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ANALYSIS OF A RECURRENCE ARISING FROM A
CONSTRUCTION FOR NONBLOCKING NETWORKS*

NICHOLAS PIPPENGER

Abstract. Define f on the integers n > 1 by the recurrence f(n) mAn{n, minm[ 2f(m) +
3f(n/m)}. The function f has f(n) n as its upper envelope, attained for all prime n. The goal of
this paper is to determine the corresponding lower envelope. It is shown that this has the form f(n)
C(logn)1+1/ for certain constants - and C, in the sense that for any > 0, the inequality f(n) <_
(C+)(logn) 1+1/’ holds for infinitely many n, while f(n)

_
(C-)(logn)1+1/ holds for only finitely

many. In fact, -y 0.7878... is the unique real solution of the equation 2- + 3- 1, and C
1.5595... is given by the expression C ((2- log2 + 3- log3)1/)/(( + 1)(15- log+1 5

log+l kl 1/)3-- Eh<k<7 lOg/-t-1 - + ES<k<15 --) This paper also considers the function f0
defined by replacing the integers n > 1 with the reals x > 1 in the above recurrence: fo(x)
min{x, infl<y<x 2f0(y) + 3fo(x/y)}. The author shows that fo(x) Co(logx) 1+1/, where Co
1.5586... is given by Co 6e (2- log2- + 3-’ log 3-)1/ (-/(--t- 1)) 1+1/ and is smaller than
C by a factor of 0.9994

Key words, asymptotic analysis, recurrence relation

AMS subject classification. 26A12

1. Introduction. Our goal in this paper is an analysis of the recurrence

(1.1) f(n) min {n, min2f(m) 3f(n/m) l
for the function f N N, where N denotes the set of integers exceeding 1. The
value of f(n) depends strongly on the factorization of n. Thus for example we have
f(n) n whenever n is prime, since then the inner minimization is over an empty
set of factorizations. This example characterizes the "upper envelope" of f, since the
outer minimization ensures that f(n) <_ n always holds.

In the motivation for the study of this recurrence, which will be presented in 2,
f(n) is interpreted as a "cost" and n as a "benefit." We are thus led to seek the
corresponding "lower envelope" of the function f, where the relationship between cost
and benefit is most favorable. Our main result, Theorem 6.1, shows that this lower
envelope takes the form

f(n) C(log n)1+1/

(for certain constants and C), in the sense that for any > 0 the inequality

(1.3) f(n)

_
(C -- )(log n)l+l/7

is satisfied for infinitely many values of n, while

(1.4) f(n)

_
(C e)(logn)l+l/7
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is satisfied for only finitely many.
solution of the equation

The constant -y 0.78788... is the unique real

(1.5) 2-n + 3-n- 1,

while the constant C- 1.5595... is given by
(.)
C "Y (2- log 2 + 3- log 3)1/n

1/-y"
(’y + 1) (15- log+1 + 3- 5<k<71ogn+l k+l

__
E8<k<15 log7+1 --)kk+-I

It may seem surprising that a recurrence as simple as (1.1) can give rise to an expression
as complicated as (1.6); nevertheless, we shall find a simple interpretation for each of
the twelve terms that are summed in the denominator.

In preparation for the derivation of our main result, it will be convenient to
analyze some related recurrences that provide upper and lower bounds for f, while
being much easier to analyze. First, for any integer d > 1, we may consider the
function fd that is defined by the same recurrence as f but with the domain being
restricted from the set N of all integers exceeding 1 to the set Nd of all integral powers
of d exceeding 1:

(1.7) fd(n) min {n, min2fd(m) + 3fd(n/m)}
The multiplicative semigroup formed by the integral powers of d constitutes a sub-
semigroup of the multiplicative semigroup of integers. Thus we have fd(n) > f(n)
wherever the left-hand side is defined, since any factorization that participates in the
minimization on the left-hand side also participates on the right-hand side. On the
other hand, the factorizations that participate on the left-hand side are sufficiently
uniform as to eliminate the discrepancy between the upper and lower envelopes, so we
shall obtain a simple asymptotic expression for fd.

We shall show in Theorem 4.1 that for d > 5 we have

(1.8)

where

(1.9) Cd

fd(n) Cd(log n)+:,

4d7 (2- log 2 + 3-n log 3)+ 1 log+1 d

The expression (1.9) assumes its minimum for d- 10, with C0 1.6296
For 2 _< d _< 4 the situation is more complicated, since in these cases the first

member of the outer minimization in (1.7) can minorize the second when n is a power
of d, whereas this occurs only for n d when d > 5. Nevertheless, we shall show in
Theorem 4.2 that (1.8) continues to hold, with C2 1.5909... given by

(1.1.0) C2
/+ 1 (4- + 12-n)log+l 2

C3 C9 1.6311..., and C4- 1.6867... given by

(1.1.1) C4 7 (2- log2 + 3-n log3)7 + 1 (28- + 36-) log +14
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Thus the minimum of Cd over all d occurs for d 2.
Finally, we may consider the function f0 that is defined by the same recurrence

as f but with the domain being extended from the set N of all integers exceeding 1
to the set No of all reals exceeding 1:

(1.12) fo(x) min (x, inf
lyx

2fo(y) + 3fo(x/y)}.
(The infimum in (1.12) is in fact achieved as a minimum, as will become clear from
the analysis, but we shall not need this fact.) Here we have a supersemigroup of the
multiplicative semigroup of integers, so we have fo(n)

_
f(n) for all integers n > 1.

Again the discrepancy between upper and lower envelopes disappears, and we obtain
a simple asymptotic formula for f0.

We shall show in Theorem 5.1 that

(1.13) fo(X) Co(log X) 1+1/’)’,

where Co 1.5586... is given by

(1.14) Co 6e (2- log 2" + 3-’)’ log 3’)1/7 , -Ji-- i

in which e 2.7182... is the base of natural logarithms.

2. Nonblocking networks. The analysis of the recurrence (1.1) may be fol-
lowed without reference to or knowledge of nonblocking networks. For the sake of
motivation, however, we shall derive the recurrence against its historical background.

A "network" is an interconnection of "nodes" by means of "switches." In a
network there are some distinguished nodes called "inputs," some other distinguished
nodes called "outputs," and some distinguished sets of switches called "routes," each
of which forms a path from an input to an output. A network is "nonblocking" if,
given any disjoint set of routes (no two of which have a node or switch in common)
and given any free input and free output (neither of which are involved in any of the
given routes), there is a free route (disjoint from the given routes) from the given input
to the given output. (The knowledgeable reader will recognize here the definition of a
"strictly" nonblocking network. As this is the only type with which we shall have to
deal in this paper, we shall omit the qualification "strictly.")

One of the basic questions concerning nonblocking networks is: given integers
n > 1 and rn > 1, what is the smallest possible number G(n, rn) of switches in a
non-blocking network with n inputs and rn outputs? Since inputs and outputs appear
symmetrically in the definitions, we have

by taking "mirror images."
A nonblocking network can be constructed by letting the inputs and outputs be

the only nodes and by installing a separate switch between each input and each output.
Such a network, which is called a "crossbar," shows that

(2.2) G(n, m) < nm.
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FIG. 1.

In 1953, Clos [C1] introduced what has become the most widely known method for
the construction of nonblocking networks. His idea is to construct a large nonblocking
network by interconnecting smaller subnetworks. In his construction the subnetworks
are arranged in three "stages," as shown in Fig. 1. The first stage, shown at the
left, contains a subnetworks, each with b inputs and 2b outputs. The second stage
contains 2b subnetworks, each having a inputs and a outputs. The inputs of the
first-stage subnetworks are the inputs of the overall network; the outputs of the first-
stage subnetworks are identified with (that is, connected by "wires" to) the inputs of
the second-stage subnetworks, in such a way that each first-stage and each second-
stage subnetwork have exactly one node in common. The third stage, shown on the
right, contains a subnetworks, each having 2b inputs and b outputs. The outputs of
the third-stage subnetworks are the outputs of the overall network; the outputs of the
second-stage subnetworks are identified with the inputs of the third-stage subnetworks,
in such a way that each second-stage and each third-stage subnetwork have exactly
one node in common. Each route in the overall network consists of a route through
a first-stage subnetwork, its extension through a second-stage subnetwork, and finally
its extension through a third-stage subnetwork.

A simple argument based on the pigeon-hole principle shows that the overall
network is nonblocking if each of the subnetworks is nonblocking. This construction
thus shows that

(2.3) G(ab, ab) < aG(b, 2b) + 2bG(a, a) + aG(2b, b)
< 2aG(b, 2b) + 2bG(a, a).

(The attentive reader may have noticed that the argument remains valid even if 2b is

replaced by 2b- 1. We shall ignore this sharpening of the inequality, however, as it
leads off the path we wish to follow.)

If crossbars are used in each of the three stages and if the parameters a and b are
each chosen to be about nl/2, the resulting construction shows that G(n, n) 0(n3/2).
It is clear that further progress can be made by using the method recursively, but Clos
did not succeed in finding the best way of doing this. In 1971, Cantor [Ca] presented
the two principles that underlie the best recursive use of Clos’s method. Firstly,
since the subnetworks in the outer stages have inputs and outputs in the proportion
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FIG. 2.

1 2 (or 2 1, which is equivalent by taking mirror images), the recursion should
be based entirely on such networks. This can be accomplished by giving the inner
subnetworks inputs and outputs in the proportion 1 2, whence the overall network
will have inputs and outputs in the same proportion. When this has been done, the
second-stage subnetworks have a inputs and 2a outputs and there are 2a third-stage
subnetworks. The resulting construction, shown in Fig. 2, shows that

(2.4) G(ab, 2ab) <_ aG(b, 2b) + 2bG(a, 2a) + 2aG(2b, b)
<_ 3aG(b, 2b) + 2bG(a, 2a).

If the parameters a and b were given equal values, the outer subnetworks would
be more numerous than the inner ones in the proportion 3 2 and any diseconomy
of scale would manifest itself more acutely in the outer stages. It follows that the
sizes of the outer subnetworks should be reduced and those of the inner subnetworks
increased. To discover the optimal choices of a and b, let F denote the the largest
function defined on the integers exceeding 1 and satisfying the inequalities

(2.5) F(n) <_ 2n2

and

(2.6) F(ab) <_ 3aF(b) + 2bF(a).

Comparing (2.2) and (2.4) with (2.5) and (2.6), we see that F(n) is the smallest pos-
sible number of switches in a nonblocking network built according to the construction
of Clos and Cantor. Furthermore, if we set f(n) F(n)/2n, we see that f satisfies
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the recurrence (1.1). Thus the minimizations occurring in (1.1) correspond to the
optimizations available in the construction of Clos and Cantor.

Cantor [Ca, 3] showed that for any > 0,

(2.7) f(n) O((logn)l+l/7+e))

for an infinite sequence of n, and Pippenger; [P1, 6] showed that

(2.8) f(n) O((log n)l+/7))
for an infinite sequence. Our Theorems 4.1, 4.2, and 6.1 can all be viewed as refine-
ments of and complements to (2.7) and (2.8) for various sequences.

The construction for nonblocking networks that we study is not the best asymp-
totically. Indeed, Cantor ([Ca], 4) gave a construction using O(n(logn)2) switches,
and Bassalygo and Pinsker [BP] gave a probabilistic argument showing the existence
of nonblocking networks with O(n log n) switches. By an old result of Shannon IS],
the rate of growth of this last result is the best possible. The result of Bassalygo and
Pinkser has since been obtained through an explicit construction; see Pippenger [P1]
for a presentation of all these results.

It is interesting to note that the results of 4 for fixed d > 1 correspond to the
assumption that all crossbars in a nonblocking network have certain fixed sizes, d or
a power of d; and it is curious that the choices d 10 and d 2 should have certain
optimality properties, since precisely these values have been favored historically in
the construction of telephone switching networks (following the widespread use of the
decimal and binary number representations by humans and computers, respectively).
The results of 5 similarly correspond to the assumption (contrary to fact) that cross-
bars could have any real (not necessarily integral) numbers of inputs and outputs; and
it is curious how little could be gained in this way: C and Co differ by less than one
part in one thousand!

3. Derivations. In this section we shall reinterpret our problem in terms of
trees, which will become the main objects of our attention in later sections. To see
the relevance of trees, consider the task of proving that

(3.1) f(n) < p

for some particular n and p. If n _< p, then (3.1) follows by the first member of the
outer minimization of (1.1). Otherwise, we must have f(n) 2f(rn)+ 3f(n/rn) for
some rnln. In this case we can reduce the task of proving (3.1) to that of proving

(3.2) f(m) <_ q

and

(3.3) f(1) <_ r

for some m and such that ml n and some q and r such that p 2q + 3r. In
either case, we may represent the proof of (3.1) in the form of a tree: in the first
case the tree reduces to a single vertex, its root; in the second case, the root has two
children, which are the roots of subtrees representing the proofs of (3.2) and (3.3). In
the remainder of this section we present the combinatorial machinery that formalizes
this representation.
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For the purposes of this paper, the "infinite tree" is the set V {2, 3}* of finite
words over the alphabet E {2, 3}. The words of V are called "vertices." The empty
word A is called the "root." If v is a word, the word v2 is called its "left child" and
v3 is called its "right child," v is called the "parent" of v2 and v3, and v2 and v3 are
called "siblings" of each other.

A "finite tree" (or simply a "tree") is a nonempty finite subset T c_ V that is
closed under taking parents and siblings. Every tree contains the root A. If vertex v
has a child in a tree T, then both its children are in T and v is called an "internal
vertex" of T. If v belongs to T but has no children in T, then v is called a "leaf" of
T. The number of internal vertices in a tree is one less than the number of leaves.

The "weight" W(v) of a vertex v is the product of the letters appearing in v, with
each letter appearing as a factor with the same multiplicity that it has in v. (This
definition accounts for our rather unorthodox use of 2 and 3 as the letters of a binary
alphabet.)

A "derivation" D (T, l) is a tree T To together with an assignment 1D
of integers exceeding 1 to the leaves of T. If D is a derivation, the integer assigned
to a leaf v will be called the "load" of v and will be denoted 1D(V). The "capacity"
L(D) of a derivation D is the product of the loads of its leaves. The "cost" C(D) of
a derivation D is the sum, over all leaves, of the product of the weight of the leaf and
the load of the leaf.

The main result of this paper is based on the following observation: the solution
f(n) of the recurrence (1.1) is equal to the minimum cost of a derivation with capacity
n. This is easily proved by the inductive argument sketched in the opening paragraph
of this section.

Furthermore, we can extend this reinterpretation to the recurrences (1.7) and
(1.12) simply by restricting or extending the set of allowable loads. Specifically, if
we define a "d-derivation" for d > 1 to be a derivation in which all the loads are
integral powers of d, then fd(n) is the minimum possible cost of a d-derivation with
capacity n. Similarly, if we define a "0-derivation" to be like a derivation, except that
the loads may be any reals exceeding 1, then fo(x) is the minimum possible cost of a
0-derivation with capacity x.

4. Integral powers of d. In this section we shall analyze the recurrence (1.7),
starting with the case d >_ 5; later we shall also consider 2 _< d _< 4. The case d >_ 5
could actually be solved by reduction to a recurrence dealt with by Fredman and
Knuth [FK], but we shall use a slightly different analysis in order to prepare for other
cases treated later.

THEOREM 4.1. For d >_ 5, the solution fd to the recurrence (1.7) satisfies

(4.1) c ( og

where

(4.2) Cd
4d/ (2- log 2 + 3- log3 )+ 1 log+1 d

As observed in 3, fd(n) is the minimum possible cost of a d-derivation of capacity
n. When d _> 5, our problem is simplified by the following observation: for every
n dk, there exists a minimum-cost d-derivation of capacity n in which the load of
every leaf is d. To see this suppose that every minimal-cost d-derivation with capacity
n has a leaf with load at least d, where _> 2. Let D be a d-derivation with capacity
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n and the minimum possible number of loads equal to d, and let v be a leaf in

TD with load equal to 1D(V) d. Consider the derivation D obtained from D by
making v an internal vertex with leaves as children. If we let 1D,(V2) dl-1 and
1D,(V3) d, the capacity of D’ is the same as that of D. Furthermore, the cost of D
is no greater than that of D, since the contribution dtW(v) to D has been replaced
by the contribution (2d-1 + 3d)W(v) to D’, and 2d-1 + 3d _< d when d _> 5. This
contradicts the assumption that D has the minimum possible number of loads equal
to d and completes the proof of the observation.

We shall refer to the number of leaves in a tree as the "scale" of the tree and the
sum of the weights of its leaves as its "total weight." When the load of every leaf is
d, the capacity of a d-derivation is just dk, where k is the scale of its tree, and the
cost of a d-derivation is just d times the total weight of its tree. Thus a minimum-
cost d-derivation is one based on a tree that, among those with a given scale, has the
smallest possible total weight. This yields

(4.3) fd(dk) d(k),

where (k) denotes the minimum possible total weight of leaves in a tree with k leaves.
If T is a tree, we shall call its set of internal vertices its "kernel" and denote it

by K(T). The kernel of a tree is closed under taking prefixes. Conversely, any set K
closed under taking prefixes is the kernel of a tree T(K), obtained from K by adjoining
as leaves those vertices that are children of vertices in K but do not themselves appear
in K. Thus there is a one-to-one correspondence between trees and their kernels.

For any tree T, the set T \ K(T) is the set of leaves of T. It will be called the
"frontier" of T and be denoted by F(T).

If v is any vertex, we have W(v2)+ W(v3) 5W(v). Summing this identity over
all v E K(T), we obtain

E W(u)-l+4 E W(u),
ueF(T) ueK(T)

since a leaf u F(T) appears once as v2 or v3, the root appears once as v, and
each other internal vertex u K(T) appears once as v2 or v3 and once as v. Thus,
among trees of a given scale, those with the minimum total weight of their leaves are
also those with the minimum total weight of their internal vertices. This yields

(4.4) (k)- 1 + 4(I)(k- 1),

where (k- 1) denotes the minimum possible total weight of internal vertices in a
tree with k- 1 internal vertices.

We shall say that a tree is a "threshold tree" if the weight of every internal vertex
is less than or equal to the weight of every leaf. If from the set of vertices we choose
k- 1 with the smallest weights, the resulting set of vertices is closed under taking
prefixes, since the parent of a vertex v has a strictly smaller weight than v. Such a
set thus constitutes the set of internal vertices of a threshold tree with k leaves. Thus
there exist threshold trees of every scale. Furthermore, among trees of a given scale,
threshold trees have minimum total weight of their internal vertices (since this is how
their internal vertices were chosen) and, thus, have minimum total weight of their
leaves. This yields

(4.5) fa(d) d(1 + 40(k 1)),
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where (I)(k- 1) can now be interpreted as the sum of the weights of the k- 1 smallest-
weight vertices in the infinite tree. Our problem is now to determine the asymptotic
behavior of (I).

Let h(x) denote the number of vertices of the infinite tree having weight at most
x. This function satisfies the asymptotic formula

X’
(4.6) h(x)

where

H 2- log 2 + 3- log 3.

(Information theorists will recognize H as the entropy per independent flip of a biased
coin that falls heads with probability 2- and tails with probability 3-.) Formula
(4.6) was proved by Fredman and Knuth [FK], who used an analytic argument; an
elementary proof (in the technical sense) can be found in Pippenger IF2]. (This formula
is the only point at which the present paper is not self-contained.)

Let Wj denote the weight of the jth vertex of the infinite tree (when the vertices
are arranged in nondecreasing order by weight). Inverting (4.6) by raising each side
to the power 1if/, we see that

(4.8) Wj H1//jl/.

Summing over j we obtain

(4.9)

Combining (4.9) with (4.5) and using k- logd n yields Theorem 4.1.
For 2 < d <_ 4, the analysis given above breaks down: there may be no minimum-

cost d-derivations in which all loads equal d. This is best illustrated by the case d 2,
which we treat now.

THEOREM 4.2. We have

(4.10) f2() C2(log n) 1+1/’,

where

(4.11) C2 7 (2- log 2 + 3- log 3) 1/

7 + 1 (4- + 12-)log+12

We begin with a simple observation that we shall call the "ordering principle."
Suppose that we fix a tree T and a suite (that is, multiset) S of loads and ask which
loads should be assigned to which leaves in order to minimize the resulting cost. If
A <_ <_ Ak are the weights in nondecreasing order and B >_ >_ Bk are the
loads in non-increasing order, then the minimum possible cost is -,<j<k AyBj (this
is simply Chebyshev’s inequality). In particular, the smallest load should be assigned
to the leaf with the largest weight, and vice versa.
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Our next task is to determine what loads can appear on leaves of a minimum-cost
2-derivation; we claim that, excluding the trivial case n 2, these are 4, 8, and 16.

Suppose there is an optimal 2-derivation D in which some leaf has load 2. By
the ordering principle, we may assume this leaf has the largest weight of any leaf in
the tree; thus it is of the form v3 for some word v (this is the point at which we must
exclude the case n 2), and v2 is also a leaf (for if it were the root of a subtree, all
the leaves of this subtree would have weight larger than that of v3). Let 2 be the
load of the leaf v2 in D. Let D be the 2-derivation obtained from D by making v
a leaf with load 2t+l. Then D has the same capacity as D. Furthermore, D has
smaller cost than D, since the contribution 2t+lW(v) of v to C(D’) is less than the
contribution (2.2 + 3.2)W(v) of v2 and v3 to D. This contradicts the assumption
that an optimal 2-derivation can contain a leaf with load 2.

Now suppose that there is an optimal 2-derivation D in which some leaf v has
load 2t, where >_ 5. Let D be the 2-derivation obtained from D by making v an
internal vertex, with leaves as children. If we let lD,(V2) 2t-2 and 1D,(V3) 4, then
the capacity of D is the same as that of D. Furthermore, the cost of D is less than
that of D, since the contribution (2.2t-2 + 3.4)W(v) of v2 and v3 in D’ is less than
the contribution 2tW(v) of v to D. This contradicts the assumption that an optimal
2-derivation can contain a leaf with load 2t, where _> 5, and completes the proof of
the claim that optimal 2-derivations contain only 4, 8, and 16 as loads.

Next we claim that in an optimal 2-derivation, no leaf of the form v2 (that is,
no "left leaf") can have load 4. Suppose that D is an optimal 2-derivation in which
lD(v2) 4. If the subtree rooted at v3 has capacity greater than 4, then we may obtain
a 2-derivation with the same capacity as, but lower cost than, D by exchanging the
subtrees rooted at v2 and v3. On the other hand, if v3 is a leaf with load 4, we may
obtain a 2-derivation with the same capacity as, but lower cost than, D by making v
a leaf with load 16. In either case we obtain a contradiction, proving that no left leaf
can have load 4.

In what follows we shall confine our attention to 2-derivations in which all loads
are 4, 8, and 16 and in which no left leaf has load 4; we shall call these "admissi-
ble" 2-derivations. Define Do to be the admissible 2-derivation in which the root A is
the only leaf, with load 8. Now consider three operations, which we shall call "pro-
motions," that transform admissible 2-derivations into other admissible 2-derivations.
The promotion (v, 4) will be applicable to any admissible 2-derivation D in which v is
a leaf with lD(V) 4; the result of applying (v, 4) to D is the admissible 2-derivation
obtained from D by increasing the load of v to 8. The promotion (v, 8) will be appli-
cable to any admissible 2-derivation D in which v is a leaf with lD(v) 8; the result
of applying (v, 8) to D is the admissible 2-derivation obtained from D by increasing
the load of v to 16. The promotion (v, 16) will be applicable to any admissible 2-
derivation D in which v is a leaf with 1D(V) 16; the result of applying (v, 16) to D
is the admissible 2-derivation obtained from D by making v an internal vertex with
leaves as children, assigning 8 as the load of v2 and 4 as the load of v3.

Any admissible 2-derivation D with capacity at least 8 can be obtained by starting
with Do and applying a sequence of promotions; this is easily proved by induction on
the capacity of D. [The basis is capacity 8. The inductive step breaks into three cases:
if D has a leaf v with load 16, then D can be obtained by applying promotion (v, 8)
to an admissible 2-derivation with one-half the capacity (which can by the inductive
hypothesis be obtained from Do by promotions); if D has a right leaf v with load 8,
then D can be obtained by applying promotion (v, 4) to an admissible 2-derivation
with one-half the capacity; and otherwise D, if it is not the basis, must contain an
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internal vertex v with leaves as children, with 8 as load of v2 and 4 as load of v3, so
that D can be obtained by applying promotion (v, 16) to an admissible 2-derivation
with one-half the capacity.]

Any promotion doubles the capacity of the admissible 2-derivation to which it is
applied. We shall assign a "cost" C(P) to each promotion P as follows: the cost of
the promotion (v, 4) is 4W(v), the cost of (v, 8) is 8W(v), and the cost of (v, 16) is

12W(v). Then if application of promotion P to admissible 2-derivation D yields D,
we have C(D’) C(D) + C(P).

Among promotions, some are prerequisite to others: the promotion (v, 8) is pre-
requisite to (v, 16), the promotion (v, 16) is prerequisite to both (v2, 8) and (v3, 4),
and the promotion (v3, 4) is prerequisite to (v3, 8). In every case, however, if P is pre-
requisite to Q, then the cost of P is at most the cost of Q. In particular, we can order
all possible promotions in a sequence P1, P2,..., Pj,... in such a way that: (1) the
costs are nondecreasing, and (2) each promotion is preceded by all of its prerequisites.
It follows that the result of applying P1,..., Pk-3 in order to Do is a minimum-cost
2-derivation with capacity 2k. This yields

(4.12) f2(2k) 8+ E C(Pj).

Our problem is now to determine the asymptotic behavior of C(Pj).
Let g(x) denote the number of promotions with cost at most x. We can write

(4.13) g(x) g4(x) -- gS(X) -[- g16(X),

where g4(x), gs(x), and gl6(X) denote the numbers of promotions of the form (v, 4),
(v, 8), and (v, 16), respectively, with cost at most x. Since the cost of (v, 16) is 12W(v),
we have

(4.14) g16(x) h(x/12).

Since the cost of (v, 8) is 8W(v), we have

(4.15) gs(x) h(x/8).

There is a promotion (v, 4) if and only if v is of the form u3; since the cost of (v, 4) is

4W(v)- 12W(u), we have

(4.16) ga(x) h(x/12).

This yields

(4.17) g(x) 2h(x/12) + h(x/8)
x

(2.12- + 8-)-
x

(12- + 4-)-,
where we have used the identity (1.5) to obtain the last line from its predecessor.

Inverting (4.17) by raising each side to the power 1/-, we see that

+
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Substituting this formula in (4.12) and summing yields (4.10) and (4.11), completing
the proof of Theorem 4.2.

It is worth observing that the promotion (v, 16) that creates a load of 4 has
the same cost as the promotion (v3, 4) that destroys the load of 4. It follows that
the sequence of optimal promotions can be arranged so that the resulting optimal 2-
derivations each have at most one leaf with load 4. Thus we can arrange that "almost
all" the loads in an optimal 2-derivation are either 8 or 16.

The cases d- 3 and d- 4 are similar to d 2, and we shall only describe the
key points in the analyses. For d 3, we easily show that no optimal 3-derivation can
have a load as large as 81 and need not have any load as large as 27 (since this can be
replaced without increasing the cost by children with loads 9 and 3). Futhermore, no
left leaf can have a load of 3. Thus we need only consider "admissible" 3-derivations
in which all loads are either 3 or 9, and no left leaf has a load of 3. We can analyze
these by introducing promotions as before. We then observe that the promotion that
creates a load of 3 has the same cost as the promotion that destroys the load of 3.
Thus we can arrange that optimal 3-derivations have at most one leaf with load 3.
Since almost all the loads are then 9, we obtain the same asymptotic result as in the
case d 9:C3 Ca.

For d 4, a similar analysis shows that all loads in an optimal 4-derivation must
be either 4 or 16. Furthermore, no left leaf can have a load of 4. We can then continue
the analysis using promotions, and the result is

")’ ( _2-’ 1__g__22 +____3.--2 log_3 ) /’
"), + 1 \ (28-’ + 36-’) log"+ 4J

It is worthwhile observing that for 2 _< d < 4 the trees underlying optimal d-
derivations re threshold trees, just as they were for d _> 5; this is easily seen by
considering the promotions that increase the number of leaves in the tree.

5. Reals. In this section we shall nMyze the recurrence (1.12) obtained by
eliminating the integrMity constraint from (1.1).

THEOREM 5.1. We have

(5.1) fo(x) C0(log

where Co 1.5586... is given by

C 6e 2-’ lg 2" + 3-’ lg 3" /’ ( "), +17 )
1+1/’)’

As indicated in 3, our quest is for optimal 0-derivations. To determine these, let
us fix a tree T and ask how the loads of its leaves should be assigned so as to minimize
the cost, while achieving a prescribed capacity. (Later we shall determine how the
tree T should be chosen.)

We first claim that, among 0-derivations based on a prescribed tree T and having
a prescribed capacity x, a 0-derivation D with minimum cost must be such that there
exists a constant c such that for all leaves v E F(TD),

(5.3)

Thus the loads must vary as the reciprocal of the weights of their leaves. To see
this, suppose to the contrary that 1D(u)W(u) > 1D(v)W(v) for some leaves u and v.
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Set c’- V/1D(U)W(U)ID(v)W(v), and let D’ be the 0-derivation obtained from D by
changing the loads of u and v to lD,(U) c’/W(u) and 1D,(V) c’/W(v). Then D’
has the same capacity as D, but lower cost (as follows from the inequality between
geometric and arithmetic means). This contradiction proves the claim.

Next we shall ask which tree T, among those with k leaves, should be used to
construct an optimal 0-derivation. (Later we shall determine how k should be chosen.)

If the capacity of D is to be x, we must have

II x.

vEF(TD)

Multiplying (5.3) over all v E F(TD) yields

H
veF(TD)

=x II w(vl,
vF(TD)

and thus

vF(TD)

1/k

Since each leaf contributes c to the cost of D, we have

C(D) kxl/k (\,ElI(TD W(v))
1/k

Thus the optimal tree T is one that minimizes the geometric mean of the weights of the
leaves and, therefore, given that the number of leaves is fixed, minimizes the product
of the weights. And since the logarithm is an increasing function, it is equivalent to
minimize the sum of the logarithms of the weights of the leaves.

If v is any vertex, we have log W(v2) + log W(v3) log 6 + 2 log W(v). Summing
this identity over all v E K(T), we obtain

(5.7) E logW(u)-logl+(k-1)log6+ E logW(u),
uF(T) uEK(T)

since each leaf u F(T) appears once as v2 or v3, the root appears once as v, and
each other internal vertex u K(T) appears once as v2 or v3 and once as v. When k
is fixed, the right-hand side of (5.7) is minimized by choosing the k- 1 vertices v with
the smallest W(v) to be the internal vertices in K(T). Thus threshold trees, which
emerged as optimal for d-derivations (d > 1), are also optimal for 0-derivations.

It remains to determine the optimal value of k as a function of the capacity x.
To do this we shall determine the asymptotic behavior of the geometric mean U(k) of
the weights of the leaves in a threshold tree with k leaves. We shall show that

U(k) 6e-1/’H1/’k1/’.
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Using (5.7) we have

1
U(k)=exp E logW(v)

vEF(T)

1(=exp (k-1)log6+

1(=exp (k-1)log6+

log W(v))vEK(T)

l_j_k-1

From (4.8) we obtain

1
(5.10) log Wj 2 log j + log H + o(1).

Substituting (5.10) into (5.9) and estimating the sum by an integral yields (5.8).
From (5.8) we can complete the proof of Theorem 5.1 as follows. From (5.6) we

have

(5.11) C(D) kxl/kU(,)
6e-/’H/’k+l/xl/k"

Choosing k to minimize lgl+l/’xl/k yields

(5.12) k +___1 log x

and

e’ )l+l/"y(5.13) k’l+l//xl/k
/+ i (log x)l+l/")’.

Substituting (5.13)into (5.11) yields

(5.14) C(D) 6ell1"
/ (log x) I+I/y

-y+l

which completes the proof of Theorem 5.1.

6. Integers. We arrive in this section at our main result, the solution of the
recurrence (1.1).

THEOREM 6.1. For every e > O, we have

(6.1) f(n) <_ (C + e)(log n)1+1/

for infinitely many values of n but

(6.2) f(n) <_ (C e)(logn)l+l/
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for only finitely many, where
(6.3)

"7 (2-’ log 2’ + 3-’ log 3)a/,

(’)’ + 1)(15-’ log’+l + 3-’ 5<k<7 log’+l---a+l + -S<a<15 log"+1 k._.__l)1/’y"
Because f(n) is large when n is prime, we must focus attention on the lower

envelope. We do this by defining

(6.4) C’ liminf f(n)/(log)l+l/"y

so that our task is to prove that C C.
Let us say that an integer n is "good" if there is no larger integer m > n such

that f(m) <_ f(n). If n is not good, then for some larger m we have

f(m)/(log m)+x/7 < f(n)/(log n)+/".

Thus the limes inferior in (6.4) remains unchanged if we confine attention to good n.
We begin as in 4 with an analysis of the possible load values; we shall not obtain

the sharpest bounds here but merely aim to reduce the range that must be considered
later. Let us consider a minimum-cost derivation D for a good integer n; and let
us further suppose that, among derivations of this minimum cost, D has the largest
possible number of leaves.

First, we claim that D can have no load as small as 2. For if any leaf had load
2, this would certainly have to be the case for the leaf v3 of largest weight (by the
ordering principle), and the sibling of v3 is another leaf v2 (else it would subtend a leaf
of greater weight than v3). Suppose the load of v2 is l. Then the derivation obtained
from D by making v a leaf with load 21 would have the same capacity as, but lower
cost than, D.

Second, D cannot have a leaf v with load of 24: replacing v by leaves v2 with
load 6 and v3 with load 4 would leave the capacity and cost unchanged but increase
the number of leaves.

Third, D cannot have a leaf v with load of 25: replacing v by leaves v2 with load
5 and v3 with load 5 would leave the capacity and cost unchanged but increase the
number of leaves.

Finally, D cannot have a leaf v with load as large as 26. To see this, it will
suffice to show that we can find integers i and j such that ij > and 2i + 3j l, for
then we could replace v by leaves v2 with load and v3 with load j and increase the
capacity while leaving the cost unchanged; this contradicts the assumption that the
capacity of D is good.

If we plot the line 2i + 3j and the hyperbola ij in the real (i, j) plane,
they intersect at two points with/-coordinates

(6.5)
+/- v/l2 24/

The difference between these/-coordinates is

(6.6) Ai----
v/12 24/

2
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We will have Ai > 3 if 12 24/> 36; this in turn holds when > 12 + 2x/ and, thus,
certainly when >_ 12 + 2x/ 26.

The line 2i + 3j contains infinitely many lattice points (points with integral
coordinates); the/-coordinates of successive such lattice points differ by 3, since adding
3 to i and subtracting 2 from j leaves the sum 2i + 3j unchanged. Thus there must
be a lattice point whose/-coordinate lies in the interval whose endpoints are given by
(6.5). For this point (i, j) we have 2i + 3j and ij > l, as desired.

Thus every load on an optimal derivation with a good capacity and a maximal
number of leaves is at least 3 and at most 23. We also claim that, in such a derivation
D, if v has leaves v2 with load i and v3 with load j for children, then 2i + 3j _> 24. For
the maximum of ij subject to the constraint 2i + 3j is/2/24. Thus if 2i + 3j < 24,
the derivation obtained from D by making v a leaf wih load ij will have the same
capacity as, but smaller cost than, D.

We next claim that the tree T underlying the derivation D is a threshold tree.
Suppose to the contrary that T contains an internal vertex u and a leaf v with W(u) >
W(v). We may assume that u has leaves u2 and u3 as children (since if not we may
transfer attention from u to one of its children). Let h, i, and j be the loads of the
leaves v, u2, and u3, respectively. As we have seen above, we must have h _< 23 and
2i + 3j _> 24. Thus we obtain

(6.7) -h + 2i + 3j > 0.

Consider now the tree T obtained from T by making u a leaf and making v an
internal vertex with children v2 and v3 as leaves. Now let us create a derivation D
from the tree T’ by assigning the loads h, i, and j in some order to the leaves u, v2,
and v3 and letting the loads of all other leaves be the same as in D. Then D has the
same capacity as D. We shall show that there is some order of assignment that results
in D having a smaller cost than D. The analysis breaks into three cases, depending
on how W(u) ranks among 2W(v) < 3W(v).

First, suppose that 3W(v) < W(u). Then by the ordering principle we should
assign h, i, and j to v2, v3, and u, respectively. These three loads contribute hW(v)/
i2W(u) + j3W(u) to C(D) and h2W(v) + i3W(v) +jW(u) to C(D’). If this does not
decrease the cost, that is, if C(D’) C(D) >_ 0, then

(6.8.) hW(v) + i(3W(v) 2W(u)) j2W(u) >_ O.

Multiplying (6.7) by W(v) and adding the result to (6.8) yields

(6.9) i(hW(v) 2W(u)) + j(3W(v) 2W(u)) > 0.

This is a contradiction, since 3W(v) < W(u) implies that the coefficients of i and j
are each strictly negative.

Secondly, suppose that 2W(v) < W(u) <_ 3W(v). Then we assign h, i, and j to
v2, u, and v3, respectively. These three loads contribute hW(v)+ i2W(u)+ j3W(u)
to C(D) and h2W(v) + iT(u) + j3W(v) to C(D’). If this does not decrease the cost,
then

(6.10) hW(v) iT(u) + j (3W(v) 3W(u)) >_ 0.

Multiplying (6.7) by W(v) and adding the result to (6.10) yields

(6.11) i(2W(v) W(u)) + j(6W(v) 3W(u)) > 0.
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This is a contradiction, since 2W(v) < W(u) implies that the coefficients of and j
are each strictly negative.

Finally, suppose that W(v) < W(u) <_ 2W(v). Then we assign h, i, and j to u,
v2, and v3, respectively. These three loads contribute hW(v) + i2W(u) + j3W(u) to
C(D) and hW(u) + i2W(v) + j3W(v) to C(D). If this does not decrease the cost,
then

(6.12) W(u)) + + aj(W(v) >_ o.

But this contradicts (6.7), since W(v) < W(u). Thus the assumption that an internal
vertex v has greater weight than a leaf u leads to a contradiction, completing the proof
that threshold trees are optimal.

Now that we know that optimal derivations are based on threshold trees and that
their loads are at least 3 and at most 23, it remains to determine the number of leaves
that should be assigned each of these loads (since, then, the ordering principle will
tell us which loads to assign to which leaves). Let T be a threshold tree, and let y
denote the largest weight of an internal vertex. We shall renormalize the weights of
the leaves by setting r/v W(v)/y for each leaf v E F(T). Then we have r/v _> 1,
since T is a threshold tree. Furthermore, we have r/v _< 3, since the weight of a leaf is
at most thrice the weight of its parent, which is an internal vertex. Finally, we have
r/v _< 2 unless v is a "right" leaf (that is, a leaf of the form u3), since the weight of a
left leaf is at most twice the weight of its parent, which is an internal vertex.

We shall show that, if we choose a leaf v at random from a threshold tree with
k leaves, with all k leaves being equally likely, the value of r/. has a distribution that
tends as k --+ c to a particular density function on the interval 1 _< r/_< 3, which is
continuous except for a single jump at r/- 2.

First, let us fix r/and e such that 2 < r/ < r/+ e < 3 and consider the number
E(y, r/,) of leaves v such that r/ < r/ <_ r/+ . Such leaves are right leaves (since
r/ > 2) and are in one-to-one correspondence with internal vertices u such that r/y/3 <
W(u) <_ (r/ + e)y/3. Using (4.6), we obtain

(6.13)

Again using (4.6), we have k y’v/H. Thus the distribution of leaves in the interval
2 < r/< 3 aymptotically follows the density function

(6.14) (r/) 3-’’yr/’-.
We have normalized so that

(6.15) f dr/- 1 (2/3)’;

the reason for this will become clear shortly.
Next, let us fix r/and e such that 1 < r/< r/+ e < 2 and consider the number

E(y, r/,e) of leaves v such that r/ < r/. _< r/+ e. Such leaves may be either right
leaves or left leaves. The right leaves are in one-to-one correspondence with internal
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vertices u such that r/y/3 < W(u) < (r/+ )y/3, and the left leaves are in one-to-one
correspondence with internal vertices u such that r/y/2 < W(u) <_ (r/+ )y/2. Using
(4.6) and (1.5), we obtain

(6.16) E(, , ) (( + )/) (/)
+ (( + )/) (/)

(( + )/a) (/a)
H H
(( + //) (v/)+ H H

(v- + o(/).

Thus the distribution of leaves in the interval 1 < r/ < 2 aymptotically follows the
density function

(6.17) (r/) ;r/;-1.

We have normalized so that

2

(6.18) (r/) dr/- 2 1;

from (6.15), (6.18), and (1.5) we have f3 (r/)dr/= 1, so can be viewed as a proba-
bility density function on the interval 1 < r/< 3.

For each good integer n, let D(n) denote an optimal derivation with capacity n.
Let k(n) denote the number of leaves in TD(n). For 3 _< m _< 23, let kin(n) denote
the number of leaves v of TD(n) such that lD(n)(V) --m and let #m(n)- km(n)/k(n)
denote the fraction of such leaves. From the sequence of good integers, let us extract
an infinite subsequence of "special" integers such that, as n runs through the special
integers" (1) f(n)/(logn)l+l/"/tends to C’ (as defined in (6.4)), and (2) for each m in
the range 3 _< m _< 23, #re(n) tends to a limit #m. Condition (1) can be fulfilled by
the definition of C, and condition (2) because for each of the finitely many values of
m, #m(n) varies in the compact interval 0 _< #m(n) _< 1. Henceforth we confine our
attention to these special n. Of course, we have

(6.19) E #m- 1.
3<m<23

For each m, define Cm and m such that

Om

(6.20) (r/) dr/-- E TM
m<l

and

3

(6.21)

Let M denote the set of m such that #m > 0. Then we have 1 < Ctm

_
/m

_
3, and

Cm < , if and only if m E M. The half-open intervals (a,, m] for m E M form
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a partition of the interval (1, 3]. Thus for 1 < r/<_ 3 we may define a non-increasing
left-continuous step function on the interval (1, 3] by letting (r/) be the unique
value of m such that Cm < r/<_ m.

For special n we have

(6.22) log n log lD(n)(v)
vEF(TD(n))

and

/(n) ZO(n)(V)W(v).
vEF(TD(n))

The limiting distribution of the weights of leaves in threshold trees, the ordering
principle, and the definition of allow us to express the asymptotic behavior of the
sums in (6.22) and (6.23)using integrals as

and

3

log n k (r/) log (r/) dr/

3

f(n) ky (r/)r/(r/) dr/.

Since k--, yT/H and f(n)/(logn)l+l/")’ C’, we conclude that

H/’p
(6.6) C’

Q:+:/’

where

(6.27)

and

3

P (r/)r/(r/) dr/

,13Q (r/) log (r/) dr/.

Now if we let be any nonincreasing left-continuous step function defined on

(1, 3] and taking values in {3,..., 23}, then for each m in the range M of there (r/)
takes on the value m for r/in an interval of the form (a,, 3m]. From any threshold
tree Tk with k leaves and threshold y, we can obtain a derivation Dk by assigning to
each leaf v e F(Tk) the load (W(v)/y). Letting k (and with it y) tend to infinity,
we obtain a sequence of derivations with capacities

(6.29)

and costs

(6.30)

3

log nk k (r/) log (r/) dr/

3

C(D) ky (r/)r/(r/) dr/.
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Since we must have f(nk) <_ C(Dk), we conclude that

(6.31) C’- minF(),

where

(6.31’) F() Hx/’P()
Q())1+1/,

(6.32)

and

(6.33)
3

Q() (r/) log (r/) dr/

and the minimum is taken over all nonincreasing left-continuous step functions
defined on (1, 3] and taking values in {3,..., 23}. Thus we have reduced the determi-
nation of C to the solution of the variational problem (6.31).

First, we claim that the range M of the function minimizing (6.31) must be an
interval of consecutive integers. Suppose to the contrary that for some h > > j we
have 1 </h oi -/i oj < 3. Let us denote this common value by 5, and suppose
for now that 6 2. Let us define a new function / by choosing e > 0, changing

’-5-e(i-j) and/3 cj-hto/3- -6+e(h-i) The/ 5 to/, %
effect of this change on P is

(6.34) P(’)- P() (i- h) (r/)r/dr/+ (i- j)_5+e(h-i)f
-(-j)

(i h)(e(i j)(5)5 + O(e2))
+ (i j)(e(h i)(5)5 + O(e2))

o(:)

for e > 0 sufficiently small. The effect on Q is

(r/) dr/+ log(6.35)Q(’) Q() log
-(i-J)

(i) (e(i- j)(5)+ O(2))log

+ o ((h le(e + o()

[(h- log- (- )ogh (h-)o](+ o(.

for sufficiently small e > 0. The quantity in square brackets in (6.35) is strictly
positive, by the concavity of the logarithm. Thus the change from to i increases Q
to first-order in e but increases P only to second-order in e. It follows that by choosing
e > 0 sufficiently small, we obtain a contradiction to the assumption that minimizes

(6.31). In the exceptional case that 5 2, the same argument works if we introduce a
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factor of 3 to compensate for the discontinuity of : if we set/’h Oi’ 6 (i j)
5 + (h- i)3, we again obtain cancellation toas before, but now set /

first-order in P but not in Q. Thus we conclude that M is an interval of consecutive
integers.

Next we claim that if rn + 1 and rn both belong to M and if minimizes

(and therefore also log F()), then we must have

(6.36) /3m+ Cm 0 log
m+l
m

where

(6.37) o 7 + 1

7

Suppose that m+l O/m, and denote this common value by 5. Suppose for now that
5 2. Let us define a new function ’ by choosing a small number (of either sign)
and setting/+1’ am 5 + v. The effect of this change on P is

(6.38) P(’) P() ()r] dr]

+

and the effect on Q is

(6.39) Q(’) Q()(ogm+l)f+ (r]) dr]
m a5

The effect on log F is

0(5)5 7 + 1 0 (log (5)
(6.40) logr(’) logr()

p() 7 Q() + 0(02)"

Thus if (6.36) did not hold, we could choose a small value of (with appropriate
sign) and make the right-hand side of (6.40) strictly negative. This contradicts the
assumption that minimizes F() and proves (6.36). In the exceptional case that
6 2, the same argument works if we interpret () (2) (which has not yet been
defined) correctly. Specifically, if we wish to choose > 0, we should set (2)
3-2-1 (to make right-continuous at 2); and if we wish to choose < 0, we
should set (2) 2- (to make left-continuous at 2).

Finally, we claim that if 0log ((m + 1)/m)falls in the open interval (1,3), then
m + 1 and m-both belong to M. Suppose to the contrary that the largest element of
M is q <_ m. Let us define a new function ’ by choosing e > 0, changing aq 1
to aq 1 +, and setting a,+’ 1 and /m+x l+e. The change to P is

(m + 1 q)e(1) + O(e2), the change to Q is (log ((m + 1)/q))(1) + 0(2), and the
change to log F is

(6.40’) logr(,) logr() e() 7 + 1 e log -C- (1)
P() 7 Q() + O(2)’
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which is strictly negative for > 0 sufficiently small because 01og((m + 1)/q) >_
0log ((m + 1)/m) > 1. This contradiction shows that rn + 1 belongs to M when
plog ((m + 1)/m) > 1; a similar argument (setting am 3- and/ 3) shows
that rn belongs to M when 0log ((m + 1)/m) < 3.

At this point we have reduced the determination of the minimizing function
to the determination of the single parameter . Although 0 is defined by (6.37), we
do not yet know the values of P() and Q(), and thus we seek a more explicit
characterization of 0.

Assume for now that the set of values {01og((m + 1)/m)" 3 <_ re, m+ 1 <_ 23} is
disjoint from the set {1, 2, 3}. Then from (6.36) we can write

(6.41) [ 11(r])--
exp-i

Thus if we define r (1), s (2), and t (3), we have

[1](6.42) r=
-1exp

(6.43) s= 2_1exp

t
exp 1

Now we can evaluate the integrals in (6.32) and (6.33) by breaking the range of
integration into intervals, over each of which is constant; the results are

log (r/(r--1)) f0 log (q/(q+l))

(6.45) P() r
r>q>s dolog((q+l)/q)

2 olog(s/(s--i))+ s d + s 3-d
log((sWl)/s)

q d -d+
s>q>t olog((q+l)/q) log((t+l)/t)

Po + O+P+.,

where

(6.46) P0 7+____ (3t-+ 2s r)

and

(6.47) P,+. E lg’+l q+ 1

r>qs q
V ]07+1 q + 1

+ 3-’
q

s>q>_t
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and

(6.48) Q() (logr) fjl
eg(r/(r-1))

2 201og (s/(s--1))
+ (log s) T]7-1 dr/+ (log s)

log((s+l)/s)

+ (o q) a-v-
s>q>t olog((q+l)/q)

+ (log t) a-7- d
log((t+l)/t)

o +

r>q>s (q+l)/q)
T]7-- dl

where

st
(6.49) Q0 -log-

and

(6.50) Q7 E log7+1 q + 1 V ]orT+l q + 1
+ 3-7

q qr>q>_s s>q>_t

Note that P7+1 ((-- 1)/7)Q7. Combining (6.37) with (6.45)-(6.50), we conclude
that

(6.51) 8
3t + 2s-r

stlog 7-

We now observe that (6.42)-(6.44) and (6.51) have a unique solution, namely,

(6.52) r- 16, s- 8, t- 5,

and

(6.53) 8
15

5log

To verify this, it is convenient to define 8p,q p/log ((q + 1)/q), which is the value
of 8 for which b makes the step from q + 1 to q at p. Since r < 23, we must have
8 < 81,23 23.4964... and if 8 81,23, then (6.43) and (6.44) yield s 12 and
t 8. Since t > 3, we must have 8 > 83,2 7.3989... and if 8- 83,2, then (6.42)
and (6.43) yield r 7 and s 4. Thus we have r E {7,..., 23}, s E {4,..., 12}, and
t {3,..., 8}. The transitions among these possibilities occur when 8 takes on one
of the values 81,7,..., 81,22, 82,4,. 82,11, 83,3,..., 83,7. These 29 points, when sorted
into increasing order, divide the interval [83,2, 81,23] into 30 subintervals, and the values
of r, s, and t given by (6.42)-(6.44) are constant throughout each of these subintervals.
Thus there is a unique value of 8 given by (6.51) for each of these subintervals. In only
one case does this value of 8 fall into the subinterval: throughout the subinterval from
81,15 15.4949... to 83,5 16.4544..., (6.42)-(6.44) give r 16, s 8, and t 5,
whence (6.51) gives 8- 15/log 16.3703 (There are 30 cases to be considered
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here; the calculations could be done by hand with patience but were in fact done by
computer.) Thus we have established (6.52) and (6.53), on the assumption that the set
of values {log ((m + 1)/m) 3 _< m,m + 1 _< 23} is disjoint from the set {1,2,3} or
equivalently that 0 is not one of the values 01,7, a01,23, a02,4, 02,11, 03,2,..., 3,7.
To lift this assumption, we need only verify that (6.37) does not hold if takes on one
of these values. (There are 31 cases to be considered here, and again the calculations
were done by a computer.) Substituting (6.52) and (6.53)into (6.45)-(6.50) and (6.26)
and simplifying yields C’ C for C given by (6.3).

The outcome of the final search for r, s, t, and may seem fortuitous or obscure,
but it has a simple explanation. The complications of this section are due to the fact
that loads, and thus the function , can take on only integral values. If we drop this
constraint, recovering the problem of 5, we may describe the solution by saying that
(7) 6e/ is then the minimizing choice of . This corresponds to dropping the
ceiling brackets, replacing exp(/0) by the first two terms 1 + (?/0) of its power series
expansion and taking 6e 16.3096... in (6.41); and the values of r, s, and t
corresponding to this value of 0 according to (6.42)-(6.44) are r 16, s 8, and

We can also interpret the individual terms in the denominator of (1.6) in terms of
"promotions." Specifically, we can associate the term log+1 ((q + 1)/q) (for 8
15) or 3- log+1 ((q + 1)/q) (for 5 <_ q <_ 7) with the promotion of a load from q to
q + 1; and we can associate the term 15- log with the promotion of leaf with load
16 to a parent of leaves with loads 8 and 5. The expression for C is thus analogous to
those for C2 and Ca, though the justification is much more elaborate.

Finally, we observe that for any fixed > 0, (1.3) is fulfilled for infinitely many n
in a geometric progression. To see this, observe that we may replace the optimal values
of #m for 5 <_ m <_ 16 by rational numbers pm/q without increasing the value of
to more than C + . Then if we consider a sequence Ti of trees having qi leaves and
form from these a sequence D of derivations in which there are pmi leaves with load
m, the resulting derivations will have capacity (IIh_<m_<16 mP’) and cost satisfying
(1.3). It should be noted that this observation does not contradict the results of 4,
which dealt with the behavior of (1.1) restricted to geometric progressions: in the
observation the capacity n is confined to a geometric progression, but the divisor m
of n in (1.1) ranges over all proper divisors; in 4, both n and m were confined to the
geometric progression.
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