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RANDOM SEQUENTIAL ADSORPTION ON GRAPHS*

NICHOLAS PIPPENGERf

Abstract. This paper analyzes a process whereby the vertices ofa graph are considered in a random sequence,
and each considered vertex is "occupied" unless it or an adjacent vertex has previously been occupied. The
process continues until no more vertices can be occupied, at which point the "jamming limit" has been reached.
The case in which the graph is regular (so that every vertex has degree d >= 2) and has "few short cycles" is
treated. In particular, the results apply to infinite regular trees, to finite graphs obtained from them by forming
quotient graphs, and to random regular graphs. It is shown that the probability that a vertex is occupied at the
jamming limit tends to 1/(d- ):/a-:z))/2 as the length of the shortest cycle through it tends to . Also
treated are graphs that have short cycles but for which every edge is in at most one cycle; in this way approximations
are obtained to the occupancy probabilities for two-dimensional triangular, square and hexagonal lattices. Finally,
a similar problem is treated in which edges rather than vertices are occupied, and the occupation of an edge
prevents the later occupation of edges incident with it. In each case the solution gives the dynamic evolution
of the occupancy probabilities, as well as their values at the jamming limit.

Key words, packing, monomers, dimers

AMS(MOS) subject classifications. 60K35, 82A31, 82A68

1. Introduction. We consider the following random process on a graph. A Poisson
stream of "molecules" arrives at each vertex ofthe graph, the streams arriving at different
vertices being independent. When a molecule arrives at a vertex, it "occupies" the vertex,
unless that vertex or a vertex adjacent to it has previously been occupied. The process
continues until no more vertices can be occupied; this situation is called the "jamming
limit." We are interested in determining the density of occupied vertices at the jamming
limit. More generally, we are interested in the dynamic evolution of the process as time
varies from zero (when no vertices are occupied) to c (when the jamming limit is
reached). We may take the unit of time to be the mean interarrival time of the Poisson
arrival process. Since the various connected components of a graph do not interact in
any way during the process, we may assume that the graph is connected.

This process has been studied by chemists and physicists under the name "random
sequential adsorption." It is relevant in situations where the reverse process of"desorption"
or "evaporation" occurs so slowly that the relaxation time of the system toward equilib-
rium is long compared with the time of observation. The graphs of interest to chemists
and physicists are primarily those modeling polymers and crystal surfaces.

The only graphs for which we know of an exact solution to this problem are those
that are essentially "one-dimensional." The simplest of these are those in which each
vertex has degree ("coordination number") at most two, in which case the graph must
be a path (finite or infinite) or a cycle (finite or infinite). Flory [F] showed that the
expected fraction of occupied vertices in a long path or cycle tends to e-2)/2 as the
length tends to c. Further results on one-dimensional cases have been presented by
Page Pa], Downton D], McQuistan and Lichtman McQL], and McQuistan McQ].

In this paper we present a method for solving this problem on regular graphs without
many short cycles. Among these are the infinite regular trees ("Bethe lattices"), finite
regular graphs obtained from them by forming quotient graphs ("Bethe lattices with
periodic boundary conditions"), and random regular graphs (for which the number
of cycles of any given length remains bounded as the number of vertices tends to ).
We show that the probability that a vertex is occupied at the jamming limit tends to
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(1- 1/(d- 1)2/(d-2))/2 as the length of the shortest cycle through it tends to ,
where d> 2 is the degree. (As d- 2 we have 1/(d-l)2/(d-2) -- e-2, so, in a
sense, this expression is correct for d 2 as well.)

We may also consider a process whereby "dimers" arrive at the edges of a
graph, and the occupation of an edge prevents the later occupation of an edge incident
(sharing a vertex) with it. (For the case d 2, the two processes are equivalent, but
for d > 2 they differ.) The method of this paper is applicable to this process as well,
and shows that the probability that an edge is occupied at the jamming limit tends to
(1 1/(d- )d/(d-2))/d as the length of the shortest cycle through it tends to .
(Again the correct value for d 2 emerges as d -- 2.)

It would of course be of great interest to obtain corresponding results for the tri-
angular, square, and hexagonal ("honeycomb") lattices in two dimensions. While no
exact solutions have been reported, Monte Carlo estimates have been made. Widom
[W ], W2] gives 0.38 _+ 0.01 for the occupancy of the hexagonal lattice; Meakin et al.
Me give 0.36413 _+ 0.00001 for the square lattice and 0.23136 +_ 0.00001 for the
triangular lattice.

In the final section of this paper, we compare these Monte Carlo estimates with
exact solutions for lattices that are similar to the two-dimensional ones as regards their
degree and their girth (that is, the length of their shortest cycle), yet are sufficiently tree-
like to allow the methods of this paper to be applied. The simplest such tree-like lattices
are of course the infinite regular trees themselves. For degrees 3, 4, and 6, our results
give -38 0.375, 0.3333.-- and (1 (1/2)/2)/2 0.27369..., respectively. While
the first of these falls within the error bars of the available Monte Carlo estimate, the
other two are disappointing. We can improve these approximations by taking account
of the shortest cycles in the two-dimensional lattices, ignoring longer cycles. When this
is done, the result for degree 3 and girth 6 is 0.37649... for degree 4 and girth 4,
0.35071-.- and for degree 6 and girth 3, 0.2222.... The last two values match the
corresponding Monte Carlo estimates much more closely than those obtained by ignoring
all cycles.

2. Random sequential adsorption on graphs. Let G (V, E) be an undirected graph
with vertices Vand edges E. Associate with each vertex v e Va stationary Poisson stream
.4 (v) of independent arrivals, with the streams corresponding to different vertices being
independent. We shall assume that each arrival process starts at time zero and that the
mean interarrival time for each stream is 1. For the process we are considering, only the
first arrival in each stream is important, since only the first molecule to arrive at a vertex
has any chance to occupy that vertex. Thus we may turn our attention from A (v) to the
first-arrival time t(v) for the vertex v. Each first-arrival time has an exponential distribution
with density e-t on the interval 0, ], with the first-arrival times for different vertices
being independent.

If v is a vertex in a finite graph G with n of vertices, then there are just n! possible
orders of first arrivals. For each of these, v is either occupied or "vacant" (that is, not
occupied) in the jamming limit; thus, the probability that v is occupied in the jamming
limit is a rational number with denominator dividing n!. If G has an automorphism
group that acts transitively on the vertices, then this probability is the same for all vertices,
and we may speak without ambiguity of the "occupancy probability in the jam-
ming limit."

If v is a vertex in an infinite graph G, more must be said. Suppose that all vertices
in G have degree at most d. Let us say that a sequence v0, vl, "’, vt is a "decreasing
path" of length l from v0 to vt if/)m is adjacent to/)m -1 and t(/)m) < t(/)m -1) for =<
m -< l. Let Dv) denote the event "there exists a decreasing path of length k from v."
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LEMMA 2. I.

Pr[D(O>]<=d(d l)k- /(k+ I)!.

Proof. There are at most d(d- )k- simple paths of length k from v, and the
probability that such a path is decreasing is / (k + (since each ofthe (k + possible
orders of arrival is equally likely, and exactly one of them is decreasing). [3

Let Ekv) denote the event "there exists a decreasing path of length k from some
vertex that is at distance at most k from v."

LEMMA 2.2.

Pr [EV)] <=d2(d

Proof. There are at most

+d+d(d- 1)+... +d(d- 1)g-=<(k+ 1)d(d- 1)-
vertices that are at distance ofat most k from v, and for each such vertex w, the probability
that there is a decreasing path of length k from w is as given by Lemma 2.1.

Suppose that t(v) is the first-arrival time for v. Then v will be occupied at t(v)
unless some vertex v adjacent to v has arrival time t(v) < t(v). In the latter case, v
will be occupied at t(v) unless some vertex v2 adjacent to v has arrival time t(v2) <
t(Vl). Continuing in this way, we see that whether (and if so, when) the vertex v is
occupied depends only on the first-arrival times of vertices on decreasing paths from v.
In particular, the occupancy of v is well defined unless there is an infinite decreasing path
from v, and the occupancies of all vertices are well defined unless there is an infinite
decreasing path from some vertex in G. If there is an infinite decreasing path from some
vertex in G, then infinitely many of the events { E(kV)}O_k<o Occur. By Lemma 2.2, the
expected number of such events that occur is, Pr[E(kO)]<=dZe(a-)/(d 1) 2.

0_k<c

By the Borel-Cantelli Lemma, with probability one, only finitely many of these events
occur. Thus, with probability one, the occupancy of every vertex in G is well defined.

Let G(k) (the "ball of radius k with center v") denote the subgraph of G induced by
the set of vertices at distance of at most k from v. Let 0G(k) (the "sphere of radius k with
center v") denote the set of vertices in G(k) that are adjacent in G to some vertex not in
G(k). A vertex in 0G(k) is at distance at most k from v, since it is in G(k). If a vertex in
OG(k were at distance at most k from v, then the vertices adjacent to it would be at

(v)distance at most (k + k from v, and thus would also be in G(k). Thus, OGk
comprises just those vertices at distance exactly k from v in G.

Let [0, o] be some fixed time. Let M() denote the probability that the vertex
v is occupied at time in G, and let M(k) denote the probability that the same vertex is
occupied at the same time in k

LEMMA 2.3.

M(V)-M,)I <=d(d-1)-/k!.

Proof. The occupancy of v in G can differ fromthe occupancy of v in Gk) only if
there is a decreasing path from v to some vertex in OGkv). If there is such a path, its
length must be at least k, and thus its initial segment oflength k establishes the occurrence
of Dtk). Since the occupancies of v in G and Gkv) can differ only if Dk) occurs, Lemma
2.1 completes the proof.

In the case ofan infinite graph G, Lemma 2.3 shows that the occupancy probability
of a vertex is approximated by the occupancy probability of that vertex in a sufficiently
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large but finite neighborhood of the vertex. In particular, it shows that occupancy prob-
abilities in computable graphs (that is, graphs for which the relation of adjacency is
effectively computable) are computable real numbers (in the sense that approximations
of prescribed accuracy are effectively computable). Lemma 2.3 is significant even for
finite graphs; it shows that long-range correlations are weak, and that graphs that are
locally similar have similar occupancy probabilities.

3. Regular graphs with few short cycles. A regular graph without cycles is an infinite
regular tree, or "Bethe lattice." By imposing "periodic boundary conditions" on such a
lattice, a finite regular graph with large girth is obtained (see Margulis [Ma] and Imrich
[I ]; the girth grows logarithmically with the number of vertices). In a regular graph with
degree d and girth g, balls of radius less than g2 are trees, in which all vertices are either
"internal" vertices with degree d or are "leaves" with degree one. We shall determine
the occupancy probability for a vertex that is far from the leaves of such a tree; this result
will apply to the vertices of regular graphs without short cycles by Lemma 2.3.

A random regular graph with degree d and n vertices (that is, a graph chosen at
random with equal probabilities from the set of all such graphs) will probably have some
short cycles. A simple calculation shows, however, that the expected number of cycles
of length at most k is bounded by a constant depending on k and d, but independent of
n. In a large random regular graph, then, most vertices will not lie on any short cycles,
and the results of this section will apply to them by Lemma 2.3. Thus, in a random
regular graph, the expected fraction of occupied vertices will be the same as in a regular
graph without short cycles, although there may be a small number ofexceptional vertices
with occupancy probabilities much higher or lower than this average.

Let d >= 2 be a natural number. We shall begin by determining the occupancy prob-
abilities, as a function of time, for certain vertices in certain trees. Let A0 be a tree
containing a single vertex, called its "root." For k >= 1, ifAk- has been defined, let Ak
be the tree obtained from a new vertex, called its "root," together with d disjoint
copies ofAg_ 1, where the root ofA is adjacent to the roots of the copies ofA_ 1.

Let Q(t) denote the probability that the root ofAk is vacant at time t. Clearly, we
have Q0(t) e-t. The key step of our derivation is the following observation:

(3.1) Q(t) 1- Q_l(S)a-e-Sds,

for k >= 1. To show (3.1), it suffices to show that the integrand is the rate at which the
root is occupied at time s. The rate at which first arrivals occur is e-s. This must be
multiplied by the probability that the d- vertices adjacent to the root are vacant at
time s, which is just Q_ l(s)a- (The vacancies of the d- vertices adjacent to the
root are not independent, but if the first arrival at the root occurs at time s, then the
root is vacant throughout the interval [0, s), and the vacancies of the d- vertices
adjacent to the root, conditioned on this event, are independent.)

To determine the asymptotics of Q(t) as k -- oe, let us consider the fixed point
of the transformation Qk_ - Q, that is, the solution Q of the integral equation

(3.2) Q(t) Q(s)a- e-S ds.

Differentiation of (3.2) with respect to yields the differential equation

(3.3) Q’(t)=-O(t)a-e-t,

together with the initial condition Q(0) 1.
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The only difficulty in (3.3) comes from the factor e-t, which is the density of first
arrivals. This difficulty can be removed by the substitution -In r), r e-t,
which "uniformizes" the distribution of r over the interval [0, ]. Setting

P(r)=Q(-ln(1-r))

for 0 -< r < 1, we have

(3.4) P’(r)=-P(r)-,
together with the initial condition P(O) 1.

Since (3.4) does not involve r explicitly, it can be solved by quadratures:

P() dx
7 xd_

-ln P(z), ifd 2,

-(1 1/P()a-)/(d-2), ifd> 2,

where the lower limit of integration is the initial condition P(0) 1. Thus,

e ifd= 2,
(3.5) P(r)=

1/((d-2)r+l) l/(a-2), ifd>2.

This is the desired solution of the transformed version,

(3.6) P(r)= p(tr)a-1 dtr,

of(3.2).
To apply this result, let us now define

P,(r)=Ok(-ln (1-r)),

for k >- 0. Clearly, P0(r) r. From (3.1) it follows that

(3.7) Pk(r) P_ l(tr)d- dtr,

for k >= 1. We shall show that P(r) -- P(r) uniformly in r as k -* oo.
To this end, let A(r) P(r) P(r). Since 0 -< P0(r), P(r) =< 1, we have

A0(r)l =< 1. From (3.6) and (3.7) it follows that

Ak(’/’) P(ff)d-l--Pk_l(tr)d-ldo"

Ak_ (tr)(P(tr)a-2 + +P_l(a)a-2),

for k >= 1. Since 0 <- P(r), P_ l(r) =< 1, we have

IAk(r)l =<(d- 1) [mk_ l(tY)[ da.

It follows by induction on k that

(3.8) IAk()l <-(d- 1)krk/k!.
Thus Pk(r) -- P(r) uniformly in r as k --* oo.
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For k >= 1, let A be the tree obtained from a new vertex, called its "root," together
with d disjoint copies ofAk 1, where the root of A is adjacent to the roots ofthe copies
ofAk_ 1. Let Q(t) denote the probability that the root of A?, is vacant at time t. By an
argument analogous to that used to establish (3.1) we have

Setting

we obtain

(3.9)

Q?, Qg_ l(s)de-Sds.

P(r) Q?, (-ln (1 r)),

P?, (r) 1- ek_l(a)dda.

Define

(3.10) P* (-r) 1- P(a)adr.

Then we have the following.
LEMMA 3.1.

+ e-2")/2,
P*(r)=

(1 + 1/((d-2)-r+ 1)2/(d-2))/2,

Proof. From (3.10) and (3.4) we have

P*(z) 1- P(a)dda

+ P( o’)P’(o’) do"

P(r)

=1+ xdx
dP(0)

=1+
e(-r)2- P(0) 2

ifd= 2,

ifd> 2.

The lemma follows by substitution of (3.5).
LEMMA 3.2.

P(z)-P*(z)I <=d(d- 1)-’/k!.

Proof. This follows by an argument analogous to that used to establish (3.8).
These lemmas give us the limiting value of the vacancy probability for a vertex far

from the leaves of a large regular tree. The analysis in this section is summarized by the
following theorem.

THEOREM 3.3. Let v be a vertex in a regular graph G ofdegree d >= 2, and suppose
that there is no cycle oflength at most 2k + through v. Then

IQ()(t)-Q*(t)l <=2d(d-1)c- l/k!,
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where

+ e-2(1 -e-t))/2, ifd= 2,
Q*(t)=

(l+l/((d-2)(1-e-t)+l)Z/a-2))/2, ifd>2.

Proof. By the hypothesis on v in G, there is an isomorphism between Gv) and
A? that maps v to the root of A?. Thus QV)(t) Q?,(t). The theorem then follows
from Lemmas 2.3, 3.1, and 3.2. U3

We conclude this section with the remark that a similar analysis applies to the
process whereby "dimers" arrive at the edges of a graph, and the occupation of an edge
prevents the later occupation of an edge incident with it. In this case, the occupancy
probability in the jamming limit is 1/(d )a/a-2))/d.

4. Regular graphs with nonoverlapping short cycles. We shall now consider some
infinite regular graphs with many short cycles. If all simple cycles have a common length
g, are uniformly distributed (in the sense that the same number c of simple cycles pass
through each vertex), and are nonoverlapping (in the sense that at most one simple cycle
passes through each edge), then the methods of the preceding section can be adapted to
determine the occupancy probability. (The differential equations that arise in this way
will in general not be solvable in closed form, but can easily be integrated numerically.)
By varying the degree d, the girth g, and the parameter c, a variety of exactly solvable
lattices can be obtained. Our main interest in these lattices is as "approximations" (in
some sense that we shall not make precise) to the two-dimensional triangular, square,
and hexagonal lattices. The simplest and crudest such approximations are the infinite
regular trees of degree 6, 4, and 3. The result of the preceding section gives occupancy
probabilities in the jamming limit of (1 (1/2)/2)/2 0.27639... ] 0.33333...
and 0.375, respectively.

Consider the infinite graph obtained by joining triangles so that three triangles meet
at every vertex and there are no other simple cycles. This lattice, which corresponds to
the choice d 6, g 3, and c 3, may be regarded as the Cayley graph of a free product
ofthree copies ofthe integers modulo 3; it has the same degree and girth as the triangular
lattice, but differs in that every vertex is in three triangles rather than six, and every edge
is in one rather than two. The lattice is sufficiently tree-like so that the methods of the
preceding section can be adapted to determine the occupancy probability in the jamming
limit. The differential equation analogous to (3.4) is

P’(z) e(-r) 4,

with the initial condition P(0) 1. This is the same as for the infinite regular tree with
d 5, and the solution is P(z) / 3r + 1/3. The occupancy probability in the jam-
ming limit is

o
P(r 6 dr

0.2222"

considerably closer to the Monte Carlo estimate 0.23136 given by Meakin et al. [Me
than the value 0.27639... obtained by ignoring all cycles.

Consider now the infinite graph obtained by joining squares so that two squares
meet at every vertex and there are no other simple cycles. This lattice, which corresponds
to the choice d 4, g 4, and c 2, may be regarded as the Cayley graph of a free
product of two copies of the integers modulo 4; it has the same degree and girth as the
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square lattice, but differs in that every vertex is in two squares rather than four, and every
edge is in one rather than two. The differential equation analogous to (3.4) is

2P(r) +
p’(z)

3

with the initial condition P(0) 1. Integrating numerically yields P( 0.43066....
The occupancy probability in the jamming limit is

f0’ fe(1)2x3+(-P’(z))2 dr dx-sv(o) 3

3-P(1)4-2P(1)
6

=0.35071.

which is considerably closer to the Monte Carlo estimate 0.36413 given by Meakin et
al. Me than the value 0.33333- obtained by ignoring all cycles.

Finally, consider the infinite graph obtained by joining hexagons and edges so that
one hexagon and one edge meet at every vertex and there are no other simple cycles.
This lattice, which corresponds to the choice d 3, g 6, and c 1, may be regarded
as the Cayley graph of a free product of the integers modulo 6 with the integers modulo
2; it has the same degree and girth as L3, but differs in that every vertex is in one hexagon
rather than three, and every edge is in zero or one rather than two. There are now two
differential equations analogous to (3.4)"

and

P’(z) -P2(r)

Pz(r)
2Pl(r) + 10Pl(’r)2 + 3

15

with the initial conditions Pl (0) P2(0) 1. Differentiating the first with respect to r,
substituting the second, multiplying by the integrating factor 2P’ (), and integrating
yields

p(.r)2 2Pl(’r)6 + 20P1(’)3 + 18Pl(’r) + 5
45

where the constant of integration has been chosen to satisfy the initial condition
P’ (0) -P2(0) -1. Taking square roots (the initial condition shows that the neg-
ative root must be taken) and integrating numerically yields Pl( 0.30738... and
P’l -0.49700.... The occupancy probability in the jamming limit is

fol (-P(r))( P’2(r))dr fP2(l)

xdx-t/P2(0)
l-P2(1)2

2

-P’(1)2

2

=0.37649....
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Both this and the value 0.375 obtained by ignoring all cycles are within the error estimate
0.01 for the Monte Carlo value 0.38 given by Widom [W ].
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