
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1991

Selection Networks
Nicholas Pippenger
Harvey Mudd College

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Nicholas Pippenger. "Selection Networks", Society for Industrial and Applied Mathematics Journal on Computing, 20, 878 (1991).

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

SIAM J. COMPUT.
Vol. 20, No. 5, pp. 878-887, October 1991

(C) 1991 Society for Industrial and Applied Mathematics

OO5

SELECTION NETWORKS*

NICHOLAS PIPPENGER?

Abstract. An upper bound asymptotic to 2n log n is established for the number of comparators required
in a network that classifies n values into two classes, each containing n/2 values, with each value in one

class less than or equal to each value in the other. (The best lower bound known for this problem is

asymptotic to (n/2) log2 n.)

Key words, comparator, classifier, expanding graph, random walk

AMS(MOS) subject classifications. 68E05, 94C10

1. Introduction. The selection networks of which we speak in this paper are
comparator networks (see Knuth [K]) that classify a set of n values into two classes,
with each of the values in one class being at least as large as all of those in the other.
In this paper we shall confine our attention to the simplest case, in which n is even
and the two classes each contain n/2 values, but similar methods apply to classes of
unequal cardinality, as well as to the problem of selecting the value having a prescribed
rank, such as the median.

We shall present an upper bound asymptotic to 2n log2 n for the number of
comparators needed to construct such a network. Alekseev [A1] has given a lower
bound asymptotic to (n/2) log2 n. Some perspective on the gap between these bounds
is gained by considering the analogous problem of determining the median of n values
with an adaptive sequence of comparisons: here the best upper bound known is
asymptotic to 3n (see Sch6nhage, Paterson, and Pippenger IS]), and the best lower
bound known is asymptotic to 2n (see Bent and John [Be]).

The classifying problem has traditionally been considered in connection with the
problem of sorting n values into order. In 1983, Ajtai, Koml6s, and Szemerdi [Aj]
showed that O(n log n) comparators are sufficient for sorting, and this bound obviously
applies to classifying as well. The constant factor implicit in their original proof is
enormous, however, and further efforts to refine their ideas have not brought it below
1000 (see Paterson [Pa]). Our classifiers are based on the same fundamental idea as
their sorters; our only contribution is to show that in the context of classifiers, it yields
both a much simpler proof and a much smaller constant.

Though we shall confine ourselves to proving the result stated above, two additional
points should be mentioned. First, we prove the existence of classifying networks
without giving an explicit construction. This situation arises from the use of expanding
graphs; by exploiting known explicit constructions for expanding graphs (see Pippenger
[Pi, 3.2]), and by accepting a somewhat larger bound (the best we have been able
to obtain is slightly less than 6n log n), we could give a completely explicit construction.
Second, the networks we describe have depth f((log n)2); with more care in the
construction and proof, we could establish a bound of O(log n). Our method does not
seem well suited to optimizing the depth, however, and we have not made any attempt
to obtain the sharpest possible result in this direction.

Received by the editors April 30, 1990; accepted for publication December 5, 1990. This research was

partially supported by Natural Sciences and Engineering Research Council of Canada operating grant and
a British Columbia Advanced Systems Institute fellowship award.

? Department of Computer Science, University of British Columbia, Vancouver, British Columbia
V6T 1W5, Canada.

878

SELECTION NETWORKS 879

2. Exlaatling graphs. We shall need some results concerning expanding graphs;
these will be obtained as special cases of a general result due to Bassalygo [B], to
whom we refer for the proof.

A bipartite graph with n "left" vertices and m "right" vertices will be called an
(a, fl)-expander if any k of its left vertices (k_-< JanJ) are connected to at least [flkJ
right vertices (the set A of left vertices is connected to the set B of right vertices if at
least one edge from A leads to each right vertex b, b B; [xJ is the integer part of x).

LEMMA 2.1 (Bassalygo). For any positive integers q and p, any reals a and fl
(0 < a < p/ flq < 1), and any sufficiently large n n >- no(a, fl, q, p there exists an a, fl
expander with qn left vertices and pn right vertices, for which the number of edges does
not exceed spqn, where s is any integer greater than

H(a) + (p/ q)H(aflq/p)
pH(a)-aqH(p/q)

H(x)=-xlogx-(1-x)log(1-x), 0<x<l.

The proof of Lemma 2.1 considers only graphs in which every left vertex meets
sp edges and every right vertex meets sq edges. This observation will be important
when we consider the depth, rather than merely the size, of networks.

We shall use this lemma with p-q 1. We shall let a and fl depend on a new
parameter O by a O and/3 (1- O)/O. For every O > 0, there is a value of s that
satisfies the hypothesis of Lemma 2.1.

The proof of Lemma 2.1 may be regarded as considering a probability distribution
over graphs, and when p q, this distribution is invariant under the exchange of left
and right vertices. The proof also shows, not merely that there exists a graph with the
prescribed expansion property, but that almost all considered graphs have this property.
In particular, a majority of the considered graphs have this property. It follows that
there exists a graph such that both it and the graph obtained from it by exchanging
left and right vertices have the prescribed expansion property.

Combining these elaborations of Lemma 2.1, we obtain the following corollary.
COROLLARY 2.2. For every 0 > O, there exists an s such thatfor all sufficiently large

n (depending on O) there exists a bipartite graph with n left vertices, n right vertices, and
s edges meeting each vertex such that (1) every set of k <-On left vertices is connected to
at least (1- O)k/ 0 right vertices, and (2) every set of k < On right vertices is connected
to at least (1- O)k/ 0 left vertices.

Returning to Lemma 2.1 with p =q 1, if we take s =4 and choose/3 <3, then
the hypothesis is satisfied for all sufficiently small a > 0 (depending on/3). Thus we
also obtain the following corollary.

COROLLARY 2.3. For every fl < 3, there exists an a > 0 such that for all sufficiently
large n (depending on fl), there exists a bipartite graph with n left vertices, n right vertices,
and four edges meeting every vertex such that (1) every set of k <-an left vertices is
connected to at least flk right vertices, and (2) every set ofk <-_ an right vertices is connected
to at least flk left vertices.

3. Classifiers. A comparator network with 2in inputs and two sets of rn outputs,
the "left" outputs and the "right" outputs, is an a-weak approximate classifier with
tolerance 0 (or simply an a-weak O-classifier) if, for any assignment of values to the
inputs and positive integer k <-_ am, (1) at most Ok of the k smallest values appear at
right outputs, and (2) at most Ok of the k largest values appear at left outputs. A
1-weak approximate classifier with tolerance O will be called an approximate classifier
with tolerance 0 (or simply a O-classifier). An approximate classifier with tolerance 0
will be called a classifier.

880 NICHOLAS PIPPENGER

Classifiers are the goal of our construction. Approximate classifiers and weak
approximate classifiers are the ultimate building blocks of our construction. These
building blocks are secured by a lemma that is a slight generalization of the most basic
lemma of Ajtai, Koml6s, and Szemer6di [Aj], from which the proof is easily adapted
(see also Pippenger [Pi, 3.2]).

Let G be a bipartite graph with n left vertices and n right vertices, in which every
vertex meets s edges. The edges of G may be decomposed into s perfect matchings
El," ", Es between the left and right vertices. We may regard each perfect matching
Er as a comparator network, by taking a comparator for each edge in Er, labelling the
inputs of the comparator with the vertices met by the edge, labelling the smaller output
of the comparator with the left vertex met by the edge, and labelling the larger output
of the comparator with the right vertex met by the edge. We may then combine the
comparator networks El," ", Es into a single comparator network by identifying the
outputs of Er with the corresponding inputs of Er+ for each 1 _-< r_-< s-1. We shall
denote the resulting comparator network by G; this notation is ambiguous, since
different decompositions of the bipartite graph yield different comparator networks,
but this ambiguity will not be important to us.

LEMMA 3.1 (Ajtai, Koml6s, and Szemer6di). Let G be a bipartite graph with n left
vertices and n right vertices and s edges meeting every vertex in which (1) any set of
k<-_aOn left vertices is connected to at least (1-O)k/O right vertices, and (2) any set

of k<= son right vertices is connected to at least (1- O)k/ O left vertices. Let the left and
right outputs of the comparator network G be those labelled by the left and right vertices,
respectively. Then G is an t-weak O-classifier.

4. Recursive construction. A comparator network with 2m inputs, outputs
labelled as "low," outputs labelled as "high," and 2m 21 outputs labelled as "middle"
is a strong partial classifier if, for any assignment of values to the inputs, only values
among the m/2 smallest appear at low outputs and only values among the m/2 largest
appear at high outputs. A strong partial classifier is less than a classifier in that there
are some outputs, the middle outputs, at which any value may appear; but it is more
than a classifier in that fewer values can appear at the low and high outputs. Our goal
in this section is to show how strong partial classifiers can be assembled to form a
classifier.

It will be convenient to use strong partial classifiers for which the number of
inputs is of the form 2 or 3 2, with u a positive integer; numbers of this form will
be called magic. If n is any even positive integer, the largest magic number not exceeding
n will be called the magic part of n; it is even and at least 2n/3.

Consider the following .recursive construction for a classifier with n inputs. Let
2m denote the magic part of n. Feed 2m of the inputs into a strong partial classifier
with 2m inputs. Feed the remaining n- 2m inputs, together with the 2m- 21 middle
outputs of the strong partial classifier into a classifier with 2n- 21 inputs. The left and
right outputs of the combined network will be the low and high outputs, respectively,
of the strong partial classifier, together with the left and right outputs, respectively, of
the constituent classifier.

A value appearing at a low output of the strong partial classifier must be among
the m/2 smallest of the 2m values at its inputs, and thus among the (m/2)+(n-2m)=
n-3m/2 smallest of all n values. Since 2m >-2n/3, it must be among the n/2 smallest
of all n values. Similarly, a value appearing at a high ouput of the strong partial
classifier must be among the n/2 largest of all n values. Thus, of the n/2 largest and
n/2 smallest values, equal numbers appear at the inputs of the classifier with n-21
inputs. It follows that any value appearing at a left output of this classifier must be

SELECTION NETWORKS 881

among the n/2 smallest, and any value appearing at a right output must be among
the n/2 largest. Thus the combined network is indeed a classifier.

LEMMA 4.1. Let C > 0 be a constant. Suppose that, for every e > 0 and all sufficiently
large m (depending on e), there exists a strong partial classifier with 2m inputs, low
outputs, and high outputs, and size at most (C + e)l loge m. Then for every e > 0 and
all sufficiently large n (depending on e), there exists a classifier with n inputs and size at
most C/2 + e) n loge no

Proof Apply the recursive construction until the number of inputs of the strong
partial classifier that is needed is too small for the hypothesis to apply. Terminate the
recursion with a sorting network using (’) comparators. The size of this final sorting
network depends only on e, and thus is at most (e/2)n log2 n for all sufficiently large
n (depending on e).

Let 2m,..., 2m denote the numbers of inputs of the strong partial classifiers,
and let l, , l denote the numbers of low outputs. We have 2mr <- n for all _<- r =< s

and, since each left output of the combined network is a low output of at most one
strong partial classifier, Y<=<= l<= n/2. Thus the total size of all the strong partial
classifiers is at most Y<=<= (C + e)lr loge mr <= (C/2 + e/2)n log2 n. Adding the bound
(e/2)n loge n for the final sorter yields (C/2+ e)n Iog2 n. [-I

5. Crude classification trees. This section introduces classification trees, the basic
tool we shall use to construct strong partial classifiers. We shall begin with a crude
version of the construction, and later refine it to obtain our final bound.

Set O--1/2. Corollary 2.2 and Lemma 3.1 then yield constants So and no such that
for all n _-> no, there is a O-classifier with 2n inputs and depth So. (A simple calculation
shows that So 28. The determination of no would require scrutiny of the proof of
Lemma 2.1, but this proof consists of explicit estimates, so that no is at least effectively
calculable. The actual values of these constants will not be important to us.)

Suppose that we wish to construct a strong partial classifier with 2m inputs, where
2m is a magic number. Feed the 2m inputs into a O-classifier with 2m inputs. This
approximate classifier has m left outputs and m right outputs. Feed each of these sets
of outputs into a O-classifier with m inputs. These two approximate classifiers have
four sets of outputs. Feed each of these sets into a O-classifier with m/2 inputs, and
continue in this way until the sets of outputs of the approximate classifiers have
cardinality less than 2no. The result is a tree of approximate classifiers that we shall
call a classification tree. At its root are 2m inputs, and at its leaves are sets of outputs
each containing fewer than 2no outputs.

The next step will be to label the outputs as low, high, and middle in such a way
that the result is a strong partial classifier. When, as we do this, we assign the same
label to all the outputs in a subtree, we may prune away that subtree, and affix the
label to the outputs of the approximate classifier feeding the subtree. A large fraction
of the tree will be eliminated in this way.

We begin by labelling as middle the right outputs of the left child of the root,
and the left outputs of the right child of the root (and pruning away the subtrees
below). We shall label as low some of the outputs in the subtree fed by the left outputs
of the left child, and as high some of the outputs in the subtree fed by the right outputs
of the right child. We shall now describe which outputs are to be labelled as low. The
mirror image of this procedure will label an equal number of outputs as high.

Consider the m/2 smallest values assigned to the inputs, since it is these that are
eligible to appear at an output labelled as low. We shall call these m/2 values good,
and the other 3m/2 values bad.

882 NICHOLAS PIPPENGER

At most, a fraction O =- of the good values can appear at right outputs of the
approximate classifier at the root, and at most a fraction 1/2 can appear at right outputs
of the approximate classifier that is its left child. Thus at least a fraction 1- (-)- (-)=
of the good values appear at left outputs of the left child. Since the number of good
values equals the number of left outputs of the left child, at most a fraction 1- ()=
of the values appearing at these outputs are bad.

We may characterize the set of left outputs of the left child by its cardinality rn/2
and its "impurity" 1/4 (the largest possible fraction of its values that could be bad).
Suppose now that we have a set of outputs of some approximate classifier with
cardinality k and impurity r/. First, if r/> , we shall label these outputs as middle
(and prune away the subtree below). Second, if r/k < 1, then not a single bad value
can appear at one of these outputs; thus we shall label them as low (and prune away
the subtree below). Finally, if r/_-<1/2 and Tk=> 1, then we shall consider the sets of
outputs of the child. The set of left outputs has cardinality k/2 and (by Lemma 3.1)
impurity 207 /4, and the set of right outputs has cardinality k/2 and impurity 2r/
(the factors of 2 in the impurities arise because we are considering a fraction of half
as many things). We may continue in this way along each path in the tree until we
assign a label or reach a leaf. If we reach a leaf, we shall label its outputs as middle
if Tk--> 1, and as low if rtk < 1.

The first question we shall ask is: what fraction of the outputs are labelled as
middle by being in a set with impurity exceeding 1/2? To answer this question, we shall
consider the following random walk on the integers. Start at the position 2, Zo 2. At
each step, independently move to the position one smaller, Z,+I Z, 1, or two larger,
Zt+l Zt + 2, with equal probabilities. What is the probability of ever reaching a position
smaller than 1 ? Since the walk is confined to the integers, this is the probability of
ever reaching the position 0, Z, 0. The answer to this question is an upper bound to
the fraction of the outputs that are labelled as middle by being in a set with impurity
exceeding 1/2, as can be seen by considering the correspondence between paths in the
tree and walks, where the number of levels from the root corresponds to time in the
walk, and the negative of the logarithm (to base 2) of the impurity corresponds to
position in the walk.

In the present instance, the probability of ever reaching the position 0 can be
determined explicitly and is (3-x/)/2=0.382. . To see this, let f(x) denote the
power series in x in which the coefficient of x’ is the number of walks that start at 1
and reach 0 for the first time at time t. Then f(x)2 is the power series for walks that
start at 2 and reach 0 for the first time at time t, since each such walk can be uniquely
parsed into two subwalks according to the time at which it first reaches 1, and the
numbers of possibilities for both subwalks are counted by f(x). Thus the probability
we seek is f(1/2)2, so it will suffice to show that f(1/2)= (-1 +x/)/2 0.618.... Let g(x)
count the number of walks that start at 1 and return to 1 for the first time at time t.
Then g(x)= xf(x), since such a walk must go to 3 on the first step, then return to 1
for the first time in 1 more steps. On the other hand,f(x) x + xg(x) + xg(x)2 -k-

x (1 g(x)), since the walks counted byf(x) may be classified according to the number
oftimes they visit 1 before reaching 0. Thusf(x) satisfies the equation xf(x) -f(x) + x
0, so that f(1/2) satisfies f(1/2)3_ 2f(1/2)+ 1 0, which yields the stated result.

Next we shall ask: what fraction of the outputs are labelled as middle by being
in a leaf that is not pruned away? Such a leaf has cardinality at most 2no, and thus it
must have impurity at least 1/2no to avoid being labelled as low. Let d denote the number
of levels of approximate classifiers in the tree. Rephrased in terms of random walks,
our question becomes: what is the probability of being at a position at most Co log2 no

SELECTION NETWORKS 883

at time d- 2 ? (The first two levels of the tree do not correspond to steps of the random
walk.) We shall answer this question with a lemma that goes beyond our present needs,
but which will be applied repeatedly later.

We shall consider random walks with discrete time indexed by the natural numbers
and discrete positions indexed by the integers. We shall assume that the steps are
independent and identically distributed, but we shall allow the steps to have any
probability distribution on a finite set of integers. We shall say that such a random
walk is positively biased if the expectation of a step is positive. (In the present instance,
the step is uniformly distributed on the set {-1, 2}, and the expectation is (-1 + 2)/2
1/2>o.)

LEMMA 5.1. Let Zt, O, 1, 2,..., be a positively biased random walk starting at

O, and let c be any position. Then there exist constants A and b < 1 such that for all t,
the probability that Zt is at most c does not exceed Ab .

Proof Let ()= Ex(exp-(Z1)). The power series expansion of (:) is 1-

: Ex (Z1)+O(2). Since Ex (Z1)>0, we can choose o>0 sufficiently small so that
(o) < 1. Since the steps are independent and identically distributed, we have Ex (exp-
(oZt)) (o) t. IfZ, -< c, then exp-(oZt)_-> exp-(oC). Thus, by Markov’s inequality,
the probability that Z, <- c is at most (:o)’/exp- (:oC), so we may take A=exp (oC)
and b (o). [-1

We may now apply Lemma 5.1 with t=d-2>=log2 (m/4no) and conclude that
the fraction of outputs that are labelled as middle by being in a leaf that is not pruned
away is at most Aba <-Cm-e, where C and e > 0 are constants. The only feature of
this bound that is relevant to our present purposes is that it tends to zero, even when
multiplied by d =< log2 m.

Finally, we shall ask" what is the size of the approximate classifier constructed in
this way? To answer this question, we shall again transform it into a question about
random walks. In a "synchronous" comparator network (in which the two inputs of
any comparator are at the same depth), each comparator contributes 2 to the sum of
the depths of the outputs. Thus the number of comparators is n/2 times the average
depth of the outputs. Since the depth of each approximate classifier is So, the number
of comparators is son times the average level at which the outputs are labelled. For
outputs labelled as low or labelled as middle by being in a leaf that is not pruned
away, the level at which they are labelled is at most d <= log2 m. (For outputs labelled
as low, it is in most cases substantially less than this, but we shall not attempt to exploit
this effect, since later optimizations will render it negligible.) For outputs labelled as
middle because their impurity exceeds 1/2, the level at which they are labelled is two
more than the number of steps taken by the corresponding walk to reach position 0
for the first time. (Again, the first two levels of the tree do not correspond to steps of
the random walk.)

In the present instance, this average number of steps can be calculated explicitly
and is 4/x/-= 1.788.... It is obtained from the power series f(x)2 that counts the
walks by evaluating xd(f(x)Z)/dx at x=1/2 or, equivalently, evaluating f’(x)f(x) at
x =. This evaluation is most conveniently accomplished by dividing the equation
xf(x)3-f(x) + x =0 by x, differentiating with respect to x, multiplying by x2, solving
for f’(x) in terms off(x) and x, multiplying by f(x), and evaluating the result at x .
Taking account of the equation f(1/2)2__ (3-x/)/2, derived earlier, yields the stated
result.

We can now sum the contributions to the size of the strong partial classifier. The
outputs labelled as low contribute at most (sol/2) log m, and those labelled as high

contribute equally. The outputs labelled as middle by being in a leaf that is not pruned

884 NICHOLAS PIPPENGER

away contribute at most Fm 1--e log2 m for some constants F and e > 0, and the outputs
labelled as middle because their impurity exceeds 1/2 contribute at most Gm for some
constant G. Since the /=l)(m), we conclude that for every e >0 and all sufficiently
large rn (depending on e), there exists a strong partial classifier with 2m inputs,
outputs labelled as low and an equal number labelled as high, and size at most
(So+ e)l log2/. It follows from Lemma 4.1 that for every e >0 and all sufficiently large
n (depending on e), there exists a classifier with n inputs and size at most (So/2+
e)n log2 n. The remainder of this paper is devoted to refining the construction just
given to reduce the constant So to 2.

6. Refined classification trees. If we ask what properties were essential to the
construction in the preceding section, we find three. First, the probability that the
random walk ever reaches the position 0 is strictly less than 1. Second, the probability
that the walk is near position 0 after steps decreases exponentially with t. Third, the
expected number of steps needed to reach 0 (with no contribution from walks that
never reach 0) is finite.

The second property is a consequence of the random walk being positively biased.
Thus it is natural to seek ways to reduce the number of comparators while preserving
the property that the corresponding random walk is positively biased. When this is

done, the explicit calculations by which we established the first and third properties
will no longer be feasible, but we will see that these properties are consequences of
the second property.

The property that the random walk was positively biased follows from the
inequality O < (so that the geometric mean of the factors 2 and 2O, by which impurities
change from parent to child, is less than 1). We shall arrange for O to vary from level
to level in such a way that the average (again in the sense of the geometric mean) of
O is strictly less than z, but by a very small margin. We shall also exploit the fact that
for most of the approximate classifiers in the classification tree, the number of bad
elements is very small, so that we may substitute weak approximate classifiers (as
defined in 3).

Let h be a positive integer. Set Oh :21/h/4 and h =(1--Oh)lOb. Since Oh>1/4, we
have /3h < 3. Corollary 2.3 and Lemma 3.1 establish the existence of ah > 0 such that,
for all sufficiently large n (depending on h), there exists an Ceh-weak Oh-classifier with
2n inputs and depth 4.

Let us now define a gadget to be a tree comprising h levels of ceh-weak approxitnate
classifiers, which therefore approximately classifies the values assigned to its inputs
into 2h classes. The Ch-weak approximate classifier at the root will have tolerance 1/2,
and those at the remaining h- 1 levels will have tolerance Oh.

Suppose that at most a fraction r/of the values assigned to the inputs of the gadget
are bad, where r/<-ah. We may determine the impurities of the 2h sets of outputs by
proceeding through successive levels of the tree as before. The root multiplies the
impurity by a factor of 2 or z, and every other node multiplies it by a factor of 2 or
21/h/2. A simple calculation shows that the geometric mean of the impurities of the
2h sets of outputs is (1/2)1/2h which is less than 1

Since all changes to impurities are by factors of 21/h, we may consider a random
walk on the integers by taking the position to be h times the negative of the logarithm
(to base 2) of the impurity, and letting the probability distribution for each step
correspond to the changes to impurities for a gadget. The expectation for a step is h
times the negative of the logarithm of the geometric mean of the changes, which is 5.

Thus the random walk is positively biased.

SELECTION NETWORKS 885

Since every path through a gadget passes through one weak approximate classifier
with tolerance and through h- 1 with tolerance Oh > , we can construct a gadget
with depth at most 4(h- 1)+ So.

The gadget we have constructed is composed from ck-weak approximate classifiers,
and thus is only useful when the number of bad values is small. We shall call the
gadgets described above cheap gadgets. We shall also define dear gadgets, which have
the same tree structure, but with approximate classifiers (rather than weak approximate
classifiers) at all nodes, and with all classifiers having tolerance 1/2. We shall use the
same step probability distribution for dear gadgets that we used for cheap gadgets
(though of course dear gadgets do much more). The depth of a dear gadget is at most
hs0

We shall now construct a refined classification tree using gadgets rather than
approximate classifiers as nodes below the root and its children (so that the tree is
2h-ary rather than binary below the first two levels). We assign impurities to each set
of outputs of each gadget as before. We shall use a cheap gadget when the impurity
of the set of inputs is at most Ch, and a dear gadget when the impurity exceeds Ch.

We shall label outputs as low, high, or middle, and prune away subtrees as before.
It remains to estimate the number of outputs labelled as low, high, or middle, and to
estimate the size of the resulting strong partial classifier.

The fraction of the outputs that are labelled as middle because their impurity
exceeds can be bounded as before by the probability that the corresponding random
walk reaches a nonpositive position. (We must consider nonpositive positions, rather
than just the position 0, because a single step may now decrease the position by more
than 1.) For this purpose we shall use the following lemma.

LEMMA 6.1. Consider a positively biased random walk starting at a positive position.
Then the probability that the walk ever reaches a nonpositive position is strictly less than
1.

Proof By Lemma 5.1, the probability that the walk is at a nonpositive position
at time is at most Ab for some constants A and b < 1. The series Z,_>_ Ab converges,
so we may choose T sufficiently large that Z,=>_7‘ Ab’ <-. Let -A denote the most
negative step that is taken with positive probability, and let P > 0 denote the probability
that a step is positive. Then ZAT‘ => A T with probability at least P7-. If this event occurs,
the walk cannot reach a nonpositive position in fewer than T additional steps, and
the probability of it reaching a nonpositive position in T or more additional steps is
no larger than the probability of reaching a position at most A T in T or more additional
steps, and this is at most . Thus the probability of ever reaching a nonpositive position
is at most (1 pA 7‘) + p7‘/2 < 1. V1

Using Lemma 5.1 as before, we can again show that the fraction of the outputs
that are labelled as middle by being in a leaf that is not pruned away is at most Cm-e,
where C and e > 0 are constants.

To estimate the size of the strong partial classifier we have constructed, we again
begin by considering the average level at which outputs are labelled as middle because
their impurity exceeds . This is bounded by the expectation for the corresponding
random walk of the number of steps needed to reach a nonpositive position (with no
contribution from walks that never reach a nonpositive position). We shall use the
following lemma.

LEMMA 6.2. Consider a positively biased random walk starting from a positive
position. Let U denote the number of steps needed to reach a nonnegative position, if the
walk ever reaches a nonpositive position, or 0 if the walk never reaches a nonpositive
position. Then the expectation of U is finite.

886 NICHOLAS PIPPENGER

Proof Applying Lemma 5.1 with c the negative of the starting position, we have
that the probability of being at a nonpositive position at time is at most Ab for some
constants A and b < 1. The convergent series Zt_>_l Abtt bounds the sum over all visits
to nonpositive positions of the times at which the visits occur. This in turn bounds the
sum over first visits, which is exactly U.

For refined classification trees, we shall need an additional estimate concerning
the total size of dear gadgets. Since a dear gadget is used precisely when the impurity
exceeds a threshold ah, then the total size of dear gadgets can be bounded in terms
of the average time spent by the random walk at positions less than a corresponding
constant eh =-h log2 Ceh. By Lemma 5.1, this average time is bounded by a convergent
series >__1Ab , for some constants A and b < 1, and thus is finite. It follows that the
total size of dear gadgets is at most Hm, for some constant H.

Summing the contributions to the size as before, we find that for every h and all
sufficiently large rn (depending on h), there exists a strong partial classifier with 2rn
inputs, outputs labelled as low and an equal number labelled as high, and size at
most (4(h-1)+so+l)llog_h l=(4+(So-3)/h)llogzl. Letting h tend to infinity, we
see that for every e > 0 and all sufficiently large rn (depending on e), there exists a
strong partial classifier as above with size at most (4+ e)l log2 1. It follows from Lemma
4.1 that for every e > 0 and all sufficiently large n (depending on e), there exists a
classifier with n inputs and size at most (2+ e)n log2 n. Thus we have achieved the
goal of this paper.

7. Embellishments. In this section we shall offer some additional comments on
the embellishments to our main result that were mentioned in the introduction.

If one wishes to classify n values into classes of cardinality and n- t, this can
be accomplished by modifying the definitions of some of the components in the
construction. One redefines "strong partial classifier" so that the numbers of outputs
labelled as low and high are in the correct proportion, t: n- t, and so that t/2 and
(n- t)/2 values are eligible to appear as low and high outputs, respectively. One must
then modify the upper levels of the classification trees to accommodate the new
definitions of "good" and "bad" values, which now differ on the two sides of the trees.
(Special care is necessary if or n is much smaller than n.) The constant factor in
the final result is independent of t, but this should be regarded as a deficiency rather
than a merit, since it is to be expected that this constant should decrease as is varied
away from n/2.

The problem of obtaining an explicit construction is attacked by replacing Lemma
2.1 by an analogous explicit result (see Pippenger [Pi, 3.2]). A complication arises
from the fact that the explicit results hold only for certain n, rather than for all
sufficiently large n. Thus one obtains, for example, weak approximate classifiers with
2(q + 1) inputs, where q is a prime congruent to 1 modulo 4. In constructing classification
trees, one must always settle for using the next smaller weak approximate classifier of
this form, and reconcile oneself to labelling the remaining outputs of the parent
approximate classifier as middle. Standard results on the distribution of primes,
however, allow one to show that only a negligible fraction of the outputs are labelled
as middle in this way. Using weak approximate classifiers with depths 8, 12, and 30
results in a final bound slightly less than 6n log2 n.

Finally, if one wishes to ensure that the depth of the final classifier is O(log n),
one must modify the recursive construction so that the various strong partial classifiers
are "overlapped" in depth. To do this, it is most convenient to make them "stronger"
(so that m/4 rather than m/2 values are eligible to appear at an output labelled as

SELECTION NETWORKS 887

low or high). One can then show that enough outputs are available from the shallower
levels of the first r strong partial classifiers to supply inputs for the (r + 1)st strong
partial classifier.

8. Conclusion. We have established the existence of classifiers with many fewer
comparators than those previously known. For most constructions that rely on expand-
ing graphs (such as those given by Bassalygo [B]), the constant factor depends on the
current state of technology of expanding graphs, and can be expected to improve with
further advances in the state of this art. The result of this paper, however, will not be
improved in this way: the constant in the leading term of the size depends only on
the degree needed for expanding graphs to expand very small sets, and this aspect of
expanding graphs is understood completely (graphs of degree s can expand small sets
by any factor up to s- 1, but not by more).

It would be of interest to see if a similar situation can be brought about for other
applications of expanding graphs, perhaps even for the most celebrated application
of all, the sorting networks of Ajtai, Koml6s, and Szemer6di.

REFERENCES

[Aj] M. AJTAI, J. KOML6S, AND E. SZEMERIDI, Sortinginc log n parallel steps, Combinatorica, 3 (1983),
pp. 1-19.

[A1] V.E. ALEKSEEV, Sorting algorithms with minimum memory, Kibernetica, 5 (1969), pp. 99-103.
[B] L.A. BASSALYGO, Asymptotically Optimal Switching Circuits, Problems Inform. Transmission, 17

(1981), pp. 206-211.
[Be] S.W. BENT AND J. W. JOHN, Finding the median requires 2n comparisons, in Proc. 17th ACM

Symposium on Theory of Computing, 1985, pp. 213-216.
[K] D.E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[Pa] M.S. PATERSON, Improved sorting networks with O(log n) depth, Algorithmica, to appear.
[Pi] N. PIPPENGER, Communication Networks, in Handbook of Theoretical Computer Science, J. van

Leeuwen, ed., North-Holland, Amsterdam, 1990.

IS] A. SCHtNHAGE, M. PATERSON, AND N. PIPPENGER, Finding the Median, J. Comput. System Sci.,
13 (1976), pp. 184-199.

	Claremont Colleges
	Scholarship @ Claremont
	1-1-1991

	Selection Networks
	Nicholas Pippenger
	Recommended Citation

	tmp.1308265198.pdf.vLUMI

