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Chapter 1

Introduction

In recent years, technological advances in animal tracking have renewed
interests in collective animal behavior, and in particular, locust swarms.
These swarms pose a major threat to agriculture in northern Africa, the
Middle East, and other regions. In their early life stages, locusts move in
hopper bands, which are huge aggregations traveling on the ground. Our
main goal is to understand the underlying mechanisms for the emergence
and organization of these bands. We construct a mathematical model that
reflects experimental observations of individuals’ behavior [1] and study the
macroscopic emergent behavior of the group through numerical simulation.

This work is organized as follows. In Chapter 2, we present a literature
review of articles that provide the biological background onwhich ourmodel
is built. Key information from each article thatmight be relevant to themodel
is outlined in bullet points. In Chapter 3, we introduce the mathematical
model of locust motion on the infinite 2-dimensional plane. The equations of
motion are given, andwe also present ourmethods of estimating the relevant
parameters in the model. The results of the estimations are summarized in
Table 3.1. In Chapter 4 we present some simulation results in Matlab. In
particular, we give examples of parameters at which a phenomenon known
as fingering occurs. We also present results for a few extreme cases where
the parameters are verymuch exaggerated. In Chapter 5, we developmetrics
for characterizing the behavior of the swarm in our simulations. We also
build a clustering algorithm to identify the fingers in the swarm. In Chapter
6, a new model is presented for locust motion on the periodic rectangular
domain, and an addition equation is added to account for attraction between
locusts. In Chapter 7, a PDE model on a periodic domain is derived. The
stationary solutions are found under certain assumptions, and the stability
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of these solutions are studied. Finally in Chapter 8, we present a summary
of the work that has been done and some possible future directions.



Chapter 2

Literature Review

In this section we give an overview of some of the biological literature that
is relevant to our research. While not all of the information are used in the
model, the information in this chapter could provide useful directions for
future work.

2.1 Desert Locust Guidelines, Symmons and Cress-
man (2001)

This paper gives basic information on the biology and behavior of the Desert
Locust. We summarize the some of the useful information.

2.1.1 Biology of Locusts

Adult locusts can form swarms which may contain thousands of millions
of individuals and which behave as a unit. The non-flying nymphal or
hopper stage can form bands, where a band is defined as a cohesive mass of
hoppers that persists and moves as a unit. Locusts have two different states
called phases: solitarious and gregarious. When locusts are present at low
densities, the individuals are solitarious. As locust numbers increase, they
cluster into dense groups and they become gregarious. Being touched by
others, especially on the outer surfaces of the hind femora (thighs), results
in locusts being attracted rather than repelled by others, and so they form
groups.
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2.1.2 Hopper Groups and Bands

As hopper numbers increase in certain habitats, their behavior changes -
they accumulate and become concentrated. This can happen when hoppers
are sheltering in vegetation, during basking, feeding and roosting, and when
they are moving on the ground. Grouping often occurs in open habitats
that are less uniform, where there are patches of relatively dense vegetation
separated by large areas of bare soil. When low densities of solitary hoppers
are present in uniform habitats consisting of low plants and bare soil of in
habitats of uniform dense vegetation, groups are less likely to form. Shortly
after hatching, hoppers form small dense black patches. These patches
may cover no more than a few tens of square centimeters, but contain
several thousand insects per square meter. During warm and sunny days,
hopper bands follow a pattern of behaviour alternating between roosting
and marching throughout the day. On overcast days, bands usually do not
move very far. Maximum densities of bands on the ground range from over
30000 hoppers per square meter for first instars to just over 1000 per square
meter for the fifth instar. However, average densities are much lower. For
late instar bands, density is probably between 50 and 100 hoppers per square
meter. The rate of band movement varies with temperature, vegetation
cover and even with the size and coherence of the band. Bands usually
maintain a constant heading during a day; even a major obstruction is not
always sufficient to change its path. The heading is often, but not always,
downwind. At midday, bands usually roost in the vegetation.

2.1.3 Effects of Vegetation

On bare soil, hoppers usually spend most of their time moving over the bare
ground, alternating with resting and basking (facing of parallel to the sun).
In a habitat where the vegetation is evenly distributed and consists of small,
low plants with only small areas of bare ground in between, hopper behavior is
similar to that in bare soil but is modified by movements in and out of the
vegetation. Hopper movement is reduced under cloudy skies or in the early
hours of clear cold mornings. Non-uniform vegetation cover of mixed plants.
Hoppers spend very little time on the ground and most of the time in the
vegetation in habitats consisting of large, dense, low plants where the plants
are separated by large areas of bare ground. Theymainlymove up and down
within the vegetation during the day. During overcast conditions, hoppers
spend nearly all the time in vegetation. Non-uniform vegetation cover of taller
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plants. Hoppers move up and down within the vegetation and towards the
east and west in habitats where there are relatively tall plants with an open
structure.

2.2 Individual Pause-and-Go Motion Is Instrumental
to the Formation and Maintenance of Swarms of
Marching Locust Nymphs, Ariel et al. (2014)

This paper studies the collective behavior of locust swarms. It provides new
insights into the mechanisms responsible for coordinated locust motion.

The experiments suggest that collective movement is highly dependent
on the density of animals in the group, and is mediated by social pairwise
interactions such as avoidance, alignment, and attraction. It was also
shown that groups can switch direction without external perturbation. Pause
duration is associatedwith a high probability of turning. This result suggests
that pauses relate to instances inwhich individualsmake a choice ondirection.
Assisted by simple models, the paper shows that intermittent motions have a
pivotal role in the development of order and disorder in the system. Nymphs
rarely change direction while walking. Experimental observation: desert
locust nymphs present awalking pattern of intermittently switching between
walking and pausing. The paper looked for mechanisms involved in the
decision of a standing locust to initiate walking. The most consistent factor
was found to be an increase in the average number of walking locusts in
the proximity of the standing locust. Further investigation reveals that in
many cases (54%), walk initiation was preceded by the standing locust being
bumped by another locust. However, this phenomenon might as well be a
result of the physical constraint of the experimental arena, since bumping is
rarely seen in the wild marching band. The paper finds (using experiments)
that on average, right before a locust starts moving, it senses a decrease in
the number of moving individuals in front of it, or an increase in the number
of moving individuals behind it.

2.2.1 The Role of Visual Cues in Collective Motion

The paper presents some neurophysiological evidence for the role of visual
cues in the collective motion of locusts. The experiments uses two kinds
of visual cues: objects receding in the frontal visual field and objects
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approaching in the rear visual field. I summarize some of the main results
below:

The locust responds to visual cues from all directions. Objects approach-
ing the locust generates stronger neural responses. Multiple visual cues
generates stronger responses than single visual cues. This means that two
locusts approaching will elicit stronger neural response than just one locust
approaching.

2.3 IntermittentMotion inDesertLocusts: Behavioural
Complexity in Simple Environments, Bazazi et al.
(2012)

This paper looks at the motion of individual locusts in simple environments.
The locust is placed in an empty arena, so the influence of external factors
(such as environmental cues or other locusts) is minimized. The paper
identifies some of the statistical properties of the pause-and-go movement
of the single locust. Our quantification of locusts’ turning behavior both
within pauses and within moves demonstrates that a change in direction
is more likely to be found in a pause than in a move. Therefore, we can
consider moves as displacements without change in direction, and pauses as
opportunities for turns. The duration of a pause influences the probability
that a locust changes direction after the pause. The data show that the mean
probability for a locust to turn within a pause increases with the pause
length. However, the probability reaches a plateau near 6s.

2.4 Inherent Noise can Facilitate Coherence in Collec-
tive SwarmMotion, Yates et al. (2009)

This paper argues that noise in locustmotion can help individual locusts align
with the rest of the swarm. The locusts appear to increase the randomness
in their motion in response to loss of alignment with the group. The authors
identify the mean switching time as an important parameter for quantifying
collective behavior, and much of the mathematical derivation in the paper
involve the diffusion process and the Fokker-Planck equation. I summarize
some of the conclusions of the paper below.

The paper established that the mean switching time increases exponen-
tiallywith the number of locusts. As locust density increases, the turning rate
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of the group rapidly increases. This observation has important implications:
at high densities, it becomes increasingly difficult to influence a group’s
direction. The paper used the systematic Fokker-Planck equation coefficient
estimation approach on experimental data. The results indicate that the
individuals move more randomly in locust groups with low alignment. This
appears to enable the group to find (an remain in) a highly aligned state
more easily. The paper suggests that recent finding about cannibalistic inter-
actions could provide a rationalization for for the observation of apparently
increased individual randomness in response to a loss of alignment at the
group level: given the risk of exposing the rear of the abdomen to oncoming
insects, there may be selection pressure on an individual to minimize the
time spent in the disordered phase. A longer inter switch time might also be
selected for in an evolutionary scenario since it allows the locusts to remain
in a coherent group for longer periods, potentially increasing harvesting
efficiency and reducing predation.

2.5 FromDisorder to Order inMarching Locusts, Buhl
et al. (2006)

Using a SPP (self-propelled particle) model of locust swarms, this paper
identifies a critical density where a rapid transition occurs from disordered
to ordered movement. The paper also demonstrates dynamic instability in
motion at densities typical of locusts in the field, in which groups can switch
direction without external perturbation, potentially facilitating the rapid
transfer of directional information.

The authors of the paper defined the orientation χ of a locust as the
smallest angle between one line drawn between the locust’s two consecutive
positions and a second line drawn from the center of the arena to the locust’s
first position. This relationship can be described as χ � arcsin [sin(θ − α)],
where α is the angle of the direction of movement and θ is the angle with
the center of the arena. For each camera image, the instantaneous alignment
Φt is defined average of the orientation for all moving locusts, normalized as

Φt
�

2
mπ

m∑
i�1

χt
i

where m is the total number of moving locusts, and i is the ith locust. Thus,
values of alignment close to the extreme values of 1 and −1 indicate the



8 Literature Review

alignment of all locusts in the same direction, whereas values close to zero
indicate an absence of any collective alignment.

A central prediction of the model developed by Vicsek and collaborators
is that as the density of animals in the group increases, a rapid transition
occurs from disordered movement of individuals within the group to highly
aligned collective motion. It has been shown in laboratory that marching
begins only at high locust density. The average density of marching locust
bands in the field is 50 locusts per square meter, with a typical range of 20 to
120 locusts per square meter. Coordinated marching behavior depended
strongly on locust density. At low densities (5.3 to 17.2 locusts/m2), there
was a low incidence of alignment among individuals. Intermediate densities
(24.6 to 61.5 locusts/m2) were characterized by long periods of collective
rotational motion with rapid spontaneous changes in direction. At densities
above 73.8, spontaneous changes in direction did not occur within the
timescale of the observation, and the locusts quickly adopted a common
and persistent rotational direction. Both the experiments and the SPP model
exhibits dynamic instability, in which changes in direction are sudden and
spontaneous, rapidly spreading through the entire group. The experiments
show that these changes can be independent of external conditions and are
likely to be an inherent property of moving groups. The data and model
also suggest that predicting the motion of very high densities of locusts is
easier than predicting that of intermediate densities. The small number
of directional changes at high densities, observed during 8 hours of our
experiments, was similar to the field observation of "gregarious inertia" that
lasts for days.

2.6 Collective Motion and Cannibalism in Locust Mi-
gratory Bands, Bazazi et al. (2008)

This paper provides evidence that locust collective behavior is strongly
influenced by cannibalistic interactions. An individual locust’s decision to
move forward is the result of two cues: tactile stimulation and the rear visual
field.

Reduction of individuals’ capacity to detect the approach of others from
behind throughabdominal denervationdecreases their probability to starting
moving, reduces the percentage of moving individuals in groups, and
significantly increases cannibalism. The authors also tested the prediction
that cannibalism serves as a general mechanism for the transition from
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relatively disordered and benign aggregations to highly coordinated and
mobile bands which are responsible for the devastating impact of marching
locusts. Removal of the sensation from the abdomen did not inherently
influence individual motion, but reduction of the sensation of individuals
approaching from behind had a very strong negative influence on marching
behavior in groups; the mean proportion of moving locusts and their mean
speedwhenmovingwere significantly lower in abdomen-denervated groups.
These results demonstrate that sensation of contact of others from behind
plays an important role in determining the extent to which locusts will move,
as well as the resulting degree of coordinated movement among individuals
in marching bands. Relative to contact from conspecifics approaching in
other directions, contact from behind resulted in the highest probability
(0.65) of movement among the sham-operated insects. Visual stimuli are also
potentially important in marching coordination. Groups of individuals with
no restriction of visual input (control) showed significantly higher levels of
marching than thosewith a complete restriction of visual input (totally blind).
The study suggests that cannibalistic interactions among individuals, and
the threat of attack by those approaching from behind, is a principal factor
in the onset of collective movement among locusts. Individuals increase the
propensity of others to march as they approach toward, or contact, their
abdomen.

2.7 Group Structure in Locust Migratory Bands, Buhl
et al. (2011)

Using data collected from actual recording of locust bands, this paper
captures the fundamental features of locust bands in the field.

The density profiles showed an extremely inhomogeneous structure,
with a single peak at the front, followed by a sharp, exponential decay, as
shown by the linear trend on a semi-logarithmic representation. Qualitative
descriptions and aerial photographs of large bands indicate a very similar
marked concentration of locusts at the front (the larger the bands, the higher
the peak densities and the deeper the fronts) that vanishes rapidly behind
it. The density of locusts ranged roughly from 50 locusts/m2 on average to
1200 locusts/m2 in the front. Densities above roughly 50 mâĹŠ2 showed
consistently high levels of polarisation, whereas those below showed large
variation in polarisation, suggesting aweaker alignment of locusts. By testing
the distribution of polarisation of pairs separated by increasing distance, the



10 Literature Review

authors determined that this distribution ceased to be significantly different
from uniform beyond 13.45 cm apart. The alignment between individuals
that determines band cohesion and movement occurs within a distance of
only 13.5 cm. Bands comprise an extremely dense front followed by an
exponential decay of density, with a consequent loss of cohesion towards
the back.



Chapter 3

AMathematical Model of
Locust Swarms

Our goal in this section is to develop a continuous version of the Alignment
and Intermittent Motion (AIM) model of locust swarms developed in the
works of Jones, Devore and Schein (Jones 2016).

3.1 Equations of Motion

We introduce a continuum version of the Alignment-Intermittent Motion
(AIM) model of locust swarms. Let xi ∈ R

2 to denote the current position
of a locust. The unit vector ûi represents the direction that the locust is
currently facing, and in polar coordinates we can write

ûi � (cos θi , sin θi). (3.1)

Each locust has two states, moving or stationary. This is represented by the
variable si , where si � 0 when stationary and si � 1 when moving. Suppose
that all locusts move with constant velocity v0, then the instantaneous
velocity at some position xi is given by the equation

dxi

dt
� v0si ûi . (3.2)

Each locust updates its orientation by trying to align itself with the locusts
nearby. To diminish the influence of locusts that are too far away, we
introduce a weight function g(z). We model the process of alignment using
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the equation
dθi

dt
� −

n∑
j�1, j,i

g(zi j) sin (θi − θj) + W (3.3)

where W is Gaussian random noise, zi j � ‖xi − x j‖, and θi is the orientation
(in radians) of the current locust. Note that the deterministic part of this
model is of Kuramoto type, which was described in Strogatz (2000). For the
weighting function g(z), we take

g(z) � ca

(
1 − z

`a

)
, (3.4)

for z ≤ `a and zero otherwise. Here, ca is a weighting parameter measuring
the maximal influence of neighbors and `a is a length scale of alignment
influence.

3.2 Transition Probabilities

The method for calculating the transition probabilities in this section are
described in Segel and Edelstein-Keshet (2013). In equation (3.2), the variable
si changes from 0 to 1 and vice-versa in a Markov process. At the population
level, this process can be modeled as a differential equation. Suppose A is
the population of locusts that are stationary and B is the population that are
moving. The rate constant k1 is defined such that for sufficiently small ∆t,
k1∆t is the probability that a particle shifts from stationary to moving in the
time interval ∆t. Similarly, k2 is defined such that k2∆t is the probability that
a particle shifts from moving to stationary in the time interval ∆t. Therefore,
the expected change in the number of stationary locusts in the time interval
(t , t + ∆t) is

A(t + ∆t) − A(t) � −A(t) · (k1∆t) + B(t) · (k2∆t). (3.5)

Dividing by ∆t and taking the limit as ∆t → 0, equation (3.5) becomes

dA
dt

� −k1A + k2B. (3.6)

Similarly, the corresponding equation for B is

dB
dt

� k1A − k2B. (3.7)
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Using this model, we claim that in some time interval (t , t + ∆t) (where
unlike before, ∆t is arbitrary), the probability that a particle changes from
stationary to moving is given by

Ps g �
k1

k1 + k2

(
1 − e−(k1+k2)∆t

)
. (3.8)

Similarly, the probability that a particle changes from moving to stationary
in the time interval (t , t + ∆t) is given by

Pgs �
k2

k1 + k2

(
1 − e−(k1+k2)∆t

)
. (3.9)

These expressions come from solving the linear differential equations above.
Notice that when ∆t is small, we find that Ps g � k1∆t and Pgs � k2∆t, which
is consistent with how we defined k1 and k2.

Now, to determine Ps g and Pgs , we need to estimate k1 and k2. To do
this, we define a blocking score βi for each particle, which is a metric for
measuring how much a locust is obstructed by its neighbors. We claim that
the larger the blocking score is, the less likely a locust is to change from
stationary to moving and the more likely it is to change from moving to
stationary. Therefore, we can write

k1 � κ1e−a1β k2 � κ2ea2β ,

where κ1 , κ2 and a1 , a2 are constants.
The blocking score β is determined from the configuration of the locust

swarm. For a locust at position xi and its neighbor at x j , we can define the
relative distance zi j � |xi − x j | and the relative angle, φi j , satisfying

cosφi j � (x j − xi) · ûi/zi j . (3.10)

Then the blocking score for the locust at xi is

βi �

n∑
j�1
j,i

f (zi j , φi j) (3.11)

where f (z , φ) is a weight function given as

f (z , φ) �
(
1 − z

`b

)
cosφ, (3.12)



14 AMathematical Model of Locust Swarms

for z ≤ `b and zero otherwise. Here `b is the length scale of blocking
influence. We expect that neighbors in front of the current locust contribute
to it being blocked (and hence being more likely to be in a stopped state)
whereas neighbors in back of the locust contribute the likelihood to move.
These effects are reflected in the term cosφ.

3.3 Discretization of the Model

To simulate the behavior of swarms, we have to discretize our continuous
model. Consider the system at the times t1 , t2 . . . where ∆t � tn+1 − tn is a
constant. The difference equation for updating the position is then

xi(tn+1) � xi(tn) + (v0∆t) · si · ûi . (3.13)

Similarly, we update the orientation θi (equivalently, ûi) using

θi(tn+1) � θi(tn) − *.
,

n∑
j�1, j,i

g(zi j) sin (θi(tn) − θj(tn))+/
-
∆t + Q(∆t). (3.14)

Here Q(∆t) � ξ√D∆t is the displacement due to the Gaussian random noise
W over time ∆t. Note ξ is a Gaussian random variable with mean 0 and
variance 1 and D is a diffusion constant with units (radians)2/s.

In each step, we also have

P(si(tn+1)|s j(tn)) � S (3.15)

where S is the transition matrix

S �

(
1 − Ps g Ps g

Pgs 1 − Pgs

)
(3.16)

and the variables Ps g and Pgs are determined above.

3.4 Parameters of the Model

In this section we summarize all the parameters used in the model, which
are given in the Table 3.1. The parameters are estimated from the biological
literature.
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• To estimate the constants κ1 and κ2, we used the results of Ariel et al.
(2014), where in their Figure 1 (C&D), the distribution of walk times
and pause times were plotted. The authors claim that the distribution
of of pause times shows a power-law decay while the distribution of
walking times is well-approximated by an exponential distribution.
This means that k1 ≈ 0.16. However, if we also try to fit an exponential
distribution to the pause times, we find that k2 ≈ 0.1. This gives us a
range for both k1 and k2.

• The alignment length scale `a is the radius in which the influence of
other locusts is significant for alignment. In both Ariel et al. (2014) and
Buhl et al. (2011), this distance was found to be around 13 cm.

• We assumed that `b , the blocking length scale, is approximately equal
to the body length of locust, which is well-documented in the biological
literature.

• The typical density of the swarms, ρ, ranges from 50-1200 locusts per
m2. This is documented in Buhl et al. (2011).

• To approximate the block score β, we compute the integral

βmax �

∫ π/2

−π/2

∫ `a

0
ρz

(
1 − z

`a

)
cosφ dzdφ �

`2
aρ

3 .

Thus the range of ρ and `a gives us an estimation of the range of β.

• The velocity of individual locusts v0, is documented in the biological
literature, and can be found in Bazazi et al. (2008).

• The angular diffusion constant D scales a Gaussian noise. This param-
eter is estimated to be 1 from the distribution of turning angles found
in Figure S5 of Ariel et al. (2014).

• An estimation of a1 and a2 can be made using the data available in
Figure 2 of Bazazi et al. (2008). Assuming that the block score of a
single locust being contacted by another locust from behind is −1, we
find that

k1(untouched)
k1(touched) �

k1e0

k1e−a1β
� e−a1 � 0.8.

Thus we get a1 � 0.22. Since a1 and a2 are governed by the same
biological mechanisms, we also estimate that a1 ≈ a2, so we estimate
that a2 � 0.22.
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• Finally, we need an estimation for the turning rate ca . According to
Equation 3, ca can be viewed as the turning rate of locust i that is at
π/2 from locust j at the same spot. In Dyson et al. (2015), Equation
2 models the situation when two locusts come in contact with one
other locust going in the other way. The transition occurs with rate
r2, which is listed in Table 1 in the paper (normalized by the number
of locusts). In the case of one locust switching direction, we have
r2 ≈ 0.036 · 52 � 0.9. This gives us an estimation for ca . Therefore, we
set the sampling range for ca to be 0.3 − v3.

Parameter Description Sampling Range Range of Values References
M total number of locusts N/A 5000-1000000
v0 velocity of an individual locust 2-8 cm/s 3-4 cm/s Bazazi et al. (2008), p2
D angular diffusion, scales a Gaussian noise 0.03-0.3 1
`b Blocking length scale, 1-10 cm 1.2-7.5 cm Nat Geo

currently, body length of locust
`a Alignment length scale, around 13 cm Ariel et al. (2014) and Buhl et al. (2011)

currently, sensing radius 1-15 cm
κ1 amplitudes for rate constant 0.05-0.5 s−1 1 s−1

κ1 amplitudes for rate constant 0.03-0.3 s−1 1 s−1

a1 , a2 constant in the exponent of rate constant 0.07 - 0.6 around 0.22
ca a scaling constant for alignment 0.3-3 s−1 1 s−1

ρ the initial density of the locusts 0.05-0.12 locusts /cm2 50-1200 locusts/m2 Buhl et al. (2011)
β block score 1.6 · 10−3

− 2.7 l2
aρ/3

Table 3.1 Table of Parameters
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Simulation Results

Our simulation for both a relatively small number of locusts and a large
number of locusts show that the swarms exhibit a phenomenon known as
fingering. Initially the locusts are clumped together. The initial position and
heading of a locust is chosen randomly from uniform distributions. We
show some of the results in Figures 4.1-4.7. For figures 4.1 and 4.2, we have
set κ1 � 0.8 and κ2 � 0.2. The amplitude for alignment is ca � 0.5.

To investigate how the swarm is influenced by different parameters, we
look at a few extreme cases. Figure 4.3 shows that resulting behaviour with
we set κ1 � 1 and κ2 � 0, which corresponds to constant motion since the
probability of stopping is 0. On the other hand, we can set κ1 � 0 and κ2 � 1,
so that the probability from stop to go is 0. The result is not too surprising:
the swarm remains stationary in their initial clump, as shown in Figure 4.4.

For all the simulations above, we have set the alignment amplitude to be
ca � 0.5. In Figure 4.5, we look at the case where the alignment amplitude is
very large (ca � 10). For the following results we set κ1 � 0.8 and κ2 � 0.2.
We can see from the figure that when alignment is too strong, the locuts just
seem to scatter outwards. Now we look at the case where alignment is very
weak. We set ca � 0.01, and the result is shown in Figure 4.6.

For all the previous simulations, the initial heading of the locusts were
chosen randomly from a uniform distribution on [0, 2π]. In Figure 4.7, we
show that result when we initialize all the locusts to be facing the positive y
direction initially. In this case, the swarm initially moves slowly together
in the positive y direction as a clump, but then fingers towards different
directions.
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Figure 4.1 M � 10000, κ1 � 0.8, κ2 � 0.2 and ca � 0.5

Figure 4.2 M � 1000, κ1 � 0.8, κ2 � 0.2 and ca � 0.5
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Figure 4.3 M � 5000, κ1 � 1, κ2 � 0 and ca � 0.5

Figure 4.4 M � 5000, κ1 � 0, κ2 � 1 and ca � 0.5
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Figure 4.5 M � 5000, κ1 � 0.8, κ2 � 0.2 and ca � 10

Figure 4.6 M � 5000, κ1 � 0.8, κ2 � 0.2 and ca � 0.01
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Figure 4.7 All initial heading are in the positive y direction, M � 5000, κ1 �

0.8, κ2 � 0.2 and ca � 0.5





Chapter 5

Metrics for Characterizing the
Geometry of the Swarm

5.1 Average Density

We would like to define an average density ρ for the whole swarm, and look
at how ρ evolves as a function of time. The main difficulty here is to define
a perimeter for the swarm so that we can effectively calculate the density.
To do this, we use the build-in Matlab function alphaShape, which allows
us to identify the boundary of a point cloud using an ‘alpha shape’ - a
generalization of the convex hull. An example is shown in Figures 5.1 and
5.2. Once we have a perimeter for the swarm, we can define the density as

ρ(t) � M
A(t) ,

where M is the total number of locusts and A(t) is the area of the alpha
shape at the current time step.

5.2 Local Density

The local weighted density ρi
loc is defined for the i-th locust as

ρi
loc �

1
πr2

∑
j∈I

(1 − zi j

`a
)

where I is the index set for all the locusts within radius `a of the i-th locust
(not including itself).
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Figure 5.1 An example of a point cloud

Figure 5.2 The boundary generated by Matlab
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5.3 Global and Local Orientation

The global orientation is simply defined as

γ �
1
M

M∑
j�1

û j ,

where ûi is the orientation of the j-th locust and M is the total number of
locusts. Similarly, the local orientation is defined for each locust as

γi
loc �

1
|I |

∑
j∈I

û j

where I is the index set for all locusts within the sensing radius `a .

5.4 Global and Local Alignment

For each individual locust, the local alignment parameter is defined as

ψi
loc �

∑
j∈I

(ûi · û j)g(zi j)/
∑
j∈I

g(zi j),

where I is the index set of all locusts within radius `a of the i-th locust
(including itself). Taking the average of the local alignment parameters for
every locust, we get the global alignment parameter:

ψ �

M∑
i�1

ψi
loc ,

where M is the total number of locusts.

5.5 Average Velocity for Individual Locusts

Since we assume that when locusts are moving, they travel at a constant
velocity v0, the average velocity is simply

v̄ � αv0 ,

where α is the percentage of the time that the locust is moving.



26 Metrics for Characterizing the Geometry of the Swarm

Figure 5.3 Example 1(a): Plots of the point cloud at the final time step

5.6 Area and Perimeter of the Swarm

The area of the perimeter of the swarm can be identified once we know
the boundary of the swarm, which can be given by the Matlab function
alphaShape. These two values can be useful in identifying phenomenon
such as fingering.

5.7 Example 1

In the figures 5.3-5.5, we show some plots of the metrics that we have just
defined for a particular swarm. For this run, we have chosen k1 � 0.8,
k2 � 0.2, a1 � 1, a2 � 1 and ca � 1. The total number of locusts is M � 1000,
the initial density was set to 1, the time step was ∆t � 1, and the results are
shown for 2000 time steps.

5.8 Example 2

In Figures 5.6-5.8, we show the plots of some metrics for another swarm
where there is no apparent fingering in the system. For this run, we have
chosen k1 � 0.8, k2 � 0.2, a1 � 1, a2 � 1 and ca � 10. The total number of
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Figure 5.4 Example 1: Plots of global density, orientation and alignment of
the swarm as a function of time

Figure 5.5 Example 1: Local alignment of an individual locust as a function of
time
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Figure 5.6 Example 2: Plots of the point cloud at the final time step

locusts is M � 1000, the initial density was set to 1, the time step was ∆ � 0.5,
and the results are shown for 4000 time steps.
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Figure 5.7 Example 2: Plots of global density and alignment of the swarm as
a function of time

Figure 5.8 Example 2: Local alignment of an individual locust as a function of
time
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Figure 5.9 Example 3: Plots of the point cloud at the final time step

5.9 Example 3

In Figures 5.9-5.11, we show another example where we have set the align-
ment constant to be very small (ca � 0.01). We set the total number of locusts
to be M � 1000 and the time step to be ∆t � 1. The other parameters are
the same as Example 2. In this case, we see that the locusts seem to spread
outwards as a ring.
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Figure 5.10 Example 3: Plots of global density, orientation and alignment of
the swarm as a function of time

Figure 5.11 Example 3: Local alignment of an individual locust as a function
of time
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5.10 Clustering Algorithm For Identifying Fingering
in the Swarm

Swarms in the biological world often exhibit a phenomenon known as
‘fingering’, where the swarm is initially clumped together, but eventually
evolves into strands moving in different directions. This phenomenon
can also be seen in our numerical simulations, given that the parameters
are chosen appropriately. For instance, in Figure 7, we can see a clear
sign of fingering. To identify fingering numerically, we define a metric in
the 3-dimensional phase space (x , y , θ), where (x , y) is the location of an
individual locust and θ is its current orientation. We say the two locusts are
connected if their coordinates in the phase space satisfy√

(x1 − x2)2 + (y1 − y2)2 ≤ εx

and
|θ1 − θ2 | ≤ εθ

where εx and εθ are constants. The idea is that two locusts are connected
if both their physical location and their orientation are close enough. A
simple choice for εx is just εx � `a (recall that this is the sensing distance for
alignment). Choosing εθ is a bit more difficult. Recall that in continuous
time we have

dθi

dt
� −

n∑
j�1, j,1

ca

(
1 −

zi j

`a

)
sin(θi − θj) + qξ.

We claim that the variance of θ in this model is given by

var(θ) � q2

2k

where q is the width of the Gaussian noise and k is the linear restoring force
given by

k � caρloc · 2π
∫ `a

0

(
1 − z

`a

)
zdz.

Therefore, the standard deviation in θ is

std(θ) � C
q

`a
√

caρloc
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Figure 5.12 Fingering in a swarm of 10000 locusts

where C is some constant. Now we choose εθ as a constant multiple of the
standard deviation. Thus

εθ � C0
q

`a
√

caρloc

where C0 is simply a scaling constant.
Using our definition of connectedness, we can build an adjacency matrix

A � (ai j), of size M by M, where ai j � 1 if the i-th and j-th locusts are
connected, and ai j � 0 otherwise. Using this adjacency matrix, we can
construct a graph and identify its connected components. For swarms that
exhibit fingering, we would expect to see a number of components with
a significant number of locusts, corresponding to the strands of locusts
traveling in different direction. This gives us a method for characterizing
fingering behavior quantitatively. Figure 5.12 shows the one resulting
configuration for a swarm of 10000 locusts. Figure 5.13 shows the result of
our clustering algorithm of the swarm, with different colors corresponding
to different fingers.
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Figure 5.13 Identification of components in a swarm of 10000 locusts



Chapter 6

NewModel for Periodic
Domains

In this chapter, we will develop a new model for the movement of locusts on
periodic domains. The equations of motion governing the state variables x,
u and s are similar to the previous model. However, we also introduce a new
mechanism by which a single isolated locust can acquire the tendency to
move towards a marching band. Consider the situation that a single locust
wanders off from a highly aligned marching band of locusts. In the old
model, the single locust will still try to align with the marching band (via the
θ equation). However, the locust will fail to move back into the marching
band. In the new model, we address this issue by adding a new equation.

6.1 Equations of Motion On Periodic Domain

Recall that in Chapter 3, we introduced a model for the motion of locusts on
an infinite 2-dimensional plane. The equations of motion were given by

dxi

dt
� v0si ûi (update the position vector)

dθi

dt
� −

n∑
j�1

g(zi j) sin(θi − θj) + W (update the orientation).

Here ûi � (cos θi , sin θi), zi j � ‖xi − x j‖, W is a Gaussian noise term in the
angle, and g(zi j) is a weighting function that decreases with distance. At
each time step, the state variable si has a probability of transitioning from
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stop to go (0→ 1) and vice versa. In our new model, we introduce a third
equation given by

dθi

dt
� −

n∑
j�1

f (zi j) sin(θi − ψ j). (6.1)

Here ψ j is the angle between θi and the vector ~zi j , and f (zi j) is another
weighting function.

To restrict the locusts to a rectangular domain of size m by n, we simply
take x and y component of the position vector ~xi and mod out m and n,
respectively. The distance between two locusts then, is computed on the
periodic domain.

6.2 Particle-in-Cell Method for Periodic Domain

For the model in Chapter 3, we used the Particle-In-Cell method that was
described in Ryan Jones’ Senior Thesis (Jones, 2016). In the new periodic
domain, this method is modified accordingly. In the original method, the
whole domain was divided into square cells, and each cell had 8 neighboring
cells. When consider the interaction between locusts, we only consider the
current cell that the locust is in and its neighboring cells. For the periodic
domain, we must be careful at the boundary of the domain, because the
neighboring of the cells on the boundary is different from that of an infinite
domain. In the implementation of the numerical method, the boundary cells
are considered separately from the interior cells, and the distance functions
are also specified.

6.3 Higher-order Stepping Method

In Chapter 3, we used Euler’s method to update the state variables in our
equations of motion. On the periodic domain, we used a higher-order
stepping method known as the modified Euler’s method. This method is
described as follows. Suppose that we want to solve a differential equation
of the form y′ � f (t , y). Our goal is to construct w1 , w2 , . . . ,wn , where wi is
the approximation to y(ti). We use the following updates:

w0 � α, (6.2)

wi+1 � wi +
h
2 [ f (ti , wi) + f (ti+1 , wi + h f (ti , wi))] (6.3)
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Figure 6.1 Initial state of 1000 locusts on the periodic domain

where α is the initial value and h is the step size. For our problem, y is the
vector of state variables.

6.4 Results on the Periodic Domain

Figures 6.1 and 6.2 show the results of a simulation of 1000 locusts. We
see that the locusts start with random initial conditions, but later evolve to
reach a stable steady state with a clear pattern. This is a very interesting
phenomenon, and in our future work we wish to construct a PDE that can
characterize this steady state solution.
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Figure 6.2 Pattern formation on the periodic domain



Chapter 7

Continuous Model

7.1 Introduction

In the first six chapters, we have derived an ODE model for modeling the
behavior of locust hopper bands. In this chapter we want to build a PDE
model that is continuous in both space and time.

Our model is derived on the periodic rectangular domain Ω ∈ R2. We
have four state variables S,M,θs and θm , where S is the density of the locusts
at rest, M is the density of the locust in motion, θs is the current orientation
of the stationary locusts and θm is the current orientation of the moving
locusts. Note that all state variables are functions of position ~x and time t.

Roughly speaking, our PDE model is based on the same biological
mechanics as the ODE model. The equations for S and M govern the
transition of the locusts between stationary and moving states, and the
equations for θm and θs govern the change of orientation in the locust
swarm.

7.2 Transition Between Stationary and Moving

We define βm and βs to be the block score for moving and stationary locusts,
respectively. The total density is

ρ(~x , t) � S(~x , t) + M(~x , t).
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The transition between stationary and moving is governed by

∂S
∂t

� −k1(ρ)S + k2(ρ)M (7.1)

∂M
∂t

+ ∇ · (~uM) � k1(ρ)S − k2(ρ)M (7.2)

The parameters k1 and k2 are functions of ρ. Recall that in the previous ODE
model, we had k1 � κ1e−a1β and k2 � κ2ea2β , where β was the block score,
given by

β �

∑
j�1, j,i

(
1 −

zi j

`b

)
cosφi j .

Analogously, in the continuum model, we can write

βm �

∫
R2

f (|~y − ~x |) cos(θm(~x) − arg(~y − ~x))ρ(~y) d~y ,

βs �

∫
R2

f (|~y − ~x |) cos(θs(~x) − arg(~y − ~x))ρ(~y) d~y ,

where
f (z) �

(
1 −

zi j

`b

)
and arg ~y is the phase of the position vector ~y. It follows that k1 � κ1e−a1βs

and k2 � κ2ea2βm .

7.3 Evolution of orientation

The equations for θm and θs are similar to the θ equation in the discrete
model, which was based on the Kuramoto model for synchronization. Both
moving and stationary locusts tries to align themselves with nearby locusts,
and the strength of the alignment is scaled by the density of the surrounding
locusts. For the θm equation, we have the convection term ∇ · (~uθm), which
is based on the continuum equation in fluid dynamics.

dθs

dt
� −

∫
R2

g(|~y − ~x |) �
S(~y) sin(θs(~x) − θs(~y)) + M(~y) sin(θs(~x) − θm(~y))� d~y

(7.3)
dθm

dt
+ ∇ · (~uθm) � −

∫
R2

g(|~y − ~x |) �
S(~y) sin(θm(~x) − θs(~y)) + M(~y) sin(θm(~x) − θm(~y))�) d~y

(7.4)
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where g(z) is the weighting function given by

g(z) �
(
1 −

zi j

`θ

)
.

7.4 Stationary Solutions

To find the stationary solutions, we set the time derivatives of the four state
variables to be 0. For the θ equations, one obvious solution is attained by
setting θm and θs to be constant. Also, we can set M(~x , t) and S(~x , t) to be
constants as well, so this will give us

M(~x , t)
S(~x , t) �

k2(ρ)
k1(ρ) .

Since both M and S are constant, ρ is also a constant, so k1 , k2 are fixed,
which means that the ratio between M and S are also fixed.

Suppose thatwemake the assumption that all thevariablesS,M, βs , βm , θs
and θm are homogeneous in the horizontal direction (in other words, they
are only functions of y, the vertical position, and t), then the equations can
be written in a simpler form. First, let us consider the block scores βm and
βs at a point (x0 , y0) ∈ R2. Suppose that the the sensing radius is R, then the
block score is in fact computed through an integral over a circle of radius R
centered at (x0 , y0). We have

βm �

∫ η�R

η�−R

∫ √R2−η2

−

√
R2−η2

f (
√

x2 + η2) · cos(θm(y0) − tan−1(η
x
) · ρ(y0 + η) dx.

βs �

∫ η�R

η�−R

∫ √R2−η2

−

√
R2−η2

f (
√

x2 + η2) · cos(θs(y0) − tan−1(η
x
) · ρ(y0 + η) dx.

Using the explicit form for f , we can write the rewrite the integral as

βm � sin(θm(y0))
∫ 1

ξ�−1
ρ(y0 + ξR)ξh(ξ) dξ,

βs � sin(θs(y0))
∫ 1

ξ�−1
ρ(y0 + ξR)ξh(ξ) dξ,

where

h(ξ) � ln


1 +
√

1 − ξ2

1 −
√

1 − ξ2


− 2

√
1 − ξ2.
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The equations for θs can also be writen as

dθs

dt
� Is + Im ,

where

Is � −

∫ η�R

η�−R

∫ √R2−η2

−

√
R2−η2

g(
√

x2 + η2) · sin(θs(y0) − θs(y0 + η)) · S(y0 + η) dx ,

Im � −

∫ η�R

η�−R

∫ √R2−η2

−

√
R2−η2

g(
√

x2 + η2) · sin(θs(y0)−θM(y0 + η)) ·M(y0 + η) dx.

We can define

K(η) �
∫ √R2−η2

−

√
R2−η2

g(
√

x2 + η2) dx.

If we let
g(x) � 1 − x

R
,

then we have

K(η) �
∫ √R2−η2

−

√
R2−η2

(1 −
√

x2 + η2

R
) dx.

The equations for θm are exactly the same except that we replace θs(y0 + η)
with θm(y0 + η). The function K(η) can be integrated to yield the closed
form

K(η) � −η
2 ln(√R2 − η2 + R) + η2 ln(−√R2 − η2 + R) + 2

√
R2 − η2R

2R
.

We can rewrite K(η) as a new function L(ξ), where ξ � η/R. Then the kernel
of integration K(η) becomes

L(ξ) � 1
2R

*
,
ξ2 ln *

,

1 −
√

1 − ξ2

1 +
√

1 − ξ2
+
-
+ 2

√
1 − ξ2+

-
.

Therefore, we can rewrite the the integrals Is and Im as

Is � −

∫ ξ�1

ξ�−1
L(ξ) sin(θs(y0) − θs(y0 + Rξ)) · S(y0 + Rξ) dξ
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Im � −

∫ ξ�1

ξ�−1
L(ξ) sin(θs(y0) − θm(y0 + Rξ)) ·M(y0 + Rξ) dξ.

For the θm equation, we can similarly define I′s and I′m to be

I′s � −
∫ ξ�1

ξ�−1
L(ξ) sin(θm(y0) − θs(y0 + Rξ)) · S(y0 + Rξ) dξ

I′m � −

∫ ξ�1

ξ�−1
L(ξ) sin(θm(y0) − θm(y0 + Rξ)) ·M(y0 + Rξ) dξ.

Therefore, the equation simply becomes

∂θm

∂t
� I′s + I′m .

7.4.1 Linearization of PDEs

We want to linearize the PDEs that we obtained from the previous section,
which can be written as only equations involving the two variables y and t.

∂S
∂t

� −κ1 exp(−a1βs)S(y , t) + κ2 exp(a2βm)M(y , t) (7.5)

∂M
∂t

� −v0
∂
∂y

�
sin(θm) ·M(y , t)� + κ1 exp(−a1βs)S(y , t) − κ2 exp(a2βm)M(y , t)

(7.6)
∂θs

∂t
� Is + Im (7.7)

∂θm

∂t
� −v0

∂
∂y

�
sin(θm) · θm(y , t)� + I′s + I′m . (7.8)

Suppose that S,M , θs , θm are the steady state solutions to the systems of
PDEs. Notice that we have θs � θm � 0, thus we can perturb the steady state
solutions and write



S
M
θs
θm



�



S
M
0
0



+ ε



Ŝ
M̂
θ̂s

θ̂m



· exp (iµy + λt),

where Ŝ, M̂ , θ̂s and θ̂m are just constants. Plugging this back in to the
equation, we get

λŜ � −κ1Ŝ + κ2M̂.
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λM̂ � −v0M[iµ]θ̂m + κ1Ŝ − κ2M̂.

After the perturbation, we also have

Is � − sin(θs(y))
∫ ξ�1

ξ�−1
cos(θs(y0 + Rξ))L(ξ)S(y0 + Rξ)dξ

+ cos(θs(y))
∫ ξ�1

ξ�−1
sin(θs(y0 + Rξ))L(ξ)S(y0 + Rξ)dξ

≈ −e iµy+λt θ̂sS
∫ 1

−1
L(ξ)dξ − S

∫ ξ�1

ξ�−1
θs(y + Rξ)L(ξ)dξ

≈ −e iµy+λt θ̂sS
(∫ 1

−1
L(ξ)dξ −

∫ 1

ξ�−1
e iµRξL(ξ)dξ

)
The results and similar for Im , where we have

Im � − sin(θs(y))
∫ ξ�1

ξ�−1
cos(θm(y0 + Rξ))L(ξ)M(y0 + Rξ)dξ

+ cos(θs(y))
∫ ξ�1

ξ�−1
sin(θm(y0 + Rξ))L(ξ)M(y0 + Rξ)dξ

≈ −e iµy+λt θ̂s M
∫ 1

−1
L(ξ)dξ −M

∫ ξ�1

ξ�−1
θm(y + Rξ)L(ξ)dξ

≈ −e iµy+λt M
(
θ̂s

∫ 1

−1
L(ξ)dξ − θ̂m

∫ 1

ξ�−1
e iµRξL(ξ)dξ

)
Similarly, we have

I′s � −e iµy+λt
(
θ̂mS

∫ 1

−1
L(ξ)dξ − θ̂sS

∫ 1

ξ�−1
e iµRξL(ξ)dξ

)

I′m � −e iµy+λt θ̂m M
(∫ 1

−1
L(ξ)dξ −

∫ 1

ξ�−1
e iµRξL(ξ)dξ

)
.

It follows that after the perturbation, the third equation becomes

λθ̂s � −

(∫ 1

−1
L(ξ)dξ

)
(Sθ̂s + Mθ̂s) +

[∫ 1

ξ�−1
e iµRξL(ξ)dξ

]
(θ̂sS + θ̂m M).

The linearization of the fourth equation is similar, and we get

λθ̂m � −

(∫ 1

−1
L(ξ)dξ

)
(Sθ̂m + Mθ̂m) +

[∫ 1

ξ�−1
e iµRξL(ξ)dξ

]
(θ̂sS + θ̂m M).
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We can define

w �

∫ 1

−1
L(ξ)dξ

and the function

C(µR) �
∫ 1

ξ�−1
e iµRξL(ξ)dξ.

Thus we can write out the whole linearized system as

λ



Ŝ
M̂
θ̂s

θ̂m



�M(µ,R)


Ŝ
M̂
θ̂s

θ̂m



,

where

M(µ,R) �


−κ1 κ2 0 0
κ1 −κ2 0 −v0M[iµ]
0 0 −w(S + M) + C(µR)S C(µR)M
0 0 C(µR)S −w(S + M) + C(µR)M



.

Now notice that S + M � ρ, then we can define a few new variables to
simplify computations. Let α � µR, S � S/ρ, m � M/ρ, and we also define

d �
C(α)
C(0) λ̃ �

λ

C(0)ρ .

Now we denote that upper left block matrix inM(α) by A and the lower
right block matrix by B. Then we can write

B − λI � C(0)ρ · [Ã − λ̃I],
where

[Ã − λ̃I] �
[
−1 − λ̃ + Sd(α) d(α)m

d(α)S −1 − λ̃ + d(α)m
]
.

By setting
det([Ã − λ̃I]) � 0,

we find that the eigenvalues of B are simply

λ̃1 � −1, λ̃2 � d(α) − 1.
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It is easy to see that the eigenvalues for A are just

λ1 � −(k1 + k2), λ2 � 0.

The eigenvalues provide us with information about the stability of the
stationary solution. By explicitly computing d(α), we see that d(α) ≤ 1, so
both λ̃1 and λ̃2 are less than 0. Therefore, in total we have three negative
eigenvalues and one that is equal to 0.



Chapter 8

Conclusions and Future Work

Presented here is a summary of what we have done over the duration of
this thesis. We have completed a literature review of biological literature
of locust swarms and summarized the information that are relevant to our
model. We have developed both an agent-basedmodel the behavior of locust
swarms. The equations of motion were motivated by the Kuramoto model
for synchronization and the parameters in the model was estimated through
the biological literature. To deal with a large number of locusts, we also
used the particle in cell method that was first developed by Ryan Jones in his
senior thesis (Jones 2016). As a result, we were able to observe fingering on
the infinite domain, which is a key feature of the agent-basedmodel. We also
developed various metrics, such as the global and local alignment scores, for
characterizing the geometry of the swarms and determining if the equations
have reached equilibrium. In the Fall semester, we changed from an infinite
domain to a rectangular periodic domain. We also added an attraction term
between the locusts. Tomake the numericalmethod for solving the equations
more stable, we used a higher-order stepping method. Consequently, we
observed striped patterns on the periodic domain. During the Spring
semester, we started developing a PDE model that treats the locust swarms
as a density function on a periodic domain. To analyze the PDEs, we first
considered a solution that is homogeneous in the horizontal direction, so that
all the variables only depend on the vertical position and time. As a result,
we were able to linearize the PDEs near a stationary solution. However, the
results of linearization do not quite match observations of the agent-based
model on the periodic domain. One possible issue is that we have not yet
included the attraction term, and therefore a key component is still missing.
Further work can include deriving additional PDEs for modeling attraction
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between locusts. Another might be to include environmental cues such as
food sources into our model.



Bibliography

Gil Ariel, YotamOphir, Sagi Levi, Eshel Ben-Jacob, and Amir Ayali. Individ-
ual pause-and-go motion is instrumental to the formation and maintenance
of swarms of marching locust nymphs. PloS one, 9(7):e101636, 2014.

Sepideh Bazazi, Jerome Buhl, Joseph J Hale, Michael L Anstey, Gregory A
Sword, Stephen J Simpson, and Iain D Couzin. Collective motion and
cannibalism in locust migratory bands. Current Biology, 18(10):735–739,
2008.

Sepideh Bazazi, Frederic Bartumeus, Joseph J Hale, and Iain D Couzin.
Intermittent motion in desert locusts: behavioural complexity in simple
environments. PLoS Comput Biol, 8(5):e1002498, 2012.

Jerome Buhl, David JT Sumpter, Iain D Couzin, Joe J Hale, Emma Despland,
ER Miller, and Steve J Simpson. From disorder to order in marching locusts.
Science, 312(5778):1402–1406, 2006.

Jerome Buhl, Gregory A Sword, Fiona J Clissold, and Stephen J Simpson.
Group structure in locustmigratory bands. Behavioral ecology and sociobiology,
65(2):265–273, 2011.

Louise Dyson, Christian A Yates, Jerome Buhl, and Alan J McKane. Onset
of collective motion in locusts is captured by a minimal model. Physical
Review E, 92(5):052708, 2015.

Ryan Jones. Hopper bands: Locust aggregation. Harvey Mudd College Senior
Thesis.

Lee A. Segel and Leah Edelstein-Keshet. A Primer in Mathematical Models in
Biology, volume 129. SIAM, 2013.



50 Bibliography

Steven H Strogatz. From kuramoto to crawford: exploring the onset of
synchronization in populations of coupled oscillators. Physica D: Nonlinear
Phenomena, 143(1):1–20, 2000.

PM Symmons and K Cressman. Desert locust guidelines: biology and
behaviour. Rome: Food and Agriculture organization (FAO) of the United
Nations, 2001.

Christian A Yates, Radek Erban, Carlos Escudero, Iain D Couzin, Jerome
Buhl, Ioannis G Kevrekidis, Philip KMaini, and David JT Sumpter. Inherent
noise can facilitate coherence in collective swarm motion. Proceedings of the
National Academy of Sciences, 106(14):5464–5469, 2009.


	Claremont Colleges
	Scholarship @ Claremont
	2017

	Dynamics and Clustering in Locust Hopper Bands
	Jialun Zhang
	Recommended Citation


	Introduction
	Literature Review
	Desert Locust Guidelines, symmons2001desert
	Individual Pause-and-Go Motion Is Instrumental to the Formation and Maintenance of Swarms of Marching Locust Nymphs, ariel2014individual
	Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments, bazazi2012intermittent
	Inherent Noise can Facilitate Coherence in Collective Swarm Motion, yates2009inherent
	From Disorder to Order in Marching Locusts, buhl2006disorder
	Collective Motion and Cannibalism in Locust Migratory Bands, bazazi2008collective
	Group Structure in Locust Migratory Bands, buhl2011group

	A Mathematical Model of Locust Swarms
	Equations of Motion
	Transition Probabilities
	Discretization of the Model
	Parameters of the Model

	Simulation Results
	Metrics for Characterizing the Geometry of the Swarm
	Average Density
	Local Density
	Global and Local Orientation
	Global and Local Alignment
	Average Velocity for Individual Locusts
	Area and Perimeter of the Swarm
	Example 1
	Example 2
	Example 3
	Clustering Algorithm For Identifying Fingering in the Swarm

	New Model for Periodic Domains
	Equations of Motion On Periodic Domain
	Particle-in-Cell Method for Periodic Domain
	Higher-order Stepping Method
	Results on the Periodic Domain

	Continuous Model
	Introduction
	Transition Between Stationary and Moving
	Evolution of orientation
	Stationary Solutions

	Conclusions and Future Work
	Bibliography

