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(c) H '  is not Riemann integrable on any closed interval [a, b], for assume 
that it is. Then H' is continuous a.e. on [a, b] . But it is clear that H'(t) = 0 if H' 
is continuous at t ,and so H' = 0 a.e. on [a, b] . It follows from (b) that H is a 
constant on [a, b] -a palpable contradiction. 

(d) H '  is of Baire class one, being the pointwise limit of the continuous functions 
H,(x) = n[H(x + l ln )  - H(x)] ,and so the set of points at which H '  is continuous 
is residual; i.e., its complement is of first category. 

(e) WriteA = {x: Hf(x) >O)andB = {x: H1(x) < O ) .  Thus A n I  and B n  I 
both have positive Lebesgue measure for every interval I .  In fact, assuming that 
there exists some interval I = [a, b] such that B n  I has measure zero, it follows 
that H' 2 0 a.e. on I .  Therefore, since 

for all x E I ,  we conclude that H is nondecreasing on I- a contradiction. Similarly, 
if A n I had measure zero, then H would be nonincreasing on I .  

Reference 

1. E. W. Hobson, Theory of Functions of a Real Variable 11, Dover, New York, 1957. 

IS MATHEMATICAL TRUTH TIME-DEPENDENT? 

JUDITH V. GRABINER 

1. Introduction. Is mathematical truth time-dependent? Our immediate impulse 
is to answer no. To be sure, we acknowledge that standards of truth in the natural 
sciences have undergone change; there was a Copernican revolution in astronomy, a 
Darwinian revolution in biology, an Einsteinian revolution in physics. But do 
scientific revolutions like these occur in mathematics? Mathematicians have most 
often answered this question as did the nineteenth-century mathematician Hermann 
Hankel, who said, "In most sciences, one generation tears down what another has 
builf, and what one has established, the next undoes. In mathematics alone, each 
generation builds a new story to the old structure." [20, p. 25.1 

Hankel's view is not, however, completely valid. There have been several major 
upheavals in mathematics. For example, consider the axiomatization of' geometry in 
ancient Greece, which transformed mathematics from an experimental science into 
a wholly intellectual one. Again, consider the discovery of non-Euclidean geometries 
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and non-commutative algebras in the nineteenth century; these developments led 
to the realization that mathematics is not about anything in particular; it is instead 
the logically connected study of abstract systems. These were revolutions in thought 
which changed mathematicians' views about the nature of mathematical truth, and 
about what could or should be proved. 

Another such mathematical revolution occurred between the eighteenth and 
nineteenth centuries, and was focussed primarily on the calculus. This change was a 
rejection of the mathematics of powerful techniques and novel results in favor of 
the mathematics of clear definitions and rigorous proofs. Because this change, 
however important it may have been for mathematicians themselves, is not often 
discussed by historians and philosophers, its revolutionary character is not widely 
understood. In this paper, I shall first try to show that this major change did occur. 
Then, I shalb investigate what brought it about. Once we have done this, we can 
return to the question asked in the title of this paper. 

2. Eighteenth-century analysis: practice and theory. To establish what 
eighteenth-century mathematical practice was like, let us first look at a brilliant 
derivation of a now well-known result. Here is how Leonhard Euler derived the 
infinite series for the cosine of an angle. He began with the identity 

(cos z + i sin z)" = cos nz + i sin nz. 

He then expanded the left-hand side of the equation according to the binomial 
theorem. Taking the real part of that binomial expansion and equating it to cos nz, 
he obtained 

cos nz = (cos z)" - n(n - 1) 
(COS2)"- '(sin 2)' 

2! 

Let z be an infinitely small arc, and let n be infinitely large. Then: 

cos z = 1, sin z = z, n(n - 1) = n2, n(n- 1)(n -2) (n-3) = n4, etc. 

The equation now becomes recognizable : 

But since z is infinitely small and n infinitely large, Euler concludes that nz is a finite 
quantity. So let nz = v. The modern reader may be left slightly breathless; still, we 
have 
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(See [16, sections 133-41 and [32, pp. 348-91.) 
Now that we have worked through one example, we shall be able to appreciate 

some generalizations about the way many eighteenth-century mathematicians worked. 
First, the primary emphasis was on getting results. All mathematicians know many 
of the results from this period, results which bear the names of Leibniz, Bernoulli, 
L'Hospital, Taylor, Euler, and Laplace. But the chances are good that these results 
were originally obtained in ways utterly different from the ways we prove them today. 
It is doubtful that Euler and his contemporaries would have been able to derive 
their results if they had been burdened with our standards of rigor. Here, then, is 
one major difference between the eighteenth-century way of doing mathematics and 
our way. 

What led eighteenth-century mathematicians to think that results might be more 
important than rigorous proofs? One reason is that mathematics participated in the 
great explosion in science known as the Scientific Revolution [19]. Since the 
Renaissance, finding new knowledge had been a major goal of all the sciences. In 
mathematics, ever since the first major new result -the solution to the cubic equation 
published in 1545-increasing mathematical knowledge had meant finding new 
results. The invention of the calculus at the end of the seventeenth century intensified 
the drive for results; here was a powerful new method which promised vast new 
worlds to conquer. One can imagine few more exciting tasks than trying to solve 
the equations of motion for the whole solar system. The calculus was an ideal 
instrument for deriving new results, even though many mathematicians were unable 
to explain exactly why this instrument worked. 

If the overriding goal of most eighteenth-century mathematics was to get 
results, we would expect mathematicians of the period to use those methods which 
produced results. For eighteenth-century mathematicians, the end justified the 
means. And the successes were many. New subjects arose in the eighteenth century, 
each with its own range of methods and its own domain of results: the calculus of 
variations, descriptive geometry, and partial differential equations, for instance. Also, 
much greater sophistication was achieved in existing subjects, like mathematical 
physics and probability theory. 

The second generalization we shall make about eighteenth-century mathematics 
and its drive for results is that mathematicians placed great reliance on the power 
of symbols. Sometimes it seems to have been assumed that if one could just write 
down something which was symbolically coherent, the truth of the statement was 
gua1;anteed. And this assumption was not applied to finite formulas only. Finite 
methods were routinely extended to infinite processes. Many important facts about 
infinite power series were discovered by treating the series as very long polynomials 

[301. 
This trust in symbolism in the eighteenth century is somewhat anomalous in the 

history of mathematics, and needs to be accounted for. It came both from the 
success of algebra and the success of the calculus. Let us first consider algebra. 
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General symbolic notation of the type we now take for granted was introduced in 
1591 by the French mathematician Franqois Vibte [6, pp. 59-65] and 132, pp. 74-81]. 
This notation proved to be the greatest instrument of discovery in the history of 
mathematics. Let us illustrate its power by one example. Consider the equation 

(2.1) ( x  - a ) ( x  - b ) ( x  - c) = x 3  - ( a  + b + c)x2  + ( a b  + ac + bc)x - abc. 

Symbolic notation lets you discover what dozens of numerical examples may not: 
the relation between the roots and the coefficients of any polynomial equation of any 
degree. Equation (2.1), furthermore, has degree three, and has three roots. Relying 
on results like (2.1), Albert Girard in 1629 stated that an nth degree equation had n 
roots -the first formulation of what Gauss later called the Fundamental Theorem 
of Algebra. 

But why are algebraic formulas like (2.1) considered true by eighteenth-century 
mathematicians? Because, as Newton put it, algebra is just a "universal arithmetic" 
[29].  Equation (2.1) is valid because it is a generalization about valid arithmetical 
statements. What, then, about infinite arguments, like the one of Euler's we examined 
earlier? The answer is analogous. Just as there is an arithmetic of infinite decimal 
fractions, we may generalize and create an algebra of infinite series [28, p. 61. Infinite 
processes are like finite ones -except that they take longer. 

The faith in symbolism nourished by algebra was enhanced further by the success 
of the calculus. Leibniz had invented the notations dyldx  and J y d x  expressly to 
help us do our thinking. The notation serves this function well; we owe a debt to 
Leibniz every time we change variables under the integral sign. Or, suppose y is a 
function of x and that x is a function of t ;  we want to know d y  ldt .  It is not Leibniz, 
but Leibniz's notation that discovers the chain rule: 

d y  /d t  = ( d y  / d x )  ( d x  ldt).  

The success of Leibniz's notation for the calculus reinforced mathematicians' belief 
in the power of symbolic arguments to give true conclusions. 

In the eighteenth century, belief in the power of good notation extended beyond 
mathematics. For instance, it led the chemist Lavoisier to foresee a "chemical 
algebra," in the spirit of which Berzelius in 1813 devised chemical symbols essentially 
like those we use today. Anybody who has balanced chemical equations knows how 
the symbols do some of the thinking for us. The fact that the idea of the validity of 
purely symbolic arguments spread from mathematics to other areas shows us how 
prevalent an idea it must have been. 

What has been said so far should not lead the reader to believe that eighteenth- 
century mathematicians were completely indiflerent to the foundations of analysis. 
They certainly discussed the subject, and at length. I shall not here summarize the 
diverse eighteenth-century attempts to explain the nature of d y  ldx ,  of limits, of the 
infinite, and of integrals, during a century that Carl Boyer has rightly called "the 
period of indecision" as far as foundations were concerned [7, Chapter VI]. What 
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must be emphasized for our present purposes is that discussions of foundations were 
not the basic concern of eighteenth-century mathematicians. That is, discussions of 
foundations do not generally appear in research papers in scientific journals; instead, 
they are relegated to Chapter I of textbooks, or found in popularizations. More 
important, the practice of mathematics did not depend on a perfect understanding of 
the basic concepts used. But this was no longer the situation in nineteenth-century 
mathematics, and, of course, is not the situation today. 

Nineteenth-century analysts, beginning with Cauchy and Bolzano, gave rigorous, 
inequality-based treatments of limit, convergence, and continuity, and demanded 
rigorous proofs of the theorems about these concepts. We know what these proofs 
were like; we still use them. This new direction in nineteenth-century analysis is not 
just a matter of differences in technique. It is a major change in the way mathematics 
was looked at and done. Now that we have sketched the eighteenth-century approach, 
we are ready to deal with what are-from the historical point of view -the most 
interesting questions of this paper. What made the change between the old and new 
views occur? How did mathematics get to be the way it is now? 

Two things were necessary for the change. Most obviously, the techniques needed 
for rigorous proofs had to be developed. We shall discuss the history of some major 
techniques in Section 4, below. But also, there had to be a change in attitude. Without 
the techniques, of course, the change in attitude could never have borne fruit. But 
the change in attitude, though not sufficient, was a necessary condition for the 
establishment of rigor. Our next task, accordingly, will be to explain the change in 
attitude toward the foundations of the calculus between the eighteenth and nine- 
teenth centuries. Did the very nature of mathematics force this change? Or was it 
motivated by factors outside of mathematics? Let us investigate various possibilities. 

3. Why did standards of mathematical truth change? The first explanation 
which may occur to us is like the one we use to justify rigor to our students today: 
the calculus was made rigorous to avoid errors, and to correct errors already made. 
But this is not quite what happened. In fact, there are surprisingly few mistakes in 
eighteenth-century mathematics. There are two main reasons for this. First, some 
results could be verified numerically, or even experimentally; thus, their validity 
could be checked without a rigorous basis. Second, and even more important, 
eighteenth-century mathematicians had an almost unerring intuition. Though they 
were not guided by rigorous definitions, they nevertheless had a deep understanding 
of the properties of the basic concepts of analysis. This conclusion is supported by 
the tact that many apparently shaky eighteenth-century arguments can be salvaged, 
and made rigorous by properly specifying hypotheses. Nevertheless, we must point 
out that the need to avoid errors became more important near the end of the eighteenth 
century, when there was increasing interest among mathematicians in complex 
functions, in functions of several variables, and in trigonometric series. In these 
subjects, there are many plausible conjectures whose truth is relatively difficult to 
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evaluate intuitively. Increased interest in such results may have helped draw attention 
to the question of foundations. 

A second possible explanation which may occur to us is that the calculus was 
made rigorous in a spirit of generalization. The eighteenth century had produced a 
mass of results. The need to unify such a mass of results could have led automatically 
to a rigorous, axiomatic basis. But there had been large numbers of results for a 
hundred years before Cauchy's work. Besides, unifying results does not always make 
them rigorous; moreover, the function of rigor is not just to unify, but to prove. 
Still, there is something to be said for the hypothesis that the calculus became 
rigorous partly to unify the wealth of existing results. At the end of the eighteenth 
century, several mathematicians thought that the pace of getting new results was 
decreasing. This feeling had some basis in fact; most of the results obtainable by the 
routine application of eighteenth-century methods had been obtained. Perhaps, if 
progress was slowing, it was time to sit back and reflect about what had been done 
[31, pp. 136-71. This feeling helped get some mathematicians interested in the 
question of rigor. 

A third possible explanation depends on the prior existence of rigor in geometry. 
Everybody from the Greeks on knew that mathematics was supposed to be rigorous. 
One might thus assume that mathematicians' consciences began to trouble them, 
and that as a result analysts returned their new methods to the old standards. In 
fact, Euclidean geometry did provide a model for the new rigor. But the old ideas 
of rigor were not enough in themselves to make mathematicians strive to make the 
calculus rigorous-as the hundred and fifty years from Newton to Cauchy shows. 
This is true even though the discrepancy between Euclidean standards and the 
actual practice of eighteenth-century mathematicians did not go unnoticed. George 
Berkeley, Bishop of Cloyne, attacked the calculus in 1734, on the perfectly valid 
grounds that it was not rigorous the way mathematics was supposed to be. Berkeley 
wanted to defend religion against the attacks of unreasonableness levelled against it 
by eighteenth-century scientists and mathematicians. Berkeley said that his opponents 
did not even reason well about mathematics. He conceded that the results of the 
calculus were valid, but attacked its methods. Berkeley's attack, The Analyst, is a 
masterpiece of polemics 1732, pp. 333-3381 and [3]. He said of the "vanishing in-
crements" that played so crucial a role in Newton's calculus, "And what are these 
...vanishing increments? They are neither finite quantities, nor quantities infinitely 
small, nor yet nothing. May we not call them the ghosts of departed quantities?" 
Berkley's attack- which included point-by-point mathematical criticisms of some 
basic arguments of Newton's calculus-provoked a number of mathematicians to 
write refutations. However, neither Berkeley's attack nor the replies to it produced 
the change in attitude toward rigor which we are trying to explain. First of all, the 
replies are not very convincing [8]. Besides, the subject of foundations was still not 
considered serious mathematics. Berkeley did get people thinking, more than they 
would have without him, about the problem of foundations. The discussions of 
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foundations by Maclaurin, D'Alembert, and Lagrange were all at least somewhat 
influenced by Berkeley's work. Nevertheless, Berkeley's attack in itself was not 
enough to cause foundations to become a major mathematical concern. 

In bringing about the change, there is one other factor which, though seldom 
mentioned in this connection, was important: the mathematician's need to teach. 
Near the end of the eighteenth century, a major social change occurred. Before the 
last decades of the century, mathematicians were often attached to royal courts; 
their job was to do mathematics and thus add to the glory, or edification, of their 
patron. But almost all mathematicians since the French Revolution have made 
their living by teaching 1731, p. 1401 [2, p. 95,1081. 

This change in the economic circumstances of mathematicians had other causes 
than the decline of particular royal courts. In the eighteenth century, science was 
expanding. This was the "age of Newton" and the success of Newtonian science. 
Governments and businessmen felt that science was important and could be useful; 
scientists encouraged them in these beliefs. So governments founded educational 
institutions to promote science. Military schools were founded to provide prospective 
officers with knowledge of applied science. New scientific chairs were endowed in 
existing universities. By far the most important new institution for scientific in- 
struction, one which served as a model to several nations in the nineteenth century, 
was the Bcole polytechnique in Paris, founded in 1795 by the revolutionary govern- 
ment in France. 

Why might the new economic circumstances of mathematicians-the need to 
teach-have helped promote rigor? Teaching always makes the teacher think care- 
fully about the basis for the subject. A mathematician could understand enough 
about a concept to use it, and could rely on the insight he had gained through his 
experience. But this does not work with freshmen, even in the eighteenth century. 
Beginners will not accept being told, "After you have worked with this concept for 
three years, you'll understand it." 

What is the evidence that teaching helped motivate eighteenth and nineteenth 
century mathematicians to make analysis rigorous? First, until the end of the 
eighteenth century, most work on foundations did not appear in scientific journals, 
apparently because foundations were not considered to pose major mathematical 
(as opposed to philosophical) questions. Instead, such work appeared in courses of 
lectures, in textbooks, or in popularizations. Even in the nineteenth century, when 
foundations had been established as essential to mathematics, their origin was often 
in teaching. The work on foundations of analysis of Lagrange [23,26], of Cauchy 
[lo, 111, of Weierstrass [21, pp. 283-41 [7, pp. 284-71, and of Dedekind [14, p. 11, 
all originated in courses of lectures. 

Each of the points we have made so far helps explain what motivated mathema- 
ticians to shift from the result-oriented view of the eighteenth century to the more 
rigorous standards of the nineteenth. One more catalyst of the change should be 
identified: Joseph-Louis Lagrange. Lagrange's own interest in the problem of 
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foundations was first engaged by having to teach the calculus at the military school 
in Turin [24]. In 1784, by proposing the foundations of the calculus as a prize 
problem for the Berlin Academy of Sciences, he stimulated the first major book- 
length contributions to foundations of the calculus written on the Continent. (see 
[27] [9] [7, p. 254-2551 and [IS, pp. 149-1501). Above all, Lagrange's lectures at 
the Bcole polytechnique, published in two widely influential books, attempted to 
give a general and algebraic framework for the calculus [26] [23]. Lagrange did not 
correctly solve the problem of foundations-we can no longer accept his de$nition 
off '(x) as the coefficient of h in the Taylor series expansion off (x + h). Nevertheless, 
his vision of reducing the calculus to algebra decisively influenced the work of 
Bolzano [5] and -as we shall see -of Cauchy. 

The change in attitude we have been discussing was not enough in itself to 
establish rigor in the calculus -as the example of Lagrange shows. Having decided 
that we want to make a subject rigorous, what else do we need? Two more things are 
required: the right definitions, and techniques of proof to derive the known results 
from the definitions. We must now answer another question: where did the required 
definitions and proofs come from? 

Eighteenth-century mathematicians themselves had developed many of the 
techniques, and isolated many of the basic defining properties-even though they 
did not know that this is what they were doing. It  is amazing that so many of the 
techniques used by Cauchy in rigorous arguments had been around for so long. 
This fact shows that a real change in point of view was required for the rigorization 
of analysis; it was not an automatic development out of eighteenth-century mathe- 
matics. 

4. The eighteenth-century origins of nineteenth-century rigor. We shall 
illustrate the eighteenth-century origins of nineteenth-century rigor by giving several 
examples of eighteenth-century work which was transformed into nineteenth-century 
definitions and proofs. The principal area of eighteenth-century mathematics we 
shall investigate is the study of approximations. Eighteenth-century mathematicians, 
whether solving algebraic equations or differential equations, developed many 
useful approximation methods. When the goal is results, an approximate result is 
better than nothing. Paradoxically, eighteenth-century mathematicians were most 
exact when they were being approximate; their work with inequalities in approxi- 
mations later became the basis for rigorous analysis. 

We shall discuss two classes of eighteenth-century approximation work: the 
actual working out of approximation procedures, and the computation of error 
estimates. Let us see what use nineteenth-century analysts made of these. 

One new way in which nineteenth-century mathematicians looked at eighteenth- 
century approximations was to see the approximate solution as a construction of 
that solution, and therefore as a proof of its existence. For instance, Cauchy did this 
in developing what is now called the Cauchy-Lipschitz method of proving the 
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existence of the solution to a differential equation; the proof is based on an approxi- 
mation method developed by Euler [15, pp. 424-51 [12, p. 399 ff]. Similarly Cauchy's 
elegant proof of the intermediate-value theorem for continuous functions was based 
on an eighteenth-century approximation method [22, pp. 260-11 [25, sections 2,6] 
[lo, pp. 378-801. For a continuous function f(x), Cauchy took f(a) and f(b) of 
opposite sign, divided the interval [a, b] into n parts, and concluded that there were 
at least two values of x on [a, b], differing by (b - a) In, which yielded opposite sign 
for f ( x ) .  He then repeated the procedure on the interval between these two new 
values, on an interval of length (b - a) In, which gives two more values, differing by 
(b - a) InZ, and so on. Where Lagrange had used this technique to approximate to 
the root 5: of a polynomial included between x = a and x = b, Cauchy used it to 
argue for the existence of the number t as the common limit of the sequences of 
values of x which gave positive sign for f, and negative sign for f. The origin of 
Cauchy's proof in algebraic approximations is further demonstrated by the context 
in which he gave it: a "Note" devoted to discussing the approximate solution of 
algebraic equations [lo, p. 378 ff]. 

Another example of the conversion of approximations into existence proofs is 
given by Cauchy's theory of the definite integral. In the eighteenth century, it was 
customary to define the integral as the inverse of the derivative. It was known, 
however, that the value of the integral could be approximated by a sum. Cauchy 
took Euler's work on approximating the values of definite integrals by sums [15, 
pp. 184-71, and looked at it from an entirely new point of view. Cauchy dejined the 
definite integral as the limit of a sum, proved the existence of the definite integral 
of a continuous (actually, uniformly continuous) function, and then used his 
definition to prove the Fundamental Theorem of Calculus [ l l ,  pp. 122-5, 151-21. 

Now let us consider another type of result in eighteenth-century approximations: 
approximations given along with an error estimate. These results took a form like 
this: given some n, the mathematician could compute an upper bound on the error 
made in taking the nth approximation for the true value. Near the end of the eight- 
eenth century, the algebra of inequalities was exploited with great skill in computing 
such error estimates [13, pp. 171-1831 and [25, pp. 46-7, p. 1631. Cauchy, Abel, and 
their followers turned the approximating process around. Instead of being given n 
and finding the greatest possible error, we are given what is in effect the "errorH- 
epsilon- and, provided that the process converges, we can always find n such that 
the error of the nth approximation is less than epsilon. (This seems to be the reason 
for the use of the letter "epsilon" in its usual modern sense by Cauchy [lo, pp. 64-5 
et passim].) [I] [lo, pp. 400-4151. Cauchy's definition of convergence-which is 
essentially ours -is based on this principle [lo, Chapter VI]. 

Another way in which nineteenth-century mathematicians changed eighteenth- 
century views of results using inequalities was to take facts known to eighteenth- 
century mathematicians in special cases and to make them legitimate in general. 
For instance, D'Alembert and others had shown that some particular series con- 
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verged by showing that they were, term-by-term, less than a convergent geometric 
progression 17131. Gauss in 1813 used this criterion to investigate, in a rigorous 
manner, the convergence of the hypergeometric series [17]. Cauchy used the 
comparison of a given series with a geometric one to derive and to prove some 
general tests for the convergence of any series; the ratio test, the logarithm test, and 
the root test [lo, pp. 121-1271. 

Let us look at one last example -a very important one -of an eighteenth-century 
result which became something different in the nineteenth century: the property of 
the derivative expressed by 

where V goes to zero with h. As we have remarked, Lagrange had defined f '(x) as 
the coefficient of h in the Taylor expansion of f (x  + h). He then "derived" (4.1) 
from that Taylor series expansion, considering V to be a convergent infinite series in 
h. Lagrange used (4.1) to investigate many properties of the derivative. To do this, 
he interpreted "V goes to zero with h" to mean that, for any given quantity D, we 
can find h sufficiently small so that f (x + h)  -f (x) "will be included between" 
Iz[f '(x) - Dl and h[f '(x) + Dl [23, p. 871. First Cauchy, and then Bolzano and 
Weierstrass, made (4.1) and its associated inequalities into the dejinition o f f  '(x). 
(Cauchy's definition was actually verbal, but he translated it into the language of 
inequalities in proofs.) [ l l ,  pp. 44-5; 122-31, [4, Chapter 21 and [7, pp. 285-71. 
This definition made legitimate the results about f '(x) that Lagrange had derived 
from (4.1) -for instance, the mean-value theorem for derivatives. (Except, we must 
note, for a few errors, especially the confusion between convergence and uniform 
convergence, which was not cleared up until the 1840's.) 

Of course, we do not mean to imply that Gauss, Cauchy, Bolzano, Abel, and 
Weierstrass were not original, creative mathematicians. They were. To show that 
major changes in point of view occur in mathematics, we have concentrated in this 
section on what these men owed to eighteenth-century techniques. But, besides 
transforming what they borrowed, they contributed much of their own that was new. 
Cauchy, in particular, devised beautiful proofs about convergent power series in real 
and complex variables, about real and complex integrals, and, of course, contributed 
to a variety of subjects besides analysis. Nevertheless, for our present purposes, we 
need the biassed sample we have chosen-things accomplished either by taking what 
the eightenth century knew for particular cases and making it general, or by taking 
what the eighteenth century had derived for one purpose and putting it to a more 
profound use. 

Much effort was needed to transform eighteenth-century techniques in the ways 
we have discussed. But it was more than just a matter of effort. I t  took asking the 
right questions$rst ;and then using -and expanding -the already existing techniques 
to answer them. It  took- and was -a major change in point of view. The reawakening 
of interest in rigor was just as necessary as the availability of techniques to produce 
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the point of view of Bolzano and Cauchy -the point of view which has been with 
us ever since. Mathematics requires not only results, but clear definitions and rigorous 
proofs. Individual mathematicians may still concentrate on the creation of fruitful 
methods and ideas to be exploited, but the mathematical community as a whole can 
no longer be indifferent to rigor. 

5. Conclusion. We began by asking whether mathematical truth was time-
dependent. Perhaps mathematical truth is eternal, but our knowledge of it is not. 
We have now seen an example of how attitudes toward mathematical truth have 
changed in time. After such a revolution in thought, earlier work is re-evaluated. 
Some is considered worth more; some, worth less. 

What should a mathematician do, knowing that such re-evaluations occur? 
Three courses of action suggest themselves. First, we can adopt a sort of relativism 

which has been expressed in the phrase "Sufficient unto the day is the rigor thereof." 
Mathematical truth is just what the editors of the Transactions say it is. This is a 
useful view at times. But this view, if universally adopted, would mean that Cauchy 
and Weierstrass would never have come along. Unless there were the prior appearance 
of major errors, standards could never improve in any important way. So the attitude 
of relativism, which would have counselled Cauchy to leave foundations alone, will 
not suffice for us. 

Second, we can attempt to set the highest conceivable standard: never use an 
argument in which we do not completely understand what is going on, dotting all 
the i's and crossing all the t's. But this is even worse. Euler, after all, knew that 
there were problems in dealing with infinitely large and infinitely small quantities. 
According to this high standard, which textbooks sometimes urge on students, 
Euler would never have written a line. There would have been no mathematical 
structure for Cauchy and Weierstrass to make rigorous. 

So I suggest a third possibility: a recognition that the problem I have raised is 
just the existential situation mathematicians find themselves in. Mathematics grows 
in two ways: not only by successive increments, but also by occasional revolutions. 
Only if we accept the possibility of present error can we hope that the future will 
bring a fundamental improvement in our knowledge. We can be consoled that most 
of the old bricks will find places somewhere in the new structure. Mathematics is 
not the unique science without revolutions. Rather, mathematics is that area of human 
activity which has at once the least destructive and still the most fundamental 
revolutions. 

This paper was originally delivered at the Mathematical Association of America, Southern 
California Section, March 1972. The author wishes to thank Elmer Tolsted for encouragement and 
suggestions. 
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