONMF.

Contents

Abstract iii

Acknowledgments xi

1 Background and Introduction 1
1.1 Location Prediction on Social Media Data 1

1.2 Description of the Datasets . 2

1.3 The approaches to location prediction 3

2 Nonnegative Matrix Factoring Algorithm for location prediction 7
2.1 Improving on NMF . 10

2.2 Iterative NMF . 12

3 Result from the iterative NMF 15
3.1 Heatmap Construction . 15

3.2 Result from an improved iterative approach 20

4 Additional features 23
4.1 Separate Clustering Approach 23

4.2 Separate Feature Predictions Approach 24

4.3 Date, time, and language as features 25

4.4 Time . 25

4.5 Date . 28

4.6 Language . 30

5 Algorithm Review 33
5.1 Algorithm Optimization . 33

5.2 Algorithm Alternative . 35

vi Contents

6 Conclusion 39
6.1 Results and approaches summary 39

6.2 Further work . 40

Bibliography 43

List of Figures

3.1 The heatmap showing 3 topics from iteration 1. Their cate-

gories and changes from previous iterations are shown. . . . 17

3.2 The heatmap showing 3 topics from iteration 2. Their cate-

gories and changes from previous iterations are shown. . . . 17

3.3 The heatmap showing 3 topics from iteration 3. Their cate-

gories and changes from previous iterations are shown. . . . 18

3.4 The heatmap showing 3 topics from iteration 4. Their cate-

gories and changes from previous iterations are shown. . . . 18

3.5 The results for predicting tweets location within 1 KM with 4

iterations. The number of tweets we are predicting is shown. 19

3.6 The results for predicting tweets location within 2 KM with 4

iterations. The number of tweets we are predicting is shown. 20

3.7 The results for predicting tweets location with 20 iterations. 21

3.8 The results for predicting tweets location with 6 iterations. . 22

3.9 The results for predicting tweets location with 6 iterations. . 22

4.1 Heatmap of Topic 67, Daytime 26

4.2 Heatmap of Topic 67, Nighttime 26

4.3 Heat Maps Comparison between Day and Night of Movie

Topics . 27

4.4 Graph showing the percentage of correctly predicted tweets

within 2 kilometers in a given time frame 28

4.5 Graph showing the percentage of correctly predicted tweets

in most popular date . 29

4.6 Graph showing the percentage of tweets in most popular date 30

5.1 Graph showing the increase in speed for each series of opti-

mization in the first part of testing algorithm 34

viii List of Figures

5.2 Graph showing the increase in speed for each series of opti-

mization in the second part of testing algorithm 34

List of Tables

1.1 Example of tweets in the Vancouver dataset 2

Acknowledgments

I am grateful to my thesis advisor, Arthur Benjamin, and my mentor for the

summer research and my second reader Puck Rombach, without whom my

final report would not be finished.

Chapter 1

Background and Introduction

1.1 Location Prediction on Social Media Data

Social media data is a large collection of text posted online by people in a

location in a specified time. Learning from the data allow us to understand

many features about people in the location and how they use social media.

Social media has been widely studied in different contexts, such as learning

how one group of people posted can induce another group of people to

post similar things (Meyer et al., 2016), or how twitter specific features

such as hashtag can be used for the analysis (Otsuka et al., 2016). In many

applications the GPS coordinate of the tweet is needed for the analysis.

However, not all tweets location are accurate or known because the users

chose not to disclose their location, or the strength of WiFi is not strong

enough, which gives less accuracy to the geotags. The twitter data rank the

accuracy of its geotags from 0-10 (Inc, 2016). We want to give location to

those tweets with unknown location and low level of geotag accuracy. Work

on this topic has been done in macrolocation (predicting the city or country

of where the tweet is from) (Cheng et al., 2010) or using location from other

social media to predict data from Twitter (Papadimitriou et al., 1998). We

want to take a more specific approach into predicting microlocation of tweets

(in range of less than 1 kilometer). This paper will follows the approach in

(Dukler, Han and Wang, 2016) and aims to improve the results of the work

in (Dukler, Han and Wang, 2016). To that end, we need to infer the location

of tweets from other data which are definitely accurate, which are its content

and timestamp. In order to do that, data mining algorithms have to be used

because of the large volume of data.

2 Background and Introduction

Tweets in the Dataset

Tweetnumber Content TimeStamp Geotag

319644647033016320 I’m at Steve Nash Sports

Club (Vancouver, BC)

http://t.co/NNxJYqbr07

2013-04-04

02:56:37

(49.2834,-

123.117)

514785031680983040 "See ya later #Vancouver you’ve been

great! But now in thewords of #Will-

Smith it’s welcome to #Miami"

2014-09-24

14:34:50

(40.1971,-

123.175)

300641864887988225 An economy based on endless

growth is unsustainable *drop the

bass*

2013-02-10

16:26:20

(49.2636,-

123.186)

Table 1.1 Example of tweets in the Vancouver dataset

1.2 Description of the Datasets

Let T be the set of all tweets in our dataset. An element t ∈ T consists of

the text, location, time, and date that the user posted the tweet. The goal

of the project is to do location prediction of a tweet based only on other

information. More precisely, the set of tweets T is divided randomly into

a training set Ttrain , where the tweets have all possible information and a

testing set Ttest , where tweets have all information except its locations. The

division is based on a fraction f , so that |Ttrain | � f |T | and |Ttest | � (1− f)|T |.
The goal is to use the information from Ttrain to predict the latitude and

longitude of each testing tweet. Let lt , ˆlt be the real and predicted location

of each tweet (as an R2
vector of latitude and longitude), respectively. Then

we want to minimize

‖lt − ˆlt ‖
for each tweet t ∈ T. To assess how well we do, we set a threshold d (for

example, d � 250 meters) where we count the number of tweets t such

that ‖lt − ˆlt‖ < d and calculate the percentage of these tweets that the

prediction falls within d, we call that number the accuracy of prediction
within distance d.

In our datasets that we use to benchmark our algorithm, we have

Vancouver datasets having about 4 million tweets and Barcelona datasets

having about 1.5 million tweets. An example of tweet from Vancouver

datasets are shown in the Table 1.1.

We can see from Table 1.1 that we have the content, time stamp, and

The approaches to location prediction 3

geotag that can be used for the prediction. The data has to be preprocessed

into the form of matrix for us to be able to analyze them. A package sklearn
is used for this approach because it contains an efficient way to turn the

content into matrices. The details on possible approach and algorithms are

discussed in the next section.

1.3 The approaches to location prediction

This section contains all the algorithmswe have tried so far. Since the amount

of data is large, a machine learning technique that requires data storage and

runtime that is worse than linear is unlikely to be able to used. Some of

those approaches and their limitations are discussed. All algorithms start

with preprocessing to turn the content of the tweets into a matrix.

1.3.1 Location Comparison approach

This section involves the idea of trying to predict tweets without doing

clustering. The most intuitive idea is to look at all possible positions from

Ttrain , denoted by l1 , l2 , . . . , lk (in the Vancouver data set, k was found to be

about 120,000 positions). For each 1 ≤ i ≤ k, we look at the p most popular

words (p � 5 was used). For each testing tweet ttest , we see what words are

in it and compare it to the popular words in all locations li , and says that the

location li is the predicted location if it has highest similarity with test tweet

ttest . This algorithm is summarized in Algorithm 1. After implementing

this approach, we found that each test tweet t takes about 1.2 seconds to

check, which means that the algorithm becomes intractable if we need to do

it for milion of tweets. So we stopped developing this algorithm and looked

at other approaches instead. Specifically we should use dimensionality

reduction method such as clustering algorithm that would make data size

more managable. This leads to the approaches we consider later in the

report.

1.3.2 Using clustering for prediction

From the previous algorithm we can see that trying to do the prediction

on the whole datasets can take too much time. This motivates the use of

clustering techniques to divide the data into different parts before doing the

prediction. An algorithm for training data and testing data can be written

as follows

sklearn

4 Background and Introduction

• Training Data: Suppose that we can divide the tweet set T into disjoint

parts T1 , T2 , · · · , Tk where each Ti talks about the same topic, in other

words, the bag of words of Ti contains a number of words that appear

in most of the tweets in Ti . The list of those words indicate what each

topic in Ti is about.

• Testing Data: For each testing tweet ttest we can find which Ti that

ttest should belong to. Then the prediction
ˆlttest is the most frequent

position that appears in Ti .

It can be seen that the prediction may not be accurate if we predict the

testing tweet based on the topic, because although the tweets in each Ti
have uniform content, they may not have uniform location. Obtaining the

topics Ti with uniform location and content is the main problem we need to

address. Several techniques are used to obtain that in later sections.

The clustering can be done in a number of ways. However, some of the

clustering methods cannot be used because it requires large data storage

or long runtime. The clustering techniques we investigated are discussed

below.

Spectral Clustering approach

A popular clustering technique on text mining uses spectral clustering.

Suppose G is a matrix and each entry Gi j is the similarity between the

words that appear in two tweets ti and t j . Using eigenvalues, G can be

decomposed into different clusters. Since these allows pairwise comparisons

from all tweets, we expect that the cluster will be accurate. However, the

implementation can’t yet be done because G would be a matrix of size n2

where n is the number of tweets, which is in the order of 10
12
, and is still too

large to store on a computer. Thus we consider other clustering algorithm

instead.

Nonnegative Matrix Factorization

Let A be the matrix of size M × N where M � |T | is the number of tweets,

and N is the number of all words that appear in all the tweets. Then we

define the entries Ai j to be the number of times that the tweet with index

i contains the word with index j. Suppose we factor A into two matrices

W,H with the approximation given in algorithm 2 with a specified number

The approaches to location prediction 5

of topics k � 100 (unless specified otherwise, we always use k � 100 topics).

Then we get that

Am×n ≈Wm×kHk×n

In order to do the clustering, for each tweet in Ttrain represented by row t
we put t into the cluster Ti where

i � arg max

j
Wt , j

This clustering technique will be used throughout the paper and the predic-

tion algorithm is discussed in the next section.

Chapter 2

Nonnegative Matrix Factoring
Algorithm for location
prediction

In the previous section, we indicated that clusters of tweets are uniform in

content, but not necessarily in location. The algorithms that we propose

must be able to extract clusters that are uniform in location, so we must

have a quantity to measure the uniformity of each cluster. For each topic Ti ,

we propose the function D(Ti) to do this. Let NTi be the number of tweets

in cluster Ti . And for a tweet t, let `(t) be the vectors in R2
showing the

latitude and longitude of tweet t.

• The following value is called Mean Square Distance and is used in

(Dukler, Han and Wang, 2016). For topic Ti ,

D(Ti) � 1 −
1

N2

i

∑
t ,t′∈Ti

‖`(t) − `(t′)‖2

• Let S be the set of pairs of tweets (t , t′) where

‖`(t) − `(t′)‖ ≤ d

for some distance d, then let D(Ti) � |S|
N2

Ti

, denoting the fraction of pairs

of points in the cluster Ti that are within distance d from each other.

Note that both values will be between 0 and 1 and both can be used for

the improvement of the normal NMF algorithm, as we shall see in the next

section.

8 Nonnegative Matrix Factoring Algorithm for location prediction

Another parameter we use is the confidence that a tweet will fall in a

given topic. For a testing tweet t, let Wt be the row of tweet containing t,
then the maximum entry in that row, which is defined to be

C(t) � max

i
(W[t , i])

For a prediction of a tweet ttest to be accurate, for a tweet t falling in a

topic Ti , we want a function D(Ti) and C(t) to be large. These quantities are

used as thresholds for the prediction. After using the threshold above, the

prediction algorithms are based on of the following three main components.

• Preprocessing the data. This parses the data from the tweet set to the

dictionary and matrices. The data structure for the matrix must be a

sparse matrix, which saves a lot of amount of data. On average the

dictionary has size roughly 30,000 and the tweet set is of size 1,000,000.

Since tweets have an average of 10 words, the nonzero entries of the

matrix are about 10/30, 000 � 0.03%. This means that using a sparse

matrix would save roughly 99.97% of data storage. Although this will

pose a challenge because operations on sparse matrices are limited,

it is necessary for us to use it to be able to run the algorithm. The

dictionary must be in terms of a hash table, so that the look up time

scales logarithmically with the size of the dictionary, which will allow

us to do many operations in reasonable time. The full algorithm parses

the data into a matrix A and a dictionary as shown in Algorithm 1

Algorithm 1 Preprocessing

Input: Set of tweets T
Output: A bag of words matrix A
1: Obtain all the words that appear in the tweets.

2: Remove all words not in the top words list and words that appear altogether less than 10

times. Suppose that the list of words has size w.

3: Create an n-by-w word count matrix A, where the entry Ai j is the number of times that

tweet i contains the word j
4: Bag of words matrix A

• The next step is to do the actual nonnegative matrix factorization. The

algorithm uses both NMF and NLS algorithm found in 2 and 3. We

use the NMF Algorithm from sklearn packages, which is optimized for

sparse matrices and allows us to specify tolerance on them. Specifically

we want to minimize the function

f (W,H) � ‖A −WH‖2

2

sklearn

9

The algorithm produces two matrices W and H, which is then used on

the training and testing part.

Algorithm 2 Solving Non-Negative Matrix Factorization

Input: Non-negative matrices Am×n , rank k, tolerance ε, maximum iterations T
Output: Non-negative matrices Wm×k ,Hk×n so that A ≈WH.

1: i � 0 (Number of iterations), W
0
and H

0
are assigned randomly.

2: while i ≤ T and | f (Wi−1
,Hi−1

) − f (Wi ,Hi)| ≤ ε do
3: Obtain the optimal solution using NLS for Wi+1

� minW≥0
‖HT

i W − AT ‖2

F
4: Obtain the optimal solution using NLS for Hi+1

� minH≥0
‖HWT

i − A‖2

F
5: Increment i
6: end while
7: Output Wi ,Hi

Algorithm 3 Solving Non-Negative Least Square

Input: Non-negative matrix Wm×k and am×1

Output: Non-negative matrix hk×1
which minimizes arg minh≥0

‖Wh − a‖2

2

1: h :� 0

I :� {1, 2, . . . , n}
P :� φ
w :� WT (a −Wh)

2: while I , φ and w j > 0 for some j do
3: Define t � arg max j{w j : j ∈ I}.
4: Remove t from I and add it to P.
5: Define WP � W and change the row of j of WP to a zero row vector if j ∈ I.
6: Let z � arg minz0

‖WP z
0
− a‖

2
with a known least square method. Set z j � 0 if j ∈ I.

7: while z j ≤ 0 for some j ∈ S do

8: Define q � arg minq{
hq

(hq − zq) : zq ≤ q , q ∈ P}

9: α :�
gq

(gq − zq)
10: h :� h + α(z − h)
11: Move all indices j ∈ P such that h j � 0 to I.
12: Define WP as in 5. and solve z � arg minz0

‖WP z
0
− a‖

2
with a known least square

method.

13: end while(now z j > 0 for all j ∈ P)
14: h :� z
15: w :� WT (a −Wh)
16: end while
17: Output h.

• The algorithm for training data involves breaking the set of tweets T
into clusters T1 , T2 , . . . , Tk . These clusters are then used on the testing

10 Nonnegative Matrix Factoring Algorithm for location prediction

(prediction) part.

Algorithm 4 Algorithm for training data

Input: Set of training tweets Ttrain , parameter α, numberOfTopics = k
Output: Matrices H, statistics on each decomposed topic

Preprocessing and data decomposition.
1: Preprocessing data from algorithm above to obtain bag of words matrix Atrain
2: Obtain the location part from the set of tweets.

3: Decompose A using NMF into two matrices W,H with k topics

From matrix W , separate the training tweets into k topics.
4: for i = 1:T do
5: Evaluate arg max j(W[i , j]) to be the topics of tweet i
6: end for
7: Keep the result from the for loop in matrix Ttopic

Calculate the statistics for each topic using data from Ttopic
8: for i = 1:k do
9: Calculate the MSD of each topic

1

N2

Ti

∑
p ,q∈Tk

((xp − xq)2 + (yp − yq)2)
Where NTi is the number of tweets in topics i, (xi , yi) is the position coordinate in the

tweet i.
10: Calculate the most popular position in the tweet in each topic.

11: Keep the results from above in list TopicStat

12: end for
13: Output matrix Htrain � H and list TopicStat

• For the prediction part, we use the results of W,H from the training,

the algorithm 5 follows.

Algorithm 5 Algorithm for testing data

Input: Set of training tweets Ttest , bagOfWords Atest numberOfTopics = k, matrix Htrain
Output: Prediction coordinate for each testing tweet and statistics on the prediction

1: Project the text distribution on each topic obtained from Htrain into the testing tweet by

calculating Wtest � Atest HT
train , which is the matrix of size ntest × topic

2: Use the peak location in topicStat and assign them to all tweets in each topic.

3: Compare the resulting prediction and report the percentage of prediction within

250m,500m,1KM

Output: The prediction accuracy

2.1 Improving on NMF

We can see from the general approach mentioned earlier that the problem

with NMF is that the clusters we got are not necessarily location specific.

For example, there can be many location hotspots in topic, which makes the

Improving on NMF 11

result less accurate. In (Dukler, Han and Wang, 2016) we fixed the problem

by appending the location part to the matrix before doing NMF, which

makes the result better, they can be established by the following. Suppose

Vancouver is divided into square grid of size 100 × 100 meter. This gives a

total of r × c = 180 × 100 grid dimension for Vancouver. Define

bi , j �



1 t is in grid i , j
0 Otherwise

For each tweet t define the following location vector vt of size 1 × rc

vt � [b1,1 , b1,2 , . . . , br,c−2 , br,c−1 , br,c]
to be the enumerations of bi , j for all i , j. Note that this vector has 1 in one

coordinate, and 0 in all other coordinates. Next define the location matrix of

size m × rc

L �



vt1
vt2
...

vtm


In order to allow us to take into account the location into the algorithm,

we modify the input bag of words matrix A to V in the following ways, let

V � [A|L], we do NMF on V to get approximations V ≈ WH instead to

make each cluster from NMF more location sensitive.

One modification that should be made is to adjust the fact that L and A
should be taken into account equally, because if ‖L‖F >> ‖A‖F then only

location will be taken into account in clustering, or if ‖A‖ >> ‖L‖ only text

information will be used. This means that we need both matrices to have

similar norm. Let α be the adjusting parameter. Define

V � [A|L′] (2.1)

where

L′ � α
‖A‖F

‖L‖F
× L

, we have that ‖A‖ � ‖L′‖, so we take into account both text and location

in clustering. Note that V is of size (m + rc) × n. In order to modify this

input and use this in the prediction, suppose we use k topics, then when we

factored V to be approximately WH where W has size m × k, which is the

12 Nonnegative Matrix Factoring Algorithm for location prediction

same, so we don’t need to modify it. However now H has size k × (rc + n),
where w is the number of words in bag of words matrix. In order to offer

predicted A in the testing set we need to remove the location part, so we

only use the first m rows of H. The results of this are shown in (Dukler, Han

and Wang, 2016) to be better than regular NMF.

This requires additional modification to the training algorithm. It is

shown in Algorithm 6 and 8 and it means that we need to obtain the location

matrix and append it to the original bag of words matrix with adjusted

parameter. For the testing algorithm, the only modification is for us to

remove the location part from H by removing the last rc rows of H.

2.2 Iterative NMF

Here we used LONMF and improve on it. The following algorithm makes

use of the advantage of the NMF in doing unsupervised tasks (which means

that we don’t know what the clusters are; an example of a supervised task

would be classifying pictures into digits, where we know what each clusters

should be). This algorithm should keep breaking the topic into smaller

ones. Given more selection of topics to the testing part, we hope to get

higher accuracy in the testing algorithm. We have two metrics on how many

iterations we should do the algorithm

• Specifying the number of iterations beforehand, note that if almost all

tweets are removed then the algorithm should stop.

• Keep doing the iteration and take those topics that pass the threshold,

this means that all the topic we get will be all possible good topics

(those that D(T) is large enough for our purpose) from the data set.

From the first metric, we develop the Algorithm 6 and 14.

Iterative NMF 13

Algorithm 6 2nd Approach Training

Input: Ttrain , and I, number of iteration, α, a percentage threshold for D(T), set of topics L
1: for i = 1:I do
2: Let Vi in iteration i be defined as in Equation 2.1 from the remaining tweets.

3: Call training algorithm on Vi (NMF and analysis on Wi ,Hi), where we only use the

first n column of Hi .
4: Remove topics T such that D(T) ≥ α from Ttrain ,
5: Add those removed topics into L.
6: Stop when less than 10% of tweets are left.

7: end for
Output: His and topic statistics.

Algorithm 7 2nd Approach Testing

Input: Ttrain , Ttest ,His, L and I, number of iteration

1: for i = 1:I do
2: Call testing algorithm to each Hi
3: Keep the statistics of the projection

4: end for
5: Out of at most 100I topics, select T with largest D(T) that the tweet belongs to.

6: Only predict those tweet such that the value C(t) ≥ β
Output: Prediction coordinate and accuracy.

From the second metric, we develop the Algorithm 8 and 9.

Algorithm 8 3rd Approach Training

Input: Ttrain , and I � 0, number of iteration, α, a percentage threshold, L a set of passing

topics.

1: while Some topic Tk has D(Tk) ≥ α do
2: Let Vi in iteration i be defined as in Equation 2.1 from the remaining tweets.

3: Call training algorithm on Vi (NMF and analysis on Wi ,Hi), where we only use the

first n column of Hi .
4: Remove topics T such that D(T) ≥ α from Ttrain .
5: Add those removed topics into L.
6: Set I � I + 1

7: end while
Output: His and topic statistics, I, and L.

14 Nonnegative Matrix Factoring Algorithm for location prediction

Algorithm 9 3rd Approach Testing

Input: Ttrain , Ttest ,His, L and I, number of iteration, β, a confidence threshold

1: for i = 1:I do
2: Call testing algorithm to each Hi
3: Keep the statistics of the projection

4: end for
5: Out of 100I topics, select T with largest D(T) that the tweet belongs to.

6: Only predict those tweet such that the value C(t) ≥ β
Output: Prediction coordinate and accuracy.

Chapter 3

Result from the iterative NMF

3.1 Heatmap Construction

For the analysis to be done on how well the clustering of Ttrain is, we need to

be able to look at the distribution of tweets visually on the map to categorize

them. Using Google Maps package available in Python, we are able to

generate the distribution on Vancouver map. We can also plot only some

dates or some time interval if we filter the tweets accordingly. Algorithm 10

shows how this is done. To see what the topic is about, the 5 most popular

words are drawn from the topic by calculating the largest 5 entries of row

i of Htrain because H is of size topic × words, so that Hi , j represents the

probability that topic i contains word j. Then we infer the topic name from

those words and its location.

The heatmap shows different clustering behavior of tweets in each topic

in the city. From the heatmap, we can roughly divide each topic into

following 3 categories, clear, mixed, and random. The expectation of what

each iteration in Algorithm will do is also discussed below, which will be

the motivation for Algorithms 6 and 8.

16 Result from the iterative NMF

Algorithm 10 Heatmap and Topic Analysis

Input: Ttrain , list of used words V , W , number of topics T, number of words needed w
Draw Heatmap

1: Obtain topics for each tweet from arg max j W[i , j]
2: Pick the boundary latitude and longitude for the city.

3: for i=1:T do
4: Obtain all order pairs of latitude and longitude for tweets in topics i.
5: Use heatmap function of Google Map to plot all latitude and longitude, within the

6: end for
Obtain words indicating topic

7: for i=1:T do
8: Find the indices j

1
, j

2
, . . . , jw of largest w entries of row i of H.

9: From those indices j
1
, j

2
, . . . , jw , look at the words in those indices from V .

10: Manually process the words and the heatmap location to get the best description of

the topics, if possible.

11: end for
Output: Heatmaps and words representing each topic.

1. Clear location, which means that the topic clustered clearly in one

particular spot, we expect clear location topics to be removed in each

iteration, so that it doesn’t get clustered again in later iterations. This

is because for each iteration we removed those topics with low D(T),
such as topic 1 and 2 in Figure 3.1.

2. Mixed location, which means that the topic can be clearly divided into

subtopics, thus showing a few hotspots in the heatmap such as topic 2

in Figure 3.2. We expect the subtopics of them to appear individually

in the subsequent iteration, because as the iteration goes on, less tweets

are clustered, so it is likely that tweets in mixed topics are broken down

into its subtopics.

3. Random Location, which means that the hotspots are distributed

throughout the area with no clear pattern such as topic 3 in Figure

3.4. Since this is likely to be from those tweets that are not location

sensitive anyway, we don’t expect the algorithm to solve this problem.

These topics will keep appearing in each iteration until the algorithm

terminates. For this type of topic, the prediction can only says that

the distribution of locations of tweets having similar content will be

similar, but cannot predict accurately in microscale.

We run Algorithm 6 on the whole dataset with 100 topics and in order to

assess how well we do, some topics are tracked through each iteration.

Heatmap Construction 17

Figure 3.1 The heatmap showing 3 topics from iteration 1. Their categories

and changes from previous iterations are shown.

Figure 3.2 The heatmap showing 3 topics from iteration 2. Their categories

and changes from previous iterations are shown.

18 Result from the iterative NMF

Figure 3.3 The heatmap showing 3 topics from iteration 3. Their categories

and changes from previous iterations are shown.

Figure 3.4 The heatmap showing 3 topics from iteration 4. Their categories

and changes from previous iterations are shown.

Heatmap Construction 19

Figure 3.5 The results for predicting tweets location within 1 KM with 4

iterations. The number of tweets we are predicting is shown.

From Figure 3.1, 3.2, 3.3 and 3.4, we can see that during the iterations,

some topics changed their focus, disappear, or pick up more subtopics.

The change throughout each iteration has more variety than we expected.

The fact that the airport topics appear throughout the iterations mean that

NMF doesn’t capture all the stories about airport in its first iteration. The

disappeared topic such as the casino topic is what we expected to see because

its heatmap present very clear location. However, the fact that the topic

on Stanley Park doesn’t get broken is surprising. In this case the algorithm

doesn’t do what we expected.

Since this only has a few topics, it doesn’t represent the whole perfor-

mance of the algorithm. The next section looks at the tweet as a whole and

presents the result in terms of accuracy of prediction.

3.1.1 Accuracy Prediction

After the analysis of heatmap, we did the algorithm for the testing part (14

and 9). The results are shown below.

20 Result from the iterative NMF

Figure 3.6 The results for predicting tweets location within 2 KM with 4

iterations. The number of tweets we are predicting is shown.

We can see that the second iteration always does better than the first.

This is reflected in the heatmap analysis, because a lots of changes in the

second iterations are those we expected. The fact that later iterations don’t

give better results may be from overfitting, and also from the fact that we

should be more confident in later iterations, but the algorithm doesn’t take

that into account. We can adjust the algorithm to take into account the

confidence level by increasing the prediction threshold. We investigate the

effect of increasing the threshold in different ways in the next section.

3.2 Result from an improved iterative approach

From the second approach, we can see that higher iterations don’t necessarily

give higher predictions accuracy. After considering the conditions of the

algorithm, we can see that the threshold for D(T) and the confidence C(t) are
constant in each iteration. This is counterintuitive because as the iteration

goes, we should get result that are more clustered and we should have

more confidence in them. These suggest that the thresholds should both

increase in each iteration. For simplicity, we started by considering linearly

increasing thresholds. For this experiment we consider increasing them in

three different linear ways for comparison.

• For comparison, a fixed threshold of D(T) � 0.7 and arg maxi � 0.9.

Result from an improved iterative approach 21

Figure 3.7 The results for predicting tweets location with 20 iterations.

• slowly increasing threshold, we use the threshold D(T) � 0.7 +
i

200

and C(t) � 0.9 +
i

200
.

• increasing threshold we use the threshold D(T) � 0.7+ i
60

and C(t) �
0.9 +

i
100

.

The results for these thresholds are shown in the figures 3.7, 3.8, 3.9.

It can be seen that when the threshold is constant, the accuracy never

significantly increases. For both the slowly increasing threshold and for

increasing threshold, the accuracy increases rapidly up to some point then

drops off. It can be seen that in either cases, increasing the threshold actually

increases the accuracy. It remains to investigate what way of increasing

threshold is best for this accuracy prediction. The number of iterations also

plays an important role in location prediction. As the number of iterations

become too large, at that point only few tweets remain. It is likely that those

remaining tweets are in random topics, because those that are not random

will not pass the threshold in previous iterations. So that in later iterations

only random topics are considered, which explains why the algorithm could

have lower accuracy. One way to solve this is to not consider those random

topics at all, but that needs to be done with carefully chosen thresholds to

make sure that we don’t remove tweets that give valuable information.

22 Result from the iterative NMF

Figure 3.8 The results for predicting tweets location with 6 iterations.

Figure 3.9 The results for predicting tweets location with 6 iterations.

Chapter 4

Additional features

Let f be a feature that can be grouped into N types, f1 , f2 , . . . , fN . For

example, using time would group this into 24 hours, or using days in the

week would group this into 7 days. If we found that the tweets in group

fi , defined by T(fi), happens to be location sensitive or has other important

characteristic, then we can make separate prediction on each T(fi) to get

higher accuracy.

4.1 Separate Clustering Approach

One way to do the prediction separately on each fi is to divide Ttrain into

Ttrain(f1), Ttrain(f2), . . . , Ttrain(fN). We can divide the input to the algorithm

into different parts in the beginning. This will change the training and the

testing algorithm in the following ways.

Algorithm 11 2nd Approach Training

Input: Ttrain , and I, number of iteration, α, a percentage threshold for D(T), set of topics
L. Divide Ttrain into Ttrain(f

1
), Ttrain(f

2
), . . . , Ttrain(fN) where tweets in Ttrain , j has

property f j .
1: for j = 1:k do
2: for i = 1:I do
3: Call training algorithm on Ttrain f (j) (NMF and analysis on Wi , j ,Hi , j)
4: Remove topics T such that D(T) ≥ α from Ttrain , j ,
5: Add those removed topics into L.
6: Stop when less than 10% of tweets are left.

7: end for
8: end for

Output: Hi , js and topic statistics, and L.

24 Additional features

Algorithm 12 2nd Approach Testing

Input: Ttrain ,Ttest ,Hi , js for all i , j, L and I, number of iteration, Divide Ttest into

Ttest(f
1
), Ttest(f

2
), . . . , Ttest(fN) where tweets in Ttest(f j) has property f j .

1: for j = 1:k do
2: for i = 1:I do
3: Call testing algorithm to each Hi , j
4: Keep the statistics of the projection

5: end for
6: end for
7: Out of at most 100I topics, select T with largest D(T) that the tweet belongs to.

8: Only predict those tweet such that the value C(t) ≥ β
Output: Prediction coordinate and accuracy.

4.1.1 Advantage and Disadvantage

This algorithm is easily implemented and offer more topics for us to consider,

thus giving higher accuracy. However, this algorithm has the disadvantage

that for an already existing clustering we cannot do the analysis without

redoing the clustering. Another approach allows us to do the prediction

seperately after clustering, but requires different condition on the features

to be met.

4.2 Separate Feature Predictions Approach

This algorithm will fix the disadvantage of approach 1 and also allow

multiple features to be used at once. Suppose that the anomaly is very

strongly seen in the training set, which means that there exists i such that

T(fi) >> T(f j)
for all j , i. For example, when people tweets about national holiday on a

specific day of a year, then the topic about that holiday will mainly consist

of events on that day. Note that this approach will not work well with time,

because in general the time in the afternoon will always be more popular

than time at night, so even there exists such fi satisfying the equation above,

we still cannot get better prediction.

Date, time, and language as features 25

Algorithm 13 2nd Approach Training

Input: Ttrain , and I, number of iteration, α, a percentage threshold for D(T), set of topics L
1: for i = 1:I do
2: Call training algorithm on Ttrain (NMF and analysis on Wi ,Hi)
3: Remove topics T such that D(T) ≥ α from Ttrain ,
4: Add those removed topics into L.
5: Find whether there exists any fp such that |Ttrain(fp)| >> |Ttrain(fq)| for all other

q , p add fp into set of anomaly features P.
6: Stop when less than 10% of tweets are left.

7: end for
Output: His and topic statistics.

Algorithm 14 2nd Approach Testing

Input: Ttrain , Ttest ,His, L and I, number of iteration, P, set of anomaly features.

1: for i = 1:I do
2: Call testing algorithm to each Hi
3: Keep the statistics of the projection

4: end for
5: Out of at most 100I topics, select T with largest D(T) that the tweet belongs to.

6: If there exists any fp ∈ P for any topic, predict the testing tweet with property fp with

the data from training tweets having fp . Otherwise do the prediction normally.

7: Only predict those tweet such that the value C(t) ≥ β
Output: Prediction coordinate and accuracy.

4.3 Date, time, and language as features

Another feature that is available for the prediction is date and time. We

expect that when people mention an event or a location, they will do it at

the same date or the same time. This motivates us to include that in our

prediction.

4.4 Time

It is not surprising that the topics’ and users’ spatial distribution varies

with time. If we can take time into account when predicting locations, we

expect that it can improve the results. We used algorithm 11 because it

makes more sense to consider tweets in each time interval separately. An

example of one of the 100 topics of an iteration shows the effect of time in

heatmap distribution. This topic contains topic terms about night markets

26 Additional features

and clubs, and thus is expected to be active during night. We observe that

the distributions in the daytime and during the night are different.

Figure 4.1 Heatmap of Topic 67, Daytime

Figure 4.2 Heatmap of Topic 67, Nighttime

Another interesting topic is also shown in Figure 4.3. The topic is about

theatres. It appears that Vogue theatre is more popular than Scotiabank

theatre during the day, and the opposite happens during the night. The

topic, its top words, and its heat map during the day and night are shown in

Figure 4.3.

Time 27

Figure 4.3 Heat Maps Comparison between Day and Night of Movie Topics

This motivates us to use time as a factor in location prediction. An

approach we used is let f0 � (t0 , t1), f1 � (t1 , t2), . . . , fn−1 � (tn−1 , tn) be the
feature that each tweet is in that time interval. We calculate the distribution

separately for these time intervals. Then, suppose that there is a tweet t that
we want to predict its location, we find the topic that it belongs to by finding

the maximum probability that the tweet is in a topic (the maximum value

of row t in the matrix W from the LONMF), and find what time interval it

is in, then compare the results with the actual location of each tweet in the

testing data. It can be seen that there is an improvement in the accuracy of

location prediction when time effect is taken into account. This approach

follows Algorithm 13.

28 Additional features

Figure 4.4 Graph showing the percentage of correctly predicted tweets

within 2 kilometers in a given time frame

It appears that dividing days into two parts (day and night) gives the

best result. However, dividing the days into finer intervals doesn’t give

a more accurate result. Finer scale can be misleading because few tweets

can become a peak for the model. For example, in a three hours interval

division, the time from 3 A.M. to 6 A.M. has very few tweets, which means

that few tweets from some location could be considered in the model as a

peak. This makes the model less effective in finer time intervals. A way

to avoid this is to divide the time based on the density of tweets in that

interval, so that each interval (ti , ti+1) contains the same number of tweets.

This would avoid sparse time interval to mislead the model. It can be seen

that some topics are sensitive to both location and times, which is what gave

us some improvement in the accuracy.

4.5 Date

For date we use Algorithm 13 to find the anomaly, which would be the day

that most tweets occur to detect some events. The dataset span across 1100

dates from 2012-2015. We expect that when people talk about an event, they

Date 29

will talk about it at the same date. Suppose that for each topic T, there exists

a date dT such that there are many more tweets in dT than in other dates. We

use constant threshold and exact prediction for comparison between regular

LONMF and the modified algorithm shown in Figure 4.5. It appears that

almost no improvement to the result. This is possibly because any topic that

already has good prediction accuracy doesn’t need date to distinguish them.

Figure 4.5 Graph showing the percentage of correctly predicted tweets in

most popular date

30 Additional features

Figure 4.6 Graph showing the percentage of tweets in most popular date

Upon further inspection, we plotted the following graph on Figure 4.6

showing the percentage of the tweets on the most popular date on each topic.

It can be seen that the value is very low, which means that if we consider the

most popular date separately, very few tweets will change its value.

4.6 Language

Using language for the prediction is similar to using time. We cannot use

Algorithm 13 because when we try to detect the most popular feature, in this

case the algorithm will give out English, which will not be very useful. We

expect to use Algorithm 11 instead, which will cluster all features separately,

because we expect that tweets with the same foreign language could have

similar location distribution. We use the Python library that allows language

detection. However, we found that this could be difficult to do. Since each

tweet has only 10-15 words, it is possible that when it mentioned a foreign

product or restaurant name, the algorithm will decide that the whole tweet

is in another language, making it hard for us to define what language a tweet

Language 31

should belong too. Moreover, some tweets contain URL and hashtag that

is not necessarily meaningful, and cannot be put into a certain language.

These obstacles make the results showing that very few tweets are in English,

which is incorrect. More appropriate natural language processing for short

sentence should be used in the future for language processing.

Chapter 5

Algorithm Review

5.1 Algorithm Optimization

It appears that with iterative method, the time it takes increases linearly with

number of iteration. the following graphs show the amount of time taken in

each iteration of the algorithm. Since the training part relies on NMF which

has a fixed runtime, we will now focus on optimizing the testing part. The

time taken for algorithm withour optimization is shown in Figure 5.1, 5.2.

It is known that using for loop in the program takes a long time, and for

some of them we cannot avoid. This means we need to find the alternative

that is faster for them. This entails usingmatrix operation whenever possible.

Another part that requires optimization is the data structure we used. Since

our machine is large enough to hold the datasets.

34 Algorithm Review

Figure 5.1 Graph showing the increase in speed for each series of optimiza-

tion in the first part of testing algorithm

Figure 5.2 Graph showing the increase in speed for each series of optimiza-

tion in the second part of testing algorithm

Algorithm Alternative 35

1. In series 1, instead of calculating the pairwise distance from the

predicted grid to the actual grid using for loop, we did them using

matrices operations, and matrix filtering is used so we can calculate

which intervals the distance from the previous calculations fall into.

In addition, the calculation of location matrix is also vectorized.

2. In series 2, initially we wrote a for loop to find the best topic for each

tweet for each iteration, which entails double for loop. We instead

store the data into 3-dimensional matrix, A, where the dimensions are

iteration, projections and prediction coordinates, and tweets. It takes

advantage of the built-in matrix index slicing to get better algorithm

performance.

5.2 Algorithm Alternative

5.2.1 Other approaches in location prediction

NMF on more than one feature, in this case location and text, is also

studied in other context. Yoo, et.al. studied Nonnegative Matrix Partial

Co-Factorization (NMPCF). Yoo et.al. used this technique to separate the

music into drum part and the harmonic part. Specifically, for a matrix X, we

want to findmatrices UD ,VD for the drum part and UH ,VH for the harmonic

part such that

X ≈ UDVT
D + UHVT

H

We can apply this approach to our algorithm by using WT ,HT and

WL ,HL as the text and location part respectively. We can solve this with

multiplicative update rule. First we find the gradient of the error function

L �
1

2

‖A −WT HT −WLHL‖2

F +
λ
2

‖Y −ULWL‖2

F

to get that

∂L
∂WT

� −AHT + WTWT
L HL + WLHT

L HT

∂L
∂HT

� −ATWT + HTWT
T WT + HLWT

L WT

∂L
∂WL

� −AHL + WLWT HT + WT HT HL

36 Algorithm Review

∂L
∂HL

� −ATWL + HLWT
L WL + HTWT

T WL

Note that if we write, for any matrix U

∂L
∂U

� [∂L
∂U

]+ − [∂L
∂U

]−

where both [∂L∂U]+ and [∂L∂U]−] are positive.
Then we can use the multiplicative update as in (Yoo et al., 2010) to get

the rules

U ← U �
[∂L∂U]+
[∂L∂U]−

where for any two matrices A, B, A � B is an entrywise product of A, B,
and

A
B is an entrywise division of A, B. The convergence of this is proven

in (Yoo et al., 2010).With this result, we can use WL ,WT to find topics that

are both sensitive in text and location, and proceed similarly to the existing

algorithm. Unfortunately, our data is large and the above multiplicative rule

above require O(mn), where m and n are the dimensions of matrix, which

is nonlinear, thus we cannot use our machine to calculate this quickly.

Algorithm 15 NMPCF Training

Input: Ttrain , and I, number of iteration, Li a set of passing tweets for round i.
1: Set L

1
to be all tweets, which is Ttrain

2: for i=1:I do
3: Use NMPCF on the appended bag of words and location [A|L′] of Li to get

Wi ,T ,Hi ,T ,Wi ,L ,Hi ,L .
4: Calculate most popular location for each topic from arg max(Wi ,T) and arg max(Wi ,L).
5: Remove those tweets that its location is not in the most popular location for each topic.

6: Add those tweets into Li .
7: end for

Output: His ,topic statistics, and all Li .

In order to apply NMPCF to our algorithm, we proposed the modified

training algorithm for location prediction shown in Algorithm 15. Note that

we don’t need to modify the testing algorithm because we used LONMF

only in the training part. The algorithm look at both the factored matrix in

location part and in text part, then it calculates the most popular location

for each topic. If a tweet has location that is not the most popular ones, it

should be reclustered in the next iteration. This makes sure that in the topics

Algorithm Alternative 37

of each iteration, the tweets in the same topic have the same location (or

within an acceptable error). This approach has an advantage that it doesn’t

require specifying the percentage threshold α the same way Algorithm 8

does. With further study on optimized NMPCF on sparse matrix, we could

use this algorithm to do location predition.

Chapter 6

Conclusion

6.1 Results and approaches summary

The approaches developed here are improvements to the approaches in

(Dukler, Han and Wang, 2016). NMF gives us a good way to cluster the

text based on the content, but not necessarily location. LONMF improves

this by properly modifying the input matrices. We took a step further and

improve LONMF with iterative approach to further investigate subtopics.

The algorithm takes advantage of the fact that NMF is a semisupervised task,

and repeatedly cluster the tweets to increase the prediction accuracy. The

results show that when the threshold is set to be increasing, which follows

from the fact that we are more confident as each iteration goes because we

have fewer tweets, the accuracy increase up to a number of iterations. This

is because the confident threshold has certain limits. Within the iterations,

some topics becomemore accurate, getmixedwith other topics, gets removed

since it passes the MSD thresholds, or become unchanged. It remains for us

to see how many iterations and what values of the parameters should be

used for best prediction accuracy, and what patterns the behavior of each

topic follows as it moves along in each iteration.

Althoughwe studied different features of the text, such as languages, and

the date and time of tweets, we found that only time can be used effectively.

Using time works fairly well because many activities of people tweeting in

each topic are done only at night or during the day, but more specific time

interval division doesn’t necessarily yield better accuracy since at late night

very few people tweets.

When we used language, we expect that in some parts of Vancouver, a

40 Conclusion

certain language can be more popular than the others, helping the location

prediction. Since most tweet is only about 10-15 words long, and could

contain incomplete or incorrect words, the algorithm is not accurate enough

to conclusively detect one language. For example, a tweet can be in English

but mention a product or restaurant name with other languages, making

it harder to confirm one language to the tweets. The algorithm also takes

hours to run to classify the languages, because it needs to compare the

tweets against large dictionary of foreign words and some words are used

in multiple western languages. Another issue is that certain language may

not support Ascii or UTF-8 encoding, so we had to filter them out in the

algorithm. In future work more flexible natural language processing should

be used.

When we used date, we expected that many topics could be centered in

some day of the years. However this is not the case because we found that

only approximately 0.5 − 1% of tweets in each topic has the most frequent

date, so that the increase in accuracy is not guaranteed.

6.2 Further work

Although optimization steps have been taken to make the algorithm faster,

moremodification to the algorithm itself canbedone to reduce computational

time. The algorithm will take time proportional to the number of iterations.

This can be computationally intensive andwe either need to find an algorithm

that is equivalent to iterative NMF or try to see if each iteration can use the

information from the previous iteration to reduce runtime. For example,

when iteration i uses |Ti | tweets with factored matrices Wi ,Hi , and iteration

i + 1 would use tweets Ti+1 ⊆ Ti with factored matrices Wi+1 ,Hi+1. We

could uses rows associated with Ti+1 of Wi and Hi to approximate Wi+1 ,Hi+1

without doing the entire NMF steps.

The approach in (Yoo et al., 2010) shows that Nonnegative Matrix Partial

Co-Factorization (NMPCF) could be used to cluster the tweets both in text

and location simultenously. We expected that factored matrices used in

Algorithm 15 will be more accurate than the factored matrices in LONMF

because it is well studied to work with multiple features matrix factorization.

However, the algorithm for solving NMPCF presented in (Yoo et al., 2010)

requires dense matrix multiplications, which is too computational intensive

for us to use on matrix of large size such as our tweet bag of words matrix.

In future work if we can develop NMPCF algorithm that is as effective in

Further work 41

using sparse matrix as LONMF, then we can use the algorithm to do location

prediction.

In using additional features, it may be necessary to use multiple features

at once. This is the idea that is suggested but not fully implemented in

our algorithm. It should also be noted that our algorithm is designed to

only use feature division or looking at subset of tweets with most popular

feature. However, some features could be more continuous and cannot be

analyzed in these ways. For example, when we use date, we may expect

certain distribution of tweets in day of the year to happen, not only the most

popular day. If we think of tweets distribution on date or time as function, it

could follow analytic patterns that is useful to us.

Bibliography

Adomavicius, Gediminas, and Alexander Tuzhilin. 2005. Toward the next

generation of recommender systems: A survey of the state-of-the-art and

possible extensions. IEEE Transactions on Knowledge and Data Engineering
17(6):734–749.

Agarwal, Apoorv, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca

Passonneau. 2011. Sentiment analysis of Twitter data. In Proceedings of the
Workshop on Languages in Social Media, 30–38. Association for Computational

Linguistics.

Akaike, Hirotogu. 1998. Information theory and an extension of the

maximum likelihood principle. In Selected Papers of Hirotugu Akaike, 199–
213. Springer.

Anderson, Reid, FanChung, andKevin Lung. 2006. Local graphpartitioning

using PageRank vectors. Computer Society, IEEE 475–486.

Ashbrook, Daniel, and Thad Starner. 2003. Using GPS to learn signifi-

cant locations and predict movement across multiple users. Personal and
Ubiquitous Computing 7(5):275–286.

Beale, Mark, Martin Hagan, and Howard Demuth. 2015. Neural Net-
work ToolboxTM : Getting Started Guide. The Mathworks, Inc., Natick, Mas-

sachusetts.

Bellotti, Victoria, Bo Begole, Ed H Chi, Nicolas Ducheneaut, Ji Fang, Ellen

Isaacs, Tracy King, Mark W Newman, Kurt Partridge, and Bob Price. 2008.

Activity-based serendipitous recommendations with the Magitti mobile

leisure guide. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 1157–1166. ACM.

44 Bibliography

Bo, Han, Paul Cook, and Timothy Baldwin. 2012. Geolocation prediction

in social media data by finding location indicative words. Proceedings of
COLING 2012: Technical Papers 1045–1062.

Burbey, Ingrid. 2011. Predicting future locations and arrival times of individuals.
Ph.D. thesis, Virginia Tech.

Candès, Emmanuel J, and Benjamin Recht. 2009. Exact matrix completion

via convex optimization. Foundations of Computational Mathematics 9(6):717–
772.

Carter, Simon, Manos Tsagkias, and Wouter Weerkamp. 2011. Twitter

hashtags: Joint translation and clustering. Webscienceorg .

Chang, Hau-wen, Dongwon Lee, Mohammed Eltaher, and Jeongkyu Lee.

2012. @ Phillies tweeting from Philly? Predicting Twitter user locations

with spatial word usage. In Proceedings of the 2012 International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2012), 111–118.
IEEE Computer Society.

Cheng, Chen, Haiqin Yang, Irwin King, and Michael R Lyu. 2012. Fused

matrix factorization with geographical and social influence in location-

based social networks. In AAAI, vol. 12, 17–23.

Cheng, Zhiyuan, James Caverlee, and Kyumin Lee. 2010. You are where

you tweet: a content-based approach to geo-locating Twitter users. In

Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, 759–768. ACM.

Compton, Ryan, David Jurgens, and David Allen. 2014. Geotagging one

hundred million Twitter accounts with total variation minimization. In Big
Data (Big Data), 2014 IEEE International Conference on, 393–401. IEEE.

Dalvi, Nilesh, Ravi Kumar, and Bo Pang. 2012. Object matching in tweets

with spatial models. WSDM 12 Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining 43–52.

Dodds, Peter Sheridan, Kameron Decker Harris, Isabel M Kloumann,

Catherine A Bliss, and Christopher M Danforth. 2011. Temporal patterns

of happiness and information in a global social network: Hedonometrics

and Twitter. PLoS ONE 6(12):e26,752.

Bibliography 45

Dukler, Lu Maples Suaysom, Han, and Wang. 2016. Social media data

analysis.

Eisenstein, Jacob, Brendan O’Connor, Noah A Smith, and Eric P Xing. 2010.

A latent variable model for geographic lexical variation. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing,
1277–1287. Association for Computational Linguistics.

Flatow, David, Mor Naaman, Ke Eddie Xie, Yana Volkovich, and Yaron

Kanza. 2015. On the accuracy of hyper-local geotagging of social media

content. In Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, 127–136. ACM.

Godin, Fréderic, Viktor Slavkovikj, Wesley De Neve, Benjamin Schrauwen,

and Rik Van de Walle. 2013. Using topic models for Twitter hashtag

recommendation. In Proceedings of the 22nd International Conference on World
Wide Web Companion, 593–596. International World Wide Web Conferences

Steering Committee.

Hamerly, Greg, and Charles Elkan. 2002. Alternatives to the k-means algo-

rithm that find better clusterings. In Proceedings of the Eleventh International
Conference on Information and Knowledge Management, 600–607. ACM.

Han, Bo, Paul Cook, and Timothy Baldwin. 2013. A stacking-based ap-

proach to Twitter user geolocation prediction. In ACL (Conference System
Demonstrations), 7–12.

———. 2014. Text-based Twitter user geolocation prediction. Journal of
Artificial Intelligence Research 49:451–500.

Hecht, Brent, LichanHong, Bongwon Suh, and EdHChi. 2011. Tweets from

Justin Bieber’s heart: the dynamics of the location field in user profiles. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
237–246. ACM.

Hofmann, Thomas. 1999. Probabilistic latent semantic indexing. In Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 50–57. ACM.

Hong, Liangjie, Amr Ahmed, Siva Gurumurthy, Alexander J Smola, and

Kostas Tsioutsiouliklis. 2012. Discovering geographical topics in the Twitter

stream. In Proceedings of the 21st International Conference on World Wide Web,
769–778. ACM.

46 Bibliography

Hong, Liangjie, and Brian D Davison. 2010. Empirical study of topic

modeling in Twitter. In Proceedings of the First Workshop on Social Media
Analytics, 80–88. ACM.

Hossjer, Ola, and Christophe Croux. 1995. Generalizing univariate signed

rank statistics for testing and estimating a multivariate location parameter.

Non-Parametric Statistics 4:293–308.

Hu, Bo, and Martin Ester. 2013. Spatial topic modeling in online social

media for location recommendation. In Proceedings of the 7th ACM conference
on Recommender Systems, 25–32. ACM.

Hu, Bo, Mohsen Jamali, and Martin Ester. 2013. Spatio-temporal topic

modeling in mobile social media for location recommendation. In 2013
IEEE 13th International Conference on Data Mining, 1073–1078. IEEE.

Inc, Twitter. 2016. Faqs about adding location to your tweets. URL

https://support.twitter.com/articles/78525.

Jurgens, David. 2013. That’swhat friends are for: Inferring location in online

social media platforms based on social relationships. ICWSM 13:273–282.

Kannan, Ramakrishnan, Grey Ballard, and Haesun Park. 2015. A high-

performance parallel algorithm for nonnegative matrix factorization. arXiv
preprint arXiv:150909313 .

Kim, Hyunsoo, and Haesun Park. 2008. Nonnegative matrix factorization

based on alternating nonnegativity constrained least squares and active set

method. SIAM Journal on Matrix Analysis and Applications 30(2):713–730.

Kim, Jingu, Yunlong He, and Haesun Park. 2014. Algorithms for non-

negative matrix and tensor factorizations: a unified view based on block

coordinate descent framework. Journal of Global Optimization 58(2):285–319.

Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. Matrix factorization

techniques for recommender systems. Computer 42(8):30–37.

Kuang, Da, Jaegul Choo, and Haesun Park. 2015. Nonnegative matrix

factorization for interactive topic modeling and document clustering. In

Partitional Clustering Algorithms, 215–243. Springer.

Kurashima, Takeshi, Tomoharu Iwata, Takahide Hoshide, Noriko Takaya,

and Ko Fujimura. 2013. Geo topic model: joint modeling of user’s activity

https://support.twitter.com/articles/78525

Bibliography 47

area and interests for location recommendation. In Proceedings of the Sixth
ACM International Conference on Web Search and Data Mining, 375–384. ACM.

Lai, Eric, Daniel Moyer, Baichuan Yuan, Eric Fox, Blake Hunter, Andrea L

Bertozzi, and Jeffrey Brantingham. 2014. Topic time series analysis of

microblogs. Tech. Rep. CAM14-76, University of California, Los Angeles.

Lawrence, Page, Brin Sergey, Rajeev Motwani, and Terry Winograd. 1998.

The pagerank citation ranking: Bringing order to the web. Technical report,

Stanford University.

Lee, Kisung, Raghu K Ganti, Mudhakar Srivatsa, and Ling Liu. 2014. When

Twitter meets Foursquare: tweet location prediction using Foursquare.

In Proceedings of the 11th International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, 198–207. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing).

Li, Hao, Baichuan Yuan, Cassidy Mentus, and Michelle Feng. 2016. Model
the development of themes in Twitter. 285J Report, University of California,

Los Angeles.

Li, Wen, Pavel Serdyukov, Arjen P de Vries, Carsten Eickhoff, and Martha

Larson. 2011. The where in the tweet. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management, 2473–2476.
ACM.

Lu, Hsin-Min, and Chien-Hua Lee. 2015. A Twitter hashtag recommenda-

tion model that accommodates for temporal clustering effects. Intelligent
Systems, IEEE 30(3):18–25.

Mahmud, Jalal, Jeffrey Nichols, and Clemens Drews. 2014. Home location

identification of Twitter users. ACM Transactions on Intelligent Systems and
Technology (TIST) 5(3):47.

Mall, Raghvendra, Rocco Langone, and Johan AK Suykens. 2013. Kernel

spectral clustering for big data networks. Entropy 15(5):1567–1586.

Mei, Qiaozhu, Chao Liu, Hang Su, and ChengXiang Zhai. 2006. A proba-

bilistic approach to spatiotemporal theme pattern mining on weblogs. In

Proceedings of the 15th International Conference on World Wide Web, 533–542.
ACM.

48 Bibliography

Meyer, Travis, Daniel Balague, Miguel Camacho-Collades, Hao Li, Katie

Khuu, P. Jeffrey Brantingham, and Andrea Bertozzi. 2016. A year in Madrid

as described through the analysis of geotagged Twitter data.

Otsuka, Eriko, Scott A. Wallace, and David Chiu. 2016. A hashtag recom-

mendation system for Twitter data streams. In Computer Social Networks,
1–26. University of PugetSound.

Papadimitriou, Christos H, Hisao Tamaki, Prabhakar Raghavan, and San-

tosh Vempala. 1998. Latent semantic indexing: A probabilistic analysis. In

Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 159–168. ACM.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,

Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David

Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.

2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12:2825–2830.

Priedhorsky, Reid, Aron Culotta, and Sara Y Del Valle. 2014. Inferring the

origin locations of tweets with quantitative confidence. In Proceedings of
the 17th ACM conference on Computer Supported Cooperative Work & Social
Computing, 1523–1536. ACM.

Rombach, Puck. 2011. Largest component. URL https://www.mathworks.
com/matlabcentral/fileexchange/30926-largest-component.

Sadilek, Adam, Henry Kautz, and Jeffrey P Bigham. 2012. Finding your

friends and following them to where you are. In Proceedings of the Fifth ACM
International Conference on Web Search and Data Mining, 723–732. ACM.

Schwarz, Gideon. 1978. Estimating the dimension of a model. The Annals
of Statistics 6(2):461–464.

Vardi, Yehuda, and Cun-Hui Zhang. 2000. The multivariate l1-median

and associated data depth. Proceedings of the National Academy of Sciences
97(4):1423–1426.

Von Luxburg, Ulrike. 2007. A tutorial on spectral clustering. Statistics and
Computing 17(4):395–416.

https://www.mathworks.com/matlabcentral/fileexchange/30926-largest-component
https://www.mathworks.com/matlabcentral/fileexchange/30926-largest-component

Bibliography 49

Wallach, Hanna M. 2006. Topic modeling: beyond bag-of-words. In

Proceedings of the 23rd International Conference on Machine Learning, 977–984.
ACM.

Wang, Xiaolong, Furu Wei, Xiaohua Liu, Ming Zhou, and Ming Zhang.

2011. Topic sentiment analysis in Twitter: a graph-based hashtag sentiment

classification approach. InProceedings of the 20thACMInternational Conference
on Information and Knowledge Management, 1031–1040. ACM.

Wit, Ernst, Edwin van den Heuvel, and Jan-Willem Romeĳn. 2012. âĂŸAll

models are wrong...âĂŹ: an introduction to model uncertainty. Statistica
Neerlandica 66(3):217–236.

Yang, Shuang-Hong, Alek Kolcz, Andy Schlaikjer, and Pankaj Gupta. 2014.

Large-scale high-precision topic modeling on twitter. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data
mining, 1907–1916. ACM.

Yin, Zhĳun, Liangliang Cao, Jiawei Han, Chengxiang Zhai, and Thomas

Huang. 2011. Geographical topic discovery and comparison. In Proceedings
of the 20th International Conference on World Wide Web, 247–256. ACM.

Yoo, Jiho, Minje Kim, Kyeongok Kang, and Seungjin Choi. 2010. Nonnega-

tive matrix partial co-factorization for drum source separation. In 2010 IEEE
International Conference on Acoustics, Speech and Signal Processing, 1942–1945.
IEEE.

Zachariah, Dave, Martin Sundin, Magnus Jansson, and Saikat Chatterjee.

2012. Alternating least-squares for low-rank matrix reconstruction. IEEE
Signal Processing Letters 19(4):231–234.

	Claremont Colleges
	Scholarship @ Claremont
	2018

	Iterative Matrix Factorization Method for Social Media Data Location Prediction
	Natchanon Suaysom
	Recommended Citation

	Abstract
	Acknowledgments
	Background and Introduction
	Location Prediction on Social Media Data
	Description of the Datasets
	The approaches to location prediction

	Nonnegative Matrix Factoring Algorithm for location prediction
	Improving on NMF
	Iterative NMF

	Result from the iterative NMF
	Heatmap Construction
	Result from an improved iterative approach

	Additional features
	Separate Clustering Approach
	Separate Feature Predictions Approach
	Date, time, and language as features
	Time
	Date
	Language

	Algorithm Review
	Algorithm Optimization
	Algorithm Alternative

	Conclusion
	Results and approaches summary
	Further work

	Bibliography

