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where D (x) is a periodic function of log x which will be determined explicitly in the
rational case.

Fredman and Knuth showed that (1.4) implies that

(1.9) M(n) An1+1 "v,

where A is an explicitly determined constant in the irrational case. Weshall show
that (1.5)and (1.8)together imply

(I.I0) M(n) B(n)nl+l/'v,
where B(n) is an explicitly determined periodic function of log n in the rational case.
(Once the form of the functions D(x) and D(x) are explicitly known, it is possible
to go back and derive these results by extending the analysis of Fredman and Knuth.
This would involve showing that certain Fourier series converge to certain periodic
functions. But since there is no general procedure for identifying a function from its
Fourier series, it does not appear to be possible to extend the analysis of Fredman and
Knuth without knowing what D(x) and D(x) are by some other method.)

2. The rational case. Our analysis begins with the observation that h(x) is
the number of words over the alphabet {(, having weight at most x, where the
weight of a word is the product of its letters. (We take the weight of the empty word
to be unity.) Indeed, if 0 _< x < 1, then there are no such words and h(x) 0. If
1 _< x < cx, then h(x) 1 + h(x/o) / h(x/), and any word for which the product
of the letters is at most x must either be empty (and there is 1 such word) or consist
of an a followed by a word for which the product of the letters is at most x/a (and
there are h(x/a) such words), or consist of an/3 followed by a word for which the
product of the letters is at most x/ (and there are h(x/) such words). Since there
are exactly (i+j) words that contain i a's and j 13's, we have established the following
explicit formula for h(x):

(2.1) h(x)= y (i+J).i
Taking logarithms in the constraint of the summation, we see that h(x) may be in-
terpreted as the sum of the binomial coefficients (i+J) in Pascal's triangle over the
triangular subregion bounded by the inequalities i _> 0, j > 0, and

i log a + j log/3 _< log x.

Suppose that log c/log is the rational number p/q, where p and q are positive
integers such that gcd(p, q) 1. Then log, p/(p + q), loga f q/(p + q), and
if we set

(Ol)l/(pTq),
then (2.2) becomes

pi + qj <_ lode x.

Since p, q, i, and j are integers, we see that h(x) remains constant as x increases
except when lode x passes through an integer k when it jumps by

(2.3) S(k)= Z
piTqj--k

i
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We shall see below that S(k) has the asymptotic formula

(za) (c

where
a ff (a)’/(+q).

If we set S*(l) Y0<k<t S(k), it follows that

s,(g) (Ca log a) a
a-1

This formula gives the asymptotic value S*(l) of h(x) when x is a "magic" number
of the form x t. The asymptotic formula for arbitrary x follows from this and the
fact that h(x) remains constant between magic values of x. If we write logo x + A,
where l= [logo xJ (the integral part of logo x) and A {logo x} (the fractional part
of logo x), then

where

(Ca log a) a
rr--1

(Ca1- log a) at+:
a-1

P((logo x}) x’,

P(A)
Cry1-A log a
a-1

This establishes (1.5) with D(x) P({log x}), which is periodic in log x (with period
log ), as claimed.

It remains to establish (2.4). The major steps of the derivation are as follows.
First, we approximate the binomial coefficients (+J) (i+j)!/i!j! in (2.3) by applying
Stirling’s formula to their constituent factorials. If we separate the approximation
into algebraically varying factors and exponentially varying factors, we see that the
exponentially varying factors impart to the summand a peaking reminiscent of the
central limit theorem: the greatest contribution to the sum comes when i and j are in
the fixed ratio a-/fl-. This variation allows the terms of the sum not near the peak
to be neglected. The resulting truncated sum is then estimated by an integral; the
error in this estimation is at most the total variation of the summand, which (since
the summand is unimodal) is at most twice the largest term. The resulting integral

71.I/2can be transformed into the well-known integral f_ e- dy by adjoining
negligible tails. The result is (2.4).

Successive values of i and j differ by q and p, respectively; it will be convenient
to have an index whose successive values differ by 1. Thus we introduce the index m
satisfying

i qm, j k/q pro, i + j k/q (p q)m.

This index assumes values that are not necessarily integers, but are congruent to 1/q
modulo 1.

LEMMA 2.1.

(1 2rij ) m
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where

E(#) F(G(#)),
q2#

G(#)
1 (p- q)q#’

F() H()
p + q(1 )’

H(u) -ulog- (1 )log(1 ).

Proof. The estimate

1(i-J)--(l+O( )) li+jl/2\2rij] exp(i +j)H
i + j

is an immediate consequence of Stirling’s formula

n! ll + O l)) (2rn)l/2e-nnn

(see Knuth [K1, 1.2.11]). Define such that

i= (i + j), j (1 u)(i + j), ( + q( ))(i + j).

Then
1/2

i 2rij j

Define # such that

Then and # are related by

exp kF
i + j

q2
1 (p- q)q#’ # q2 + (p_ q)q"

This yields the assertion of the lemma, r
LEMMA 2.2. The function F() assumes its unique maximum (for 0

_ _
1) at

At this point

F(N) log a, F’(N) O, F"(N) N(1 N)A’

where
A pN + q(1 N)

and the primes indicate differentiation. Accordingly, E(#) assumes its maximum at

N

and at this point

E(M) log a, E’(M) =0, E"(M)
A3

N(1 N)"
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Proof. We shall let H(0) H(1) 0; this makes H(u), and therefore F(u),
continuous on the closed interval 0 < v < 1. These functions are in fact analytic in
the open interval 0 < < 1, and thus F() can assume its maximum only where its
first derivative vanishes or at an endpoint. We compute the first derivatives

H’(v) log(1 u) -logv,

F’()
H(v)(p- q)

+ q(1
+ +

Equating F’(u) to zero leads to the equation

(p + q(1 ))H’() (p- q)H().

This has the unique solution u N, where

N a-’ o’--P

so that
1 N -’ a-q.

This gives
F(N) log a,

which is obviously larger than F(u) at either of the endpoints. We compute the second
derivatives

1
H"(u) -u(1 u)’

F"(u)
2g(u)(p- q)2

+
H"(u)2H’(u)(p q) +

(pu + q(1 u)) 2 pu / q(1 )"

Since the first two terms of F"(u) are a multiple of F’(u), they vanish at u N,
leaving

1
F"(g) -N(1 N)A"

This derivation can be carried over to E(#), E’ (#), and E"(#) through the derivative

a’(.)
q2

(1 (p q)q#)2 (pu + q(1 u)),2

and the chain rule.
LEMMA 2.3.

1Z (1 +0 (+-)) (i-.I-j’ :t12

m \ 2rij ]

_--(1+0( (lg k)3/2k/2 ) ) -’ak

m
exp kE (-)

Here the sum over m, as described above, is over i > 0 and j >_ 0 such that i + j k,
with m i/q.
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Proof. The major steps of the derivation are as follows. The central peaking of
the summand will be exploited, allowing the tails of the summation to be neglected.
The decaudated sum can be ,simplified, since the algebraically varying factors behave
like constants in the remaining range of summation. The resulting sum will be esti-
mated with an integral, to which the tails previously removed will be restored. The
recaudated integral can be evaluated by standard methods.

Our sum is

where

i-b))(i-bjl/22rij]
Since E(#) is analytic at # M, it can be expanded in a Taylor series about this
point. The result is

E(#) log a- (#- M)2/52 + O((#- M)3),

where

5 I2N(1- N) )
We shall break our sum into three parts,

m m<a a<_m<_b b<m

where

a Mk_ (6N(1- N)klgk) /2

A3

b_ Mk + (6N(1- N)klgk)
1/2

A3

To estimate the sum over m < a, we observe that it comprises O(k) terms, each
of which is at most Wa. We have E(a/k) log a 3(log k/k) + O((log k/k)3/2) (by
the Taylor expansion). Thus

Wa=O V
and so

Similarly,

w =o
m(a

=o
b<m

and thus

w +o
m a<m<b
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For any term in the sum over a < m < b,

from which it follows that

i=- 1+0

j_(i-N)k(A1+O((1 k)1/2
and

Thus

where

and therefore

Wm_(l+o((logk)3/2 A
kl/2 )) (2rkN(I_N))

Vm exp-((m- Mk)2/52k),

akVm

(2.6) - Wm._(l+o((logk)3/2))( A3 )1/2kl/2 2rkN(1 N)
O’k Z Vm.

a(m(b a(m(b

Now
b

(2.7) Vm Vx dx / O(1),
a_m_b

since the total variation of the integrand is O(1). We shall express our integral as the
sum of three integrals:

Vx dx V: dx + V: dx Vz dx.

Integration by parts gives

Vdx O =0

Similarly

and thus

/a V dx 0

(2.s) Lb I_- (1)Vdx Vzdx +O
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Using the transformation

and the well-known integral

x Mk + ,kl/2y

exp _y2 dy rl/2,

we obtain

Working backwards through (2.8), (2.7), (2.6), and (2.5) yields the assertion of the
lemma.

The formula (2.4) follows from Lemma 2.3, since Clog a 1/A.
We should mention here that the special cases p q 1, where S(k) 2k, and

p 1, q 2, where S(k) Fk+ k+/vf (in which Fn is the nth Fibonacci
number and (1 -t- x/)/2; see Knuth [K1, 1.2.8, eq. (15) and Exer. 16]) are well
known, and the analysis just given can be regarded as a generalization of these cases.
Furthermore, that a 2 and a are algebraic in the examples just cited is not
accidental: the rationality of log c/log p/q implies that (- and/- are roots of
the polynomials (1- z)p zq and zp (1- z)q, respectively, whence (a)/(p+q)
is algebraic.

In 4 we shall also want the solution to the recurrence (1.6) for h(x) in the
rational case. Let us call the product of the letters in a word over the alphabet (c,}
the weight of the word. Then h(x) is the sum of the weights of all words whose weight
is at most x, and thus we have the explicit formula

The treatment of this sum is completely analogous to that of (2.1); the result is

h’(x) P’({logo x}) x+,

where

P’(A)
C’T-) log T

T--1

in which
T +1

This establishes (1.8) with D’(x) P’({loge x}).
3. The irrational case. When log c/log/ is irrational the analysis of the pre-

ceding section is not applicable, for as x increases new binomial coefficients enter the
sum one by one, rather than in the regularly spaced platoons of the rational case.
Furthermore, the order of their entry is very irregular, with small coefficients near
the axes being interspersed with large ones near the main diagonal. The analysis of
this section is based on a regularity of averages amid this irregularity of detail, as
expressed by the "ergodicity of an irrational rotation of the circle." We shall use in
particular the Kronecker-Weyl theorem, to the effect that if z9 is irrational, then the
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fractional parts of the sequence 0, 2, 30,..., are uniformly distributed in the unit in-
terval. (This theorem as stated was proved by Weyl [Wl]; Kronecker [K2] proved that
if is irrational, then the fractional parts of the sequence , 2, 3,... are dense in
the unit interval.) Weyl’s orginal proof (which is probably still the simplest proof) of
this theorem was based on Fourier series, which by some tastes might not be accepted
as elementary. A subsequent proof based on continued fractions (see Nivin IN, Chap.
6, 3]) is incontestably elementary however.

We shall say that a subset .=. of the unit interval is an "interval modulo 1" if it is
the image modulo 1 of an interval. (Thus [0, /2) t2 [1 /2, 1) is an interval modulo
1 of length .) The Kronecker-Weyl theorem asserts the following.

Let v be irrational. For every 0 < < 1 and 0 < y < 1, there exists a natural
number t such that, if .. is an interval modulo 1 of length and T is any set of t
consecutive integers, then at least (1 y)t and at most (1 + y)t of the integers i in
T are such that (iO} falls in ... (This theorem is often stated in the special case in
which T (1,... ,t}, but shifting T to T + u is equivalent to shifting .=. to - u
modulo 1, so the special case implies the general.)

Let e > 0 be fixed. Define the function he(x) by

(3.1) he(x)= E (i+J).i
Taking logarithms in the constraint of the summation, we see that he(x) may be
interpreted as the sum Of the binomial coefficient over the trapezoidal region bounded
by the inequalities i > 0, j > 0, and

(3.2) log x < i log a + j log < log x.

We shall see below that he(x) satisfies the asymptotic inequalities

(3.3) C’),e(1 e)e-ex < he(x)

as x - oc with fixed. (Here f(x) < g(x) means that limsupz_.o f(x)/g(x) <_ 1.) If
we set [log x/J + 1, then xe-le < 1, so we have

O<k</

It follows that
CTe(1 e)e-rexr

1 e-re
< h(x) < C7(1 + )xr

1 e-re
Since this holds for every > 0, we may let -- 0 and obtain (1.4).

It remains to establish (3.3). The proof follows the same general lines as that
of (2.4), but is complicated by the fact that the lattice points (i, j) are not equally
spaced in the trapezoid (3.2) as they were along the boundary of the triangle (2.2). Our
salvation comes from the Kronecker-Weyl theorem, which shows that though they are
not "equally spaced," they are "uniformly distributed." This will allow the trapezoid
(3.2) to be broken into pieces, each of which is sufficiently large so that it contains a
number of lattice points approximately proportional to its area, yet sufficiently small
so that the binomial coefficients associated with these lattice points are approximately
equal.
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Suppose that e < log and set 0 log a/logf, so that 0 is irrational. Let us
say that a natural number i is "lucky" if there exists a j such that i and j satisfy the
inequalities (3.2). Clearly there exists such a j if and only if (i0} falls in the interval
((log x e)/log f, log x/log fl]. (Since the length of this interval is /logf < 1, it
contains either no integers or one integer.) By the Kronecker-Weyl theorem, with

/log and , we may choose t such that among any t consecutive natural
numbers there are (1 + e)t/log lucky values of i.

For lucky i, we shall regard j as a function of i. We shall abbreviate i log a+j log
by k (which is not necessarily an integer). We shall abbreviate log x by (which is not
necessarily an integer), and k by A (so that 0 _< A < ).

Since we no longer have the parameters p and q, we shall use log a and log in
their stead. Thus we introduce m satisfying

i m log/3, j (1 A)/log/3 m log a, i + j (1 A)/log/3 re(log a log/3).

Let us say that a value of m is "lucky" if it corresponds to a lucky value of i. Hence-
forth, we shall take m to range over lucky values, and regard i, j, k, and A as functions
of m for these lucky values.

By analogy with Lemma 2.1, we have

i i+)) (i+ j 1/2

2rij ) expkE (-),
where

E(#) F(G(#)), F(u) H(u)
u log c + (1 u) log’#(lg)2

H() -logu- (1 )log(1 ).G(#)
1 (log a log) log’By analogy with Lemma 2.2, the function F(u) assumes its unique maximum (for

0_< u_< 1) at
N c-, 1 N -.

At this point

1
F(N) "),, F’(N) O, F"(N) ---’llv

where
A N log c / (1 N) log

Accordingly, E(#) assumes its maximum at

N
A log/’

and at this point

A3
E(M) , E’(M) O, E"(M) N(1 N)"

We now seek the analog of Lemma 2.3, which is the following.
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LEMMA 3.1.

In this lemma and all that follows, the constants.implicit in the O-terms may depend
on . The inequalities involving the O-terms are to be interpreted as follows: for every
> 0 and every choice of the O-term in the middle expression, there exist choices of

the O-terms in the outer expression such that the inequalities are satisfied for all x.

Proof. Since e _< k _< and E(#) < , we have

e-’eexplE _<expkE _<explE -Thus it will suffice to prove

1 + O ( (log/)3/2
1/21 )) (1- e)eXA

1 (i+j /2
(3.4) N 1 + O + exp lE

m

_< (1To((logl)3/2))ll/2 (1T)x
Choose t using the Kronecker-Weyl theorem so that, for any interval of length

e/log/ modulo 1, among any t consecutive integers i, there are between (1-e)et/log/
and (1 + e)et/log/ such that {ivY} falls in the given interval modulo 1. Set L
(t log/)/2. Set

Q= (6N(1 N)llogl) /2A3

and set

q=
2L

so that (2q + 1)L is the smallest odd multiple of L that is not less than Q.
Our sum is

IV,,,

where

Wm (1TO ( 1- + 1)) (i+j/2\2rij]
Since E(#) is analytic at # M, it can be expanded in a Taylor series about this
point. The result is

E(#) (# M)/ + O(( M)3),
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where

(2N(1 = N))
1/2

We shall break our sum into three parts,

Zw.,= Zw.,+ Z w.+
m m<a a(_m<5

where
a Ml- (2q / 1)L,
b Ml / (2q / 1)L.

We shall need the following approximation property of E(#). If m is of the form

m M1 + O((1 log/)1/2),

then (since Ik _< ) we have

--T =o

Furthermore, since E’(#) O(I# M[) in a fixed neighborhood of M, we have

I" (T)I- o 13/2

To estimate the sum over m < a, we observe that it comprises O(1) terms, each
of which is at most Wa. We have E(a/k) E(a/1)+ 0((10gl)1/2/13/2) (by the
approximation property with m a) and E(a/1) 7 3(log l/l) + O((log l/l)32) (by
the Taylor series expansion). Thus

W=O T-
and so

Similarly,

and thus

(*)w.=o -W,. 0 (x’-),

(3.5)
a<_m<b

For any term in the sum over a _< m < b,

m-Ml(l+O(()l/2))
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from which it follows that

and

Thus

where

And, therefore,

V, exp-((m- Mk)2/52k).

xVm,

(3.6) E Wm_(l+o((logl)3/2))( A3 )1/2 v..11/2 2r/Y(1 N)a_m(b a_m(b

To estimate this sum, we divide the interval [a, b) into 2q / 1 intervals, each of
length 2L:

E E Ev ,
a(_m<b

where Ir [M1 -t- (2r 1)L, Ml + (2r + 1)L) is the half-open interval of length 2L
centered at cr M1 -t- 2rL.

We shall need the following approximation property of Vm. If m and c are each
of the form

m, c Ml + O((1 log/)1/2),
and Im- c < L, then we have

=o

Furthermore, since (d/dm)log Vm O([#- M[) in a fixed neighborhood of M, we
have

Using this approximation property, we may replace the summand V, by the
constant V in the inner sum over m E It, so that

E Vm: (1+0 ((1g/)1/2))13/2
mElr mIr
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By the Kronecker-Weyl theorem, we have

(1 )25 _< I _< (1+)25
mGIr

for each r, since the lucky values of m in Ir correspond to lucky values of i in an
interval of length t. Thus we have

(3.7) (1-e)e2L Z V _< Z Vm <_ (1-+- e)e2L Z Vc.
--q<_r<_q a<_m(b -q<_r<_q

The sum ---q<_r<_q Vc may now be approximated by an integral, extended to an
infinite range of integration, and evaluated by an appropriate substitution, all as in
the proof of Lemma 2.3. The result is

1 (2rlN(i-N))
/2 (1)+o

Working bckwards through (a.r), (a.), (a.) yields (:}.4). r]

The formula (3.3) follows from Lemma 3.1, since 07 1/A. We observe that
the same method works to establish the asymptotic formula (1.7) for h’(x) in the
irrational case.

Though we have derived (1.4) and (1.5) by parallel arguments, there is an im-
portant difference between these derivations. We could have done the analysis in 2
to obtain an O-estimate for the error in (1.5); the most straightforward way of do-
ing this yields a factor of (1 / O((loglogx)3/2(logx)-/2)). No such sharpening is
possible for (1.4), however, since the Kronecker-Weyl theorem, in the form we have
cited, gives no estimate for the rate of convergence to the uniform distribution. The
same phenomenon arises for the analytic proof using the Wiener-Ikehara theorem, for
while convergence follows from the behavior of K(s) on the critical line and the right
half plane it bounds, the rate of convergence depends on how closely the poles in the
left half plane approach the critical line as their imaginary parts grow (see [W2], [I],
ILl). With either method, the missing information depends on how well the irrational
number log a/log/ can be approximated by rational numbers as the denominators of
these rational numbers grow. This is the crux of the difference: all rational numbers
are alike, but each irrational number is irrational in its own way.

Since we have not made any quantitative hypothesis concerning the irrationality
of log a/log/, we cannot expect to draw any conclusion about the rate of approach
in (1.4). If however we assume that [log a/logfl- p/q[ is bounded away from zero
by a function of q, the elementary method used here (as well as the analytic method
used by Fredman and Knuth) can be adapted to yield an explicit O-estimate in (1.4).

4. Conclusion. After deriving (1.4) and (1.5) in a new way, and obtaining ex-
plicit descriptions of the functions D(x) and D’(x) appearing in (1.5) and (1.8), we
shall exhibit in this section the consequences of these explicit descriptions for the
original recurrence (1.1).

Fredman and Knuth show, by elementary arguments, that

(4.1) i(n) 1 + (a +/- 1)W(n),

where W(n) is the sum of the weights of the n words having the smallest weights.
(Recall that the weight of a word over {,/} is the product of its letters.) By the def-
initions of h(x) and h’(x), we have W(h(x)) h’(x). Let us assume that log a/log/
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is rational. Recall that a value of x is "magic" if x for some natural number 1.
We have D(x) P(0) and P’(x) P’(0) for all magic values of x, and the asymptotic
formulas

(4.2) h(x) P(0)x

and

(4.3) h’(x) P’(O) x+l,

valid for magic values of x.
Let us say that a value of n is "magic" if n h(x) for some magic value of x.

Then (4.2) and (4.3) yields the asymptotic formula

(4.4) W(n) P’(O) P(O)
valid for magic values of n.

To extend (4.4) to arbitrary values of n, we observe that as n increases between
magic values, W(n) increases by the addition of equal weights. Thus the points of
the graph of W(n) between magic values of n lie on the chords joining the points of
the graph at successive magic values, and the formula for arbitrary n is obtained by
linearly interpolating between the values given by (4.4) for magic values of n. This
gives

W(n) P’(O)Q p(o p(o
where Q(A) (1 A + A)-, which establishes (1.10) with

which is periodic in log n (with period log a), claimed.
We have dealt in this paper with particular recurrences, (1.1) and (1.2), taken

from edman and Knuth. It is possible to extend the analysis straightforwardly to
a number of other recurrences of similar form, , for example, with initial conditions
imposed on an initial segment {0, 1,..., r} of the domain, rather than just at the
point zero, or with three terms on the right-hand side, rather than just two. We see
the contribution of this paper, however, residing more in its methods than in their
scope. The Wiener-Ikehara-Landau theorem used by edman and Knuth is of an
essentially "Tauberian" character, inferring the ymptotics of a sequence from that
of its sum. It is virtually equivalent in depth to the prime number theorem, whichw
in fact the application that motivated Wiener, Ikehara, and Landau. The arguments
used in this paper, however, are not only elementary, but also "direct" or "Abelian" in
character: they infer the ymptotics of a sum from that of its terms. These arguments
are much less delicate than the ones they replace, and they show the phenomena we
have studied to be less deep than h hitherto been supposed.
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