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THE EXPECTED CAPACITY OF CONCENTRATORS*

NICHOLAS PIPPENGERf

Abstract. The expected capacity ofa class ofsparse concentrators called modular concentrators is determined.
In these concentrators, each input is connected to exactly two outputs, each output is connected to exactly three
inputs, and the girth (the length ofthe shortest cycle in the connexion graph is large. Two definitions ofexpected
capacity are considered. For the first (which is due to Masson and Morris), it is assumed that a batch of
customers arrive at a random set of inputs and that a maximum matching of these customers to servers at the
outputs is found. The number of unsatisfied requests is negligible if customers arrive at fewer than one-half of
the inputs, and it grows quite gracefully even beyond this threshold. The situation in which customers arrive
sequentially is considered, and the decision as to how to serve each is made randomly, without knowledge of
future arrivals. In this case, the number of unsatisfied requests is larger but still quite modest.

Key words, communication network, maximum matching, branching process, random packing
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1. Batch arrivals. For the purposes ofthis paper, a concentrator is a bipartite graph
G (A, B, E) comprising a set A of inputs, a set B of outputs, and a set E

_
A B of

edges. The intended interpretation is that the inputs correspond to "customers," the
outputs correspond to "servers," and the edges correspond to "channels" or "switches,"
each capable of providing direct access by a given customer to a given server.

We consider two modes of operation for a concentrator. In the first mode, the
operation of the concentrator takes place in "cycles," each of which has two "phases."
During the first phase, a subsetX_A ofthe inputs, called the requesting inputs, is chosen.
This represents the arrival ofa "batch" ofcustomers. During the second phase, a maximum
matching M

_
E fq (X B) between the requesting inputs and the outputs is chosen.

This represents the action ofa controller granting access to servers to as many customers
as possible. The cardinality #Xis called the offered traffic; #Mis called the carried traffic;
and #X- #M is called the lost traffic.

The actual capacity of a concentrator is the largest k such that the carried traffic is
k for all X

_
A such that #X k. The expected capacity of a concentrator (which is a

function ofthe offered traffic k) is the expected carried traffic when the requesting inputs
are chosen at random, with all sets X A such that #X k is equally likely.

These definitions of actual and expected capacity were given by Masson and Morris
[MM], who investigated their values for "binomial" concentrators. In this paper we
study their values for a new class of concentrators that we call "modular" concentrators.
The asymptotic behaviour of the expected capacity for modular concentrators can be
estimated quite sharply, and it appears quite attractive in view of the sparsity of these
concentrators. In particular, the lost traffic is negligible when the offered traffic is less
than one-halfthe number ofinputs, and it grows quite gracefully even beyond this thresh-
old. Scheinerman S] has used the methods of this paper to show that even "random
concentrators" have performance only slightly worse than that ofmodular concentrators.

In the second mode, customers arrive sequentially, and the decision as to how to
serve each is made randomly, without knowledge of or dependence on future arrivals.
We define this mode of operation in more detail in 7.
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122 N. PIPPENGER

2. Modular concentrators. We deal with a class of concentrators for which each
input meets exactly two edges and each output meets exactly three edges. For such a
concentrator there is a natural number n such that #A 3n, #B 2n, and #E 6n.
These concentrators will be called (3 2)-concentrators.

We begin with the observation that the actual capacity of a (3 2)-concentrator is
always rather small. By the cyclomatic number of a graph with v vertices and w edges,
we mean the number w v + 1. If the cyclomatic number of a graph is at most one,
then it contains at most one simple cycle, and thus it has at most two independent paths
between any two vertices.

THEOREM 2.1. The actual capacity ofa (3 2)-concentrator is O(log n).
Proof. Given the (3"2)-concentrator G=(A,B,E), construct the graph

G* (B, E*) with vertices B corresponding to the outputs of G and edges E*=
{ { b, b’}" { a, b }, { a, b’} E for some a A } corresponding to pairs of outputs that are
connected to a common input. Let b be any vertex of G*. Since each vertex meets
exactly three edges in G*, there are exactly 3.2k- paths of k steps starting from b.
Thus, ifk [log2 (2n + )q, there will be three distinct paths starting from b and ending
at a common vertex c. The union U of these three paths has at most 3 (k + 4
3k- vertices, since the beginning and ending vertices are common. But since there are
three independent paths from b to c in U, the cyclomatic number of U must be at least
two, and thus U must contain more edges than vertices. It follows that there is a set of
at most 3k inputs in G that are connected only to a smaller number of outputs; thus the
actual capacity of G is at most 3k O(log n). V]

We now turn our attention to a class of (3 2)-concentrators for which the expected
capacity is much larger than the actual capacity. The girth of a graph is the length of the
shortest simple cycle in the graph. We construct 3" 2 )-concentrators with girth f(log n).
Our construction follows ideas of Margulis [M 1] and Imrich [I].

Let PSL(2, Z denote the group of two-by-two integer matrices (ca ) with deter-
minant one (ad- bc ), where two matrices are considered the same if their corre-
sponding entries are negatives of each other. This group is generated by the matrices
S (_0 ) and R (_ I). We have S R3 -I, where I is the identity matrix.
Furthermore, these are the only relations satisfied by S and R. Thus PSL(2, Z is the
free product of Z/(2 (generated by S) and Z/( 3 (generated by R ).

Let q >_- 5 be a prime and let PSL(2, Z(q)) be the quotient group of PSL(2, Z
in which two matrices are considered the same if their corresponding entries differ by
multiples of q. There are (q )q(q + )/2 elements in PSL(2, Z/(q)). The natural
homomorphism r from PSL(2, Z to PSL(2, Z/(q)) reduces entries modulo q.

A word in S and R that is reduced with respect to S2 I and R I must consist
of occurrences of S alternating with occurrences of R or R2 R-. If such a word is in
the kernel of r, it must have norm at least q 1. (By the norm of a matrix (a ), we

a )(y ), as the vector (xmean the maximum length of the vector ( varies over the circle
x2 + y2 1. In particular, the norm of a matrix is at least the maximum of the absolute
values of its entries.) It follows that a reduced word in the kernel of r must contain at
least loga (q occurrences ofR and R -1, where/3 + f)/2, since the norm of
S is 1, the norms ofR and R -1 are/3, and the norm is submultiplicative.

For each prime q >_- 5, let Gq denote the (3 2)-concentrator whose edges correspond
to the elements of PSL(2, Z/(q)), whose inputs correspond to pairs of elements that
differ by a factor of S, and whose outputs correspond to triples of elements that differ
by factors of R+ Such a concentrator will be called a modular concentrator. Clearly,
n (q )q(q + )/12. By the argument of the preceding paragraph, any simple cycle
in Gq must have length at least 2 log (q ft(log n). Thus we have proved the
following lemma.
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LEMMA 2.2. The girth ofa modular concentrator is 2( log n).
The first construction ofa 3 2 )-concentrator with girth 2(log n) is due to Gallager

([G, Appendix C]), in the form ofthe parity-check matrix of a low-density parity-check
code with rate over GF(2). (Gallager’s construction can be carried out in "polynomial
time," but it is not as explicit as the one given above, which can be carried out in
"logarithmic space.") We observe that there are more sophisticated constructions that
give (3 2)-concentrators with even larger girth than Gq (roughly (8 / 3) log2 n rather than
(2 / 3 loga n) (see Biggs and Hoare BH ], Weiss W], Margulis M2 ], and Chiu C ).
We also observe that we do not need the full strength of Lemma 2.2. If g denotes the
girth, it is sufficient that g -- as n - .3. Hypergeometric and binomial capacities. The expected capacity has been defined
hypergeometrically, that is, by taking all sets X ofinputs with #X k to be equally likely.
We begin by showing that it is possible to deal instead with a set X of inputs that is
defined binomially, that is, in which each input appears independently with probability
p k/2n.

Let H(3n, k) denote the expected cardinality of a maximum matching when each
set ofinputs Xwith #X k is equally likely. Let J( 3n, p) denote the expected cardinality
of a maximum matching when X contains each input independently with probability p.

LEMMA 3.1. For 0 < p < 1, 0 < e < min {p, p } and 3np an integer, we have

J( 3n,p- e)- ,-2 H( 3n, 3np) <= J( 3n, p + e) + ,-2.

Proof. Let X’ be a set in which each input appears independently with probability
p + e. We have Ex (#X’) 3n(p + e) and Var (#X’) =< 3n. Thus, by Chebyshev’s
inequality, we have Pr(#X’< 3np) <- 1/3ne 2. If #X’>= 3np, then we may delete
#X’ 3np inputs from X’ to obtain a set X with exactly 3np inputs, in such a way
that every set of 3np inputs is equally likely. The expected cardinality of a maximum
matching for X’ is thus at least H(3n, 3np) in this case. We thus have J(3n, p + e) >=

1/3neZ)H(3n, 3np). Since H(3n, 3np) <= 3n, we obtain the fight-hand assertion
of the lemma. A similar argument yields the left-hand assertion, ff]

In the following sections we prove the following.
THEOREM 3.2. For 0 < p < 1, we have

J( 3n,p) 3nh(p) + O(n/(log n)1/2),
where

h(p)
(2p )3/3p3,

ifO<p<__

if 1/2<p< .
Since h(p) is continuous in p, we may apply Lemma 3.1 with e -- 0 as n -- to

obtain the following corollary.
COROLLARY 3.3. For rational 0 < p < and n such that 3np is integral, we have

H( 3n, 3np) 3nh(p) + O(n/(log n)/2).
4. Reduction to small components. We seek to determine the expected number of

pairs in a maximum matching when each input is independently requesting with prob-
ability p. Let F(p) be the subgraph of G obtained by deleting each input that is not
requesting and each edge meeting such an input. Let F* (p) be the corresponding subgraph
of G*, in which each edge is retained independently with probability p.

LEMMA 4.1. In an acyclic connected component ofF* (p all but exactly one ofthe
outputs appear in a maximum matching. In a cyclic connected component ofF* (p ), all
ofthe outputs appear in a maximum matching.
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Proof. If F* (p) contains a vertex that meets exactly one edge, we may pair the
input corresponding to the edge with the output corresponding to the vertex, then find
a maximum matching in the graph that remains after this edge and vertex are deleted.
This transformation does not change the cyclomatic number of any component. Since
an acyclic component that contains an edge must contain a vertex that meets exactly
one edge, repeated application of this transformation to an acyclic component must
eventually yield an isolated vertex. This proves the first assertion. Repeated application
to a cyclic component must eventually yield a graph K* in which every vertex meets at
least two edges. In the corresponding bipartite graph K, every input is connected to
exactly two outputs, and every output is connected to at least two inputs, so the marriage
theorem ensures the existence of a matching including all of the outputs. This proves
the second assertion. V1

Let Z(p)denote the expected number of acyclic component in F*(p). Lemma 4.1
implies that

(4.1) J(3n,p)=2n-Z(p).

Let g denote the girth of G, and let Y(p) denote the expected number of components
ofF* (p) that contain at most g/8 edges. A component with at most g/8 edges must be
acyclic, so Y(p) <= Z(p). On the other hand, there are at most 6n/(g/8) 48n/g
components with more than g/8 edges, so Z(p) <= Y(p) + 48n/g. Since g ft(log n),
we have

(4.2) Z(p)= Y(p)+O(n/logn).

Let V(p) denote the expected number of vertices in F*(p) in components with at most
g/8 edges, and let W(p) denote the expected number of edges in such components.
Since these components are all acyclic, we have

(4.3) Y(p)= V(p)- IV(p).

Equations (4.1), (4.2), and (4.3) together give the formula

(4.4) J(3n,p)=2n V(p)+ W(p)+O(n/logn)

for the expected capacity in terms of the expected numbers of vertices and edges in small
components of F* (p). In the next section we determine the asymptotic behaviour of
these expected numbers.

5. Analysis of small components. Let I be an infinite tree in which each vertex
meets exactly three edges. Let I(p) be a random subgraph of I in which each edge is
independently retained with probability p. Let vk(p) be the probability that a vertex of
I belongs to a component of I(p) with at most k edges. Let wk(p) be the conditional
probability that an edge e of I belongs to a component of I(p) with at most k edges,
given that e is retained in I(p). It is clear that

V(p)= 2nVg/g(p) and W(p)= 3npWg/g(p),

since a neighbourhood of radius g 8 about any vertex or edge in G* is isomorphic to a
corresponding neighbourhood in I, and all quantities in (5.1) are defined in terms of
random variables that are independent of events outside these neighbourhoods.

Let v(p) denote the probability that a vertex in I belongs to a finite component of
I(p), and let w(p) denote the conditional probability that an edge e of I belongs to a
finite component of I(p), given that e is retained in I(p). The theory of branching
processes gives the following lemma.
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and

LEMMA 5.1. We have

v(p)
(1 p)3/p3,

ifO<p<=1/2

1, if O<P<= 1/2;
w(P)=

(1 _p)4/p4, if 1/2 <p< 1.

Proof. Consider a branching process in which the first generation contains a single
individual, and each individual in the th generation independently contributes to the
(i + )st generation a number of offspring that is binomially distributed with generating
function p + px)2. According to Harris ([HI, Chap. I, Thm. 6.1]), the probability
of extinction (that is, the probability that the family generated in this way is finite) is the
root q(p) of equation x p + px) 2, given by

1, ifO<p<= 1/2;
q(P)

(1 p)2/p2, if 1/2 <P< l.

The probability that a vertex in I(p) belongs to a finite component is simply the
probability of extinction when the first generation contains a number of individ-
uals distributed with generating function p + px) 3, the generating function for the
number of edges incident with the given vertex in I(p). This extinction probability is

p / pq(p))3 (which is as given in the statement of the lemma).
Similarly, the conditional probability that an edge e in Ibelongs to a finite component

of I(p), given that e is retained in I(p), is p + pq(p))4 (which is as given in the
statement of the lemma), since p / px)4 is the conditional generating function for
the number of edges incident with e in I(p), given that e is retained in I(p). E3

LEMMA 5.2. We have

Vk(P) v(p)/ O(k-1/2)

and

w(p) w(p) / 0(k-1/2).

Proof. Clearly, Vk(P) <= v(p). Furthermore, v(p) vk(p) is simply the probability

and

W(p)= 3npw(p)+ O(n/(log n)/2).
Substitution of these formulae and Lemma 5.1 into (4.4) completes the proof of Theo-
rem 3.2.

that, in the branching process described in the proof ofLemma 5.1 (with the generating
function of the initial distribution being p / px)3), extinction occurs after the size
of the family exceeds k. According to Harris ([H, Chap. I, Thm 13.1] ), the conditional
probability that the size of the family is j, given that extinction occurs, is 0(j-3/9-). (The
decay is actually much faster than this unless p 1/2.) Thus the probability that extinction
occurs after the size exceeds k is j>kO(j-3/2) O(k-1/2). The proof for wk(p) and
w(p) is analogous.

Applying Lemmas 2.2 and 5.2 to (5.1) yields

V(p)= 2nv(p)+ O(n/(log n) 1/2)



126 N. PIPPENGER

6. Extensions for batch arrivals. The concentrators that we have considered are
one-stage networks; that is, each edge directly connects an input to an output. It is easy
to see, however, that the analysis we have given has immediate application to some
multistage networks.

Consider for example the "two-stage (9"4)-concentrators" constructed in
the following way. Let q >= 5 and q’>= 5 be primes (equal or distinct), and set n
(q )q(q + )/12 and n’ (q’- )q’(q’ + )/12. Take 3n’ disjoint copies of Gq and
2n disjoint copies of Gq,, and link each output of each copy of Gq to an input of a copy
of Gq,, with exactly one link between each copy of Gq and each copy of Gq,. If the inputs
ofthe resulting network are independently requesting, and ifappropriate random choices
of the maximum matchings in the copies of Gq are made, then the inputs of each copy
of Gq, will be independently requesting, and the analysis given above can be applied to
each stage in turn. (The traffics offered to the various copies of Gq, will be dependent,
but this does not affect the expected capacity.) The expected capacity will again be piece-
wise rational, now with breakpoints at p (the onset of loss in the second stage) and
p 1/2. The extension to three or more stages should be clear.

It is possible to extend the analysis we have given, with hardly any changes in the
arguments, to "(a" 2 )-concentrators with large girth" (for integer a > 2 ). The construc-
tion of such concentrators can be accomplished by the methods of the papers cited in

2.) It may also be possible to extend Theorem 3.2 (though not Theorem 2.1 to
"(a b)-concentrators with large girth" (for integers a > b > ). There seems to be
nothing as simple as Lemma 4.1 in this case, but the success of Karp and Sipser [KS] in
treating the problem of maximum matchings in sparse random graphs gives hope. For
b 2 we prove (and for b > 2 it is natural to conjecture) that v(p) is replaced by
q(p)a and w(p) is replaced by q(p)ta-l)b, where q(p) is now the appropriate root of
the equation x p + pxb- )"-

7. Sequential arrivals with random hunting. We now turn to a second mode of
operation for concentrators. Consider a concentrator G (A, B, E). Associate with each
input a A an arrival time ’a, uniformly distributed in the interval 0, ], and independent
of all other arrival times. The intended interpretation is that the customer corresponding
to input a arrives at time Za-

Next associate with each input a A a hunting order Ba, uniformly distributed over
the total orders among the outputs connected to a, independent of the hunting orders
of other inputs and independent of the arrival times of all inputs. The intended inter-
pretation is that when the customer arrives at input a (at time Za), it examines the outputs
connected to a in the order prescribed by/a until it finds one that has not been engaged
previously (that is, at a time less than Za). If it finds such an output, the output is engaged
at time Za. If it finds no such output, no action is taken, and the customer remains
unserved.

Some comments about this mode of operation are in order. First, the assumption
of uniformly distributed arrival times will facilitate calculations, but other independent
and identically distributed arrival times would also result in all possible orders of arrival
being equally likely, and in the number of arrivals before time being binomially dis-
tributed. (The choice of the arrival-time distribution may be regarded as a choice of the
parametrisation of time. An exponential distribution, corresponding to Poisson arrivals,
seems the most natural physically.) Second, results concerning the expected number of
customers served for this "binomial" arrival process can easily be translated (by the
argument given in 3) into results for the "hypergeometric" arrival process, in which
some number k of customers arrive at distinct inputs, with all possible sets of k inputs,
as well as all possible orders of arrival, being equally likely.
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8. Sequential arrivals for trees. We begin our analysis by looking at some concen-
trators that are trees. Let Co denote the concentrator with a single input that is connected
to two outputs, one of which is called the root and the other of which is called the leaf.
For some k >= 1, suppose that Ck-1 has been defined. Let Ck denote the concentrator
obtained by identifying the leaf of a copy of Co with the roots of two copies of C_ to
form an internal output (neither a root nor a leaf); the root of the copy of Co becomes
the root of C, and the leaves of the copies of C_ (of which there are 2) become the
leaves of Ck.

For k >= 0 and 0 =< =< 1, let Q(t) denote the probability that the root of C is
engaged at time t.

LEMMA 8.1. We have

and

Qo(t)=t/2

Q(t) -( -Q_ (S))2ds.

Proof. For the root of Co to be engaged at time t, the customer must arrive by time
t, which happens with probability t, and must choose the root before the leaf in the
hunting order, which happens independently with probability 1/2. This proves the first
assertion. For the root of Ck to be engaged at time t, the customer must again arrive by
time t. If the customer arrives at time s, then it will engage the root unless it chooses the
leaf of Co before the root in the hunting order, and the leaf of Co is not engaged by time
s. This leaf will be engaged by time s if and only if the root of one of the copies of C_
would be engaged by time s (with the same arrival times and hunting orders in the
copies). These events depend on arrival times and hunting orders for disjoint sets of
inputs, so they are independent. This proves the second assertion.

We now show that the transformation Q_ Q has a fixed point; that is, a
solution Q of the integral equation

)2(8.2) Q(t) 1-(1-Q(s) ds.

To do this, we differentiate (8.2) with respect to to obtain the differential equation

(8.3) Q’(t) 1-(1-Q(t))2,

with the initial condition Q(0) 0. Since (8.3) does not involve explicitly, it can be
solved by quadratures:

O( dx
(8.4) x)2/2 t,

where the lower limit of integration has been chosen to satisfy the initial condition.
The substitution y x)/V reduces the integral to

V dy / tanh_
1-Q(t)

(-O(t))/ y2 -ftanh-lf
Thus

Q(t)=l-tanh ln(l+V)-
since tanh-’ 1/V In + f).
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LEMMA 8.2. We have Qk(t) -- Q(t) uniformly in as k -- c.
Proof. Set Ak(t) Qk(t) Q(t). Since 0 =< Q0(t), Q(t) =< 1, we have A0(t)l =< 1.

Furthermore, 8.1 and (8.2) imply

A(t)l
2

ds

Since 0 <= Q_ (s), Q(s) =< 1, we have 12 Q-(s) Q(s)l =< 2, so that

IX(t)l--< X- s) ds.

Thus by induction on k we obtain

IA(t) ----< t/k!.
This completes the proof.

For k >- 0, let Dk denote the concentrator obtained by identifying the roots of three
copies of Cg to form the root of Dk; the leaves of the copies of Cg (of which there are
3-2) are the leaves of Dk. Letting R(t) denote the probability that the root of Dk is
engaged at time t, we clearly have R(t) Qg(t))3. Finally, putting R(t)

Q(t)) 3, we see that R(t) -- R(t) uniformly in as k -- . Thus we have
proved the following proposition.

PROPOSITION 8.3. As k -- , the probability Rk( t) that the root ofD is engaged
at time tends to

uniformly in t.

R(t)=l- Vtanh ln(l+V)-

9. Sequential arrivals for modular concentrators. Now consider the concentrator
Gq and arbitrarily designate one output of this concentrator as the "root." Let N denote
the subgraph of Gq induced by the inputs of Gq at distance at most 2k + from the root
and the outputs of Gq at distance at most 2k + 2 from the root. Call the outputs at
distance 2k + 2 from the root the "leaves" of N. Set k /(g- 6)/4/, where g is the
girth of Gq. Since g ft(log q) (by Part I, Lemma 2.2), we have k as q -- .Furthermore, since 4k + 4 is less than the girth of Gq, Nk is a tree isomorphic to D,
with root corresponding to root, and leaves corresponding to leaves. Let Sq(t) denote the
probability that the root of Go is engaged at time t.

LEMM 9.1. We have Sq(t) Rk(t) uniformly in as q -- and hence k -- .Proof. Suppose we wish to determine whether the root of Gq is engaged at some
time t. This is determined by the arrival times and hunting orders of the inputs in N,
unless some input at distance three from the root has an earlier arrival time than the
intermediate vertex at distance one; that is, unless there is a path of decreasing arrival
times from the root to some leaf of N2. Even if there is such a path, the engagement of
the root is determined by the arrival times and hunting orders ofthe inputs in N, unless
there is a path of decreasing arrival times from the root to a leaf in N3. In general, the
engagement of the root is determined by the arrival times and hunting orders of the
inputs in N, unless there is a path of decreasing arrival times from the root to a leaf
in N.

Let X denote the event "there is a path of decreasing arrival times from the root
to a leaf in N." We have Pr (X) --< 3.2/k!, since there are 3-2 paths from the root
to a leaf in N, and the probability that the arrival times along some such path are
decreasing is /k! (since all k! orders of arrival are equally likely). Furthermore, unless
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Xk occurs, the root is engaged in Gq when and only when it is engaged in Nk. Thus we
have Sa(t) Re(t)l =< 3"2/k!.

Combining this with Proposition 8.3, we have proved the following theorem.
THEOREM 9.2. As q -- et3, the probability Sq( t) that an output in Gq is engaged at

time tends to

R(t) f tanh In (1 + f)-
uniformly in t. In particular, the probability that an output is never engaged tends to

(tanh(ln(l+r)-22))3=0.0145 "’’.

10. Extensions for sequential arrivals. The extensions we have described for batch
arrivals all apply to sequential arrivals as well. In particular, for "(a b)-concentrators
with large girth," we obtain integral equations that can still be solved by quadratures,
though not in general in terms of elementary functions. It is easy, however, to carry out
the quadratures numerically and to obtain the fraction of unused servers as a function
of time.

When the concentration ratio ab is an integer, a new possibility arises that does
not occur for (3 2)-concentrators. In this case, it is possible to assign fixed hunting
orders to the inputs in such a way that each output is the first choice for a/b inputs, the
second choice for another ab, and so forth. For such an assignment, there can be no
unused servers after all customers have arrived. The analysis of this mode of operation
leads to differential equations (or systems ofdifferential equations) that cannot be solved
by quadratures. It is easy, however, to integrate them numerically, and to obtain the
fractions ofrequests that are served by their first choice, their second choice, and so forth.
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