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ARTICLES

Descartes and Problem-Solving

JUDITH GRABINER

Pitzer College
Claremont, CA 91711

Introduction

What does Descartes have to teach us about solving problems? At first glance it
seems easy to reply. Descartes says a lot about problem-solving. So we could just
quote what he says in the Discourse on Method [12] and in his Rules for Direction of
the Mind ([2], pp. 9-11). Then we could illustrate these methodological rules from
Descartes’ major mathematical work, La Géométrie [13]. After all, Descartes claimed
he did his mathematical work by following his “method.” And the most influential
works in modern mathematics—calculus textbooks—all contain sets of rules for
solving word problems, rather like this:

. Draw a figure.

. Identify clearly what you are trying to find.

. Give each quantity, unknown as well as known, a name (e.g., x,y, ...).

. Write down all known relations between these quantities symbolically.

. Apply various techniques to these relations until you have the unknown(s) in
equations that you can solve.
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The calculus texts generally owe these schemes to George Pélya’s Mathematical
Discovery, especially Chapter 2, “The Cartesian Pattern,” and Pélya himself credits
them to Descartes’ Rules for Direction of the Mind ([32], pp. 22-23, 26-28, 55-59,
129ff). So I studied those philosophical works as I began to write about Descartes and
problem-solving. But the more I re-read Descartes’ Geometry, the more convinced I
became that it is from this work that his real lessons in problem-solving come. One
could claim that, just as the history of Western philosophy has been viewed as a series
of footnotes to Plato, so the past 350 years of mathematics can be viewed as a series of
footnotes to Descartes’ Geometry.

Now Descartes said in the Discourse on Method that it didn’t matter how smart
you were; if you didn’t go about things in the right way—with the right method—you
would not discover anything. Descartes’ Geometry certainly demonstrates a successful
problem-solving method in action. Accordingly, this article will bring what historians
of mathematics know about Descartes’ Geometry to bear on the question, what can
Descartes teach the mathematics community about problem-solving? To answer this
question, let us look at the major types of problems addressed in the Geometry and at
the methods Descartes used to solve them.

A First Look at Descartes” Geometry

We have all heard that Descartes’ Geometry contains his invention of analytic
geometry. So when we look at the work, we may be quite surprised at what is not
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there. We do not see Cartesian coordinates. Nor do we see the analytic geometry of
the straight line, or of the circle, or of the conic sections. In fact we do not see any
new curve plotted from its equation. And what curves did Descartes allow? Not, as
we might think, any curve that has an equation; that is secondary. He allowed only
curves constructible by some mechanical device that draws them according to
specified rules. Finally, we do not find the term “analytic geometry,” nor the claim
that he had invented a new subject—just a new (and revolutionary) method to deal
with old problems.

What we do see is a work that is problem-driven throughout. Descartes’ Geometry
has a purpose. It is to solve problems. Some are old, some are new; all are hard. For
all the lip service in Descartes’ Discourse on Method to mathematics as logical
deduction from self-evident first principles ([12], pp, 12-13, 18-19), the Geometry is
not like that at all. It discovers; it does not present a finished logical structure. The
specific purpose of the book is to answer questions like “What is the locus of a point
such that a specified condition is satisfied?” And the answer to these questions must
be geometric. Not “it is such-and-such a curve,” or even “it has this equation,” but
“it is this curve, it has this equation, and it can be constructed in this way.”
Everything else in the Geometry—and that does include algebra, theory of equations,
classifying curves by degree, etc.—are just means to this geometric end. To solve a
problem in geometry, one must be able to construct the curve that is its solution.

The Background of Descartes” Geometry

To appreciate how much Descartes accomplished, we must first look at some
achievements of the ancient Greeks. They solved a range of locus problems, some
quite complicated. To find their solutions, they too had “methods.” Greek mathemat-
ics recognized two especially useful problem-solving strategies: reduction and analy-
sis ((25], pp. 23-24).

First, let us describe the method of reduction [in Greek, apogoge]. Given a
problem, we observe that we could solve it if only we could solve a second, simpler
problem, and so we attack the second one instead. For instance, consider the famous
problem of duplicating the cube. In modern notation, the problem is, given a®, to find
x such that x3=24a® Hippocrates of Chios showed that this problem could be
reduced to the problem of finding two mean proportionals between a and 2a. That is,
again in modern notation, if we can find x and y such that:

a/x=x/y=y/2a, (1)

then, eliminating y, we obtain x® = 2a® as required ([25], p. 23). But more geometric
knowledge led to a further reduction ([25], p. 61). If we consider just the first two
terms of (1),

a/x=x/y,

we obtain x2 = ay, which represents a parabola. The equation involving the first and
third terms in (1) yields

a/x=y/2a

or xy = 2a?, which represents a hyperbola. Thus the problem of duplicating the cube
is reducible to the problem of finding the intersection of a parabola and a hyperbola.
This reduction promoted Greek interest in the conic sections.
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The other problem-solving strategy is what the Greeks called “analysis” —literally,
“solution backwards” (arndpalin ljsin [20], Vol. ii, p. 400; [25], p. 9; cp. pp. 354—360).
The Greek “analysis” works like this. Suppose we want to learn how to construct an
angle bisector, and suppose that we already know how to bisect a line segment. We
proceed by first assuming that we have the problem solved. Then, from the assumed
existence of that angle bisector, we work backward until we reach something we do
know. In Ficure 1, take the angle A, and draw AK bisecting it. Then, mark off any
length AB on one side of the angle, and an equal length AC on the other side.
Connect B and C with the straight line BC, as in Ficure 2. Now let M be the
intersection of the angle bisector with the line BC. Since angle BAM = angle MAC,
AB =AC, and AM = AM, triangle ABM is congruent to triangle ACM. Thus M
bisects BC. But wait. Recall that we already know how to bisect a line segment. Thus,
we can find such an M. Now we can construct the angle bisector by reversing the
process we just went through. That is, suppose we are given an-angle A. To construct
the angle bisector, construct AB = AC, construct the line BC, bisect it at M, and
connect the points A and M. AM bisects the angle. This method—assuming that we
have the thing we are looking for and working backwards from that assumption until
we reach something we do know—was well-named “solution backwards.” Pappus of
Alexandria, in the early fourth century C.E., compiled a “treasury of analysis” in
which he gave the classic definition of “analysis™ as “solution backwards™; described
33 works, now mostly lost, by Euclid, Apollonius, Aristaeus, and Eratosthenes, which
included substantial problems solvable by the method of analysis; and provided some
lemmas that illustrate problem-solving by analysis ([20], Vol. ii, pp. 399-427).

B K B K
M
A A
C C
FIGURE 1 FIGURE 2

In our example of bisecting an angle, the mathematical knowledge needed was
minimal. But the Greeks knew all sorts of properties of other geometric figures,
notably the conic sections, and so had an extensive set of theorems to draw on in
using “analysis” to solve problems in geometry ([6], pp. 21-39; [10], pp. 43-58; [20],
passim; [25]). (The best and fullest account is that of Knorr [25].)

Thus we see that Descartes, though he championed these techniques, clearly did
not invent the method of analysis and the method of reduction. Descartes” ideas on
problem-solving, moreover, have other antecedents besides the Greek mathematical
tradition. First, a preoccupation with finding a universal “method” to find truth
appears in the work of earlier philosophers, including the thirteenth-century Ray-
mond Lull, whose method was to list all possible truths and select the right one, the
sixteenth-century Petrus Ramus, who saw method as the key to effective teaching and
to allowing learners to make their own discoveries ([29], pp. 148-9), and the
seventeenth-century philosopher of science Francis Bacon, whose method to empiri-
cally discover natural laws was one of systematic induction and testing [1]. All of these
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seekers for method suggested that intellectual progress, unimpressive earlier in
history, could be achieved once the right method for finding truth was employed.
Descartes shared this view.

A second, more specific antecedent of Descartes work was the invention of
symbolic algebra as a problem-solving tool, a tool that was explicitly recognized as a
kind of “analysis” in the Greek sense by its discoverer, Vieta, in 1591 ([6], p. 65; cp
pp- 23, 157-173). To say “let x =" the unknown, and then calculate with x—square
it, add it to itself, etc., as if it were known—is a powerful technique when applied to
word problems both in and outside of geometry. Vieta recognized that naming the
unknown and then treating it as if it were known was an example of what the Greeks
called “analysis,” so he called algebra “the analytic art.” Incidentally, Vieta's use of
this term is the origin of the way we use the word “analysis” in mathematics. In the
seventeenth and early eighteenth centuries, the term “analysis” was often used
interchangeably with the term “algebra,” until by the mid-eighteenth century “analy-
sis” became used for the algebra of infinite processes as opposed to that of finite ones
[4].

Descartes was quite impressed with the power of symbolic algebra. But, although
he had all these predecessors, Descartes combined, extended, and then exploited
these earlier ideas in an unprecedented way. To see how his new method worked, we
need to look at a specific problem.

Descartes’ Method in Action

We begin with the first important problem Descartes described solving with his new
method ([13], pp. 309-314, 324—335). The problem is taken from Pappus, who said in
turn that it came from Euclid and Apollonius ([13], p. 304). The problem is illustrated
in Ficure 3 (from [13], p. 309).

FIGURE 3

Given four lines in a plane, and given four angles. Take an arbitrary point C.
Consider now the distances (dotted lines) from C to the various given lines, where
the distances are measured along lines making the given angles with the given lines.
(For instance, the distance CD makes the given angle CDA with the given line AD.)
A further condition on C is that the four distances CD, CF, CB, and CH satisfy

(CD-CF)/ (CB-CH) = a given constant. (2)
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The problem is to find the locus of all such points C. For Descartes, that means to
discover what curve it is, and then to construct that curve. (At this time, any reader
who does not already know the answer is encouraged to conjecture what kind of curve
it is—or to imagine constructing even one such point C.)

Here is how Descartes attacked this problem. First assume, as we must in order to
draw Ficure 3, that we already have one point on the curve. We will then work
backwards, by the method of analysis. Draw the point C, and draw the distances.
Label the distance from C to the line EG as y, and the line segment between that
distance and the given line DA as x. Given these labels x and y, we use them and
look for other relationships that can be derived in terms of them. For instance,
independent of the choice of C, the angles in the triangle ABR are all known (since
angle CBG is one of the given angles in the problem, we have angle ABR by vertical
angles; angle RAB is determined by the position of the two given lines that include
the segments DR and GE). Thus the shape of triangle ABR is determined, so the
side RB is a fixed multiple of x. Descartes therefore called that side (b/ z) - x, where
he took b/ z to be a known ratio. Thus CR =y + (b/ z) - x ((13], p. 310). Using his
knowledge of geometry in this fashion, Descartes found many more such relation-
ships, and was able to express each of the distances CD, CF, CB, and CH as a
different linear function of the line segments x and y. For the case where (CD - CF)/
(CB - CH) = 1, those expressions let him derive an equation between the unknowns x
and y and various constants he called m, n, z, o0, and p:

y=m—(n/z) x+/{m*+ox+ (p/m) -z} 3)

([13], p. 326). Now perhaps the modern reader can guess what type of curve that
equation represents. So could Descartes. From his studies of Greek geometry,
Descartes knew quite a lot about the conic sections, so he said, though he did not
explain, that if the coefficient of the x? term is zero, the points C lie on a parabola; if
that coeflicient is positive, on a hyperbola; if negative, on an ellipse; etc. The
positions, diameters, axes, centers, of these curves can be determined also, and he
briefly discussed how to do this ([13], p. 329-332).

The reader will have observed that there is no fixed coordinate system here.
Descartes labeled as x and y the lengths of line segments that arose in this particular
situation. Let us also make a comment about his choice of notation. Vieta had used
uppercase vowels for the unknowns, consonants for knowns. Since matters of notation
are relatively arbitrary, the fact that we use Descartes’ lowercase x and y, rather than
Vieta’s A and E, testifies to the great influence of Descartes” work on our algebra and
geometry. Further, though Descartes himself wrote mm and xx rather than m® and
x2 ([13], p. 326), he did use raised numbers, exponents, for integer powers greater
than two (e.g. [13], p. 337, p. 344). Today we follow Descartes here too, using
exponential notation for all powers.

The Greeks already knew that the Pappus four-line locus was a conic section.
Nonetheless, the way Descartes derived this result is impressive. In line with our
overall purpose, let us reflect on the method Descartes used. Why is “let x equal the
first unknown” so powerful here? Because the technique of “reduction” was used by
Descartes to effectively reduce a problem in geometry to a problem in algebra. Once
he had done this, he could use the algorithmic power and generality of algebra to
solve a formerly difficult problem with relative ease. It is an old problem-solving
method, to reduce a problem to a simpler one, but because the simpler one is
algebraic, Descartes had something different in kind from what had been done before.
Algebra puts muscles on the problem-solving methods of analysis and reduction.
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Beyond the Greeks

To fully exploit the power of algebra—to go beyond the Greeks—Descartes had to
make a major break with the past. The earlier symbolic algebra of Vieta was based on
the theory of geometric magnitudes inherited from the Greeks. Because of this
geometric basis, the product of three magnitudes was spoken of as a volume. This
created a problem: What might the product of five magnitudes be? Also, Greek
geometry presupposed the Archimedean axiom: Quantities cannot be compared
unless some multiple of one can exceed the other, so one cannot add a point to a line,
or an area to a solid. How then could one write x>+ x ([6], p. 61, p. 84)? Descartes,
like his predecessors, did not envision pure numbers, but only geometrical magni-
tudes. He too felt constrained to interpret all algebraic operations in geometric terms.
But he invented a new geometric interpretation for algebraic equations that freed
algebraists from crippling restrictions like being unable to write x° or x*+x. He
freed himself, and therefore freed his successors, including us. Here is how he did it.

He took a line that he called “unity,” of length one, which could be chosen
arbitrarily. This let him interpret the symbol x as the area of a rectangle with one
side of length x, the other of length one. He could now write x%+x with a clear
conscience, since it could be thought of as the sum of two areas. Even more
important, he interpreted products as lengths of lines, so that he could interpret any
arbitrary power as the length of a line. That is, the product of the line segments a and
b for Descartes did not have to be the area ab, but could be another length such that
ab/a=Db/1. And the length ab could be constructed, as in Ficure 4 ([13], p. 298).

FIGURE 4

In this example, the product of the lines BD and BC is constructed, given a unit
line AB. Let the line segments AB and BD be laid off on the same line originating at
B, and let the segment BC be laid off on a line intersecting BD. Extending BC and
constructing ED parallel to AC yields the proportion BE/BD = BC /1, since AB = 1.
Thus BE is the required product BD - BC. Of course this is an easy construction, but
he had to give it explicitly. Descartes’ philosophy of geometry did not let him merely
assert that there was a length equal to the product of the two lines; he had to
construct it. Now there was no problem in writing such expressions as x°. This was
just the length such that x%/x% =x2%/1.

By showing that all the basic algebraic operations had geometric counterparts,
Descartes could use them later at will. Furthermore, he had made a major advance in
writing general algebraic expressions. Because of Descartes” innovations, later mathe-
maticians came to consider algebra as a science of numbers, not geometric magni-
tudes, even though Descartes himself did not explicitly take this step. Descartes took
his notational step in the service of solving geometric problems, in order to legitimize
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the algebraic manipulations needed to solve these geometric problems. What became
a major conceptual breakthrough, then, was in the service of Descartes’ problem-solv-
ing.

Descartes could now go beyond the Greeks, extending the Pappus four-line
problem to five, six, 12, 13, or arbitrarily many lines. With these more elaborate
problems, he still followed the same method: Label line segments, work out equa-
tions. But when he found the final equation and it was not recognizable as the
equation of a conic, what then? To answer this, let me give the simple example he
gave, a special case of the five-line problem. He considered four parallel lines
separated by a constant distance, with the fifth line perpendicular to the other four
([13], pp. 336-337). (See Ficure 5.) What, he asked, is the locus of all points C such
that

CF-CD-CH=CB-CM-AlI, (4)
where AI is the constant distance between the equally spaced parallel lines and
where the distances are all measured at right angles?

Dl ¢
S i e +H
T T , B
|
|
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]
1
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'
il
G E M A I
FIGURE 5

Again, Descartes proceeded by analysis. Assuming that he had such a point C, he
labelled the appropriate line segments x and y (x = CM,y = CB), designated
the known distance AI as a, and wrote down algebraic counterparts of all
known geometric relationships. For this problem they are simple ones. For instance,
CD=a—y and CF=a+ (a —y) =2a —y. Thus condition (4) becomes

(2a-y)(a—y)(yta)=y-x-aq,
which, multiplied out, yields the equation
y>—2ay®>—a’y +2a®=axy ([13], p.337). (5)

This is not a conic (it is now often called the cubical parabola of Descartes), so the
next question must be, can the curve this represents be constructed? That is, given x,
can we find the corresponding value of y and thus construct any point C on the
curve? Until these questions are answered affirmatively, Descartes would not con-
sider the five-line problem solved, because, for him, it is a problem in geometry. The
algebraic equation was just a means to the end for Descartes; it was not in itself the
solution.

So precisely what does “constructible” mean for Descartes? Can the curve repre-
sented by that cubic equation be constructed, and, if so, how?

Here another of Descartes’ methodological commitments helped him solve this
problem: his commitment to generality. The ancients allowed the construction of
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straight lines and circles, said Descartes, but classified more complex curves as
“mechanical, rather than geometrical” ([13], p. 315). Presumably this was because
instruments were needed to construct them. (For instance, Nicomedes had generated
the conchoid by the motion of a linkage of rulers ([25], pp. 219-220), and then used
the curve in duplicating the cube and trisecting the angle.) But even the ruler and
compass are machines, said Descartes, so why should one exclude other instruments
([13], p. 315; tr., p. 43)? Descartes decided to add to Euclid’s construction postulates
that “two or more lines can be moved, one upon the other, determining by their
intersections other curves” ([13], p. 316). The curves must be generated according to
a definite rule. And for Descartes, such a rule, at least in principle, was given by the
use of a mechanical device that generated a continuous motion. Exactly what this
means is complex—for instance, the machine is not allowed to convert an arc length
to a straight line—but Bos has provided an enlightening discussion ([3], pp. 304-322,
esp. p. 314).

Ficure 6 reproduces one of Descartes’ curve-constructing devices ([13], p. 320).
The first curve he generated using it was produced by the intersection of moving
straight lines. The straight line KN (extended as necessary) is at a fixed distance KL
from a ruler GL. The ruler is attached to the point G, around which it can rotate. The
point L can slide along the ruler GL. The segment KL moves up the fixed line AB
(extended as needed). As KL moves up, the ruler, which has a “sleeve” attached to L,
rotates about G. Note that KL, KN, and the angle between them are all fixed. Then
the point at which the ruler GL intersects the straight line KN extended, namely C,
will be a point on the curve generated by this device.

vd
*, fases s L
7 B

FIGURE 6

To help the reader understand the operation of this device, I show, in Ficure 7,
the construction of a second point C’ by this device. KL has moved up; KN thus has
a new position; the ruler has rotated to a new position. Where the ruler and KN
extended now intersect is another point C’ on the curve. If one continues moving KL
up and down, the points C, C’, etc., trace a new curve.

But what kind of curve is it? Descartes solved this problem in his usual way. He
labelled the key line segments (he let the unknowns y = CB and x = BA, and the
knowns a = AG, b =KL, and ¢ = NL), and algebraically represented the geometric
relationships between them. He then showed that if KNC is, as it is in our diagram, a
straight line, the new curve generated by the points C, C’, etc., is a hyperbola ([13], p.
322). (In fact AB is one of the hyperbola’s asymptotes, and the other asymptote is
parallel to KN, as was shown by Jan van Schooten in his Latin edition of Descartes’
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Geometry ([13], p. 55n).) If instead of the straight line KNC, one uses a parabola
whose axis is the straight line KB, the new curve constructed by the device can again
be identified once its equation is found. In this case, Descartes showed by his usual
method that the curve produced was precisely the cubic curve of (5) that he got for
the simple five-line problem! ([13], p. 322.)

This coincidence must have suggested to Descartes that his construction method
could obtain any desired curve. Also, using algebra, Descartes showed that his device
would produce curves of successively higher degrees ([13], p. 321-323). For instance,
when KN was a straight line, it produced a curve represented by a quadratic; when
KN was a parabola, it produced a third-degree curve. Descartes, struck by the
generality of these results, said that any algebraic curve could be defined as a Pappus
n-line locus ([13], p. 324), but here he went too far. (For a proof that this is incorrect,
see [3], pp. 332—338; incidentally, Newton was the first to try to prove that Descartes
was in error on this point ([3], p. 338).) Descartes also seems to have believed that
any curve with an algebraic equation could be constructed by one of his devices. And
here he was right, as was shown in the nineteenth century by A. B. Kempe ([22], cited
in [3], p. 324). Thus Descartes’ methods really did yield results of the generality he
sought. We can now understand and appreciate the claim with which Descartes’
Geometry begins: “Every problem in geometry can easily [!] be reduced to such
terms that a knowledge of the lengths of certain straight lines is sufficient for its
construction.” (See [13], p. 297.)

Ruler

FIGURE 7

The Power of Descartes’ Methods: Tangents and Equations

Descartes held that curves were admissible in geometry only if they could be
constructed, but of course he also had equations for them. Thus the study of the
curves, and of many of their properties, could be advanced by the study of the
corresponding equations. Let us briefly consider one example where Descartes did

this.
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All properties of geometric curves he had not yet discussed, he said, depend on the
angles curves make with other curves ([13], pp. 341-342). This problem could be
completely solved, he continued, if the normal to a curve at a given point could be
found. The reader will recognize that this is an example of the reduction of one
problem to another. And how does one find the normal to a curve? Again, by a
reduction. It is easy to find the normal to a circle, so we can find the normal to a
curve at a point by finding the normal to the circle tangent to the curve at the same
point. Thus we must find such a tangent circle. And how did Descartes begin his
search for that circle? By yet another reduction, this time to algebra: He sought an
algebraic equation for the circle tangent to the given curve at the given point.

He did this by starting with a circle that hit the curve at two points, and then
letting the two points get closer and closer together. This required, first, writing an
algebraic equation for a circle that hit the curve twice. The equation for the points of
intersection of that circle and the original curve would have two solutions. But “the
nearer together the points .. .are taken, the less difference there is between the roots;
and when the points coincide, the roots are equal” —that is, the equation has only
one solution when the points coincide, and thus has only one solution when the
intersecting circle becomes the tangent circle ([13], pp. 346—7). To find when the two
solutions of the algebraic equation became one, Descartes in effect set the discrimi-
nant equal to zero, providing another demonstration of the power of algebraic
methods to solve geometric problems. Thus, the algebraic equation let him find the
tangent circle. Finally, the normal to that circle at the point of tangency gave him the
normal to the curve ([6], pp. 94-95). Quite a triumph for the method of reduction!

Descartes applied this technique to find normals to several curves. For instance, he
did it for the so-called ovals of Descartes ([13], pp. 360-2), whose properties,
including normals, he used in optics. He also discussed finding the normal to the
cubical parabola whose equation is (5) ([13], pp. 343—4). Descartes’ method was the
first treatment of a tangent as the limiting position of a secant to appear in print ([6],
p. 95). Thus his method of normals was a step in the direction of the calculus, as was
Fermat’s contemporary, independent, simpler, and more elegant method of tangents
([6), pp. 80, 94-5; [30], pp. 165—169; [5], pp. 166-169, 157-8).

There is one more important class of problems taken up in Descartes’ Geometry,
the solution of algebraic equations. As we have mentioned, classical problems like
duplicating the cube required solving equations. So did constructing arbitrary points
on the curve that solved a locus problem. Descartes said in fact that “all geometric
problems reduce to a single type, namely the question of finding the roots of an
equation.” (See [13], p. 401.) Since this process was so important, if one were given an
equation, it would be good to learn as much about the solutions as possible before
trying to construct them geometrically.

In the last section of the Geometry, Descartes tried to do just this, by developing a
great deal of what is now called the theory of equations. One example will suffice to
illustrate his approach:

(x—=2)(x=3)(x—4)(x+5) =0. (6)
Using this numerical example and multiplying it out, he obtained
x* — 4x® — 1922 + 106x — 120 = 0. (7)

Descartes pointed out that one can see from the way the polynomial in (7) is
generated from (6) that it has three positive roots and one negative one, and that the
number of positive roots is given by the number of changes of sign of the coefficients
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(this is the principal case of what is now called Descartes’ Rule of Signs). Also, a
polynomial with several roots is divisible by x minus any root, and it can have as
many distinct roots as its degree ([13], pp. 372—4). Descartes was not the first to have
pointed out these things, but his presentation was systematic and influential, and the
context made clear the importance of the results. The algebra was not an end in itself;
it was all done to solve geometric problems.

The last major class of problems addressed in the Geomeiry was constructing the
roots of equations of degree higher than two. Going beyond the Greek example of a
cubic solved by intersecting conics, Descartes solved fifth- and sixth-degree equa-
tions. Why? They come up, he said, in geometry, if one tries to divide an angle into
five equal parts ([13], pp. 412), or if one tries to solve the Pappus 12-line problem
([13], p. 324). To illustrate his solution method, he solved a sixth-degree equation with
six positive roots by using intersecting cubic curves. The curve he used was not
y =x5, which we might think of as simple, but the cubics he had defined as the
intersections of moving conic sections and lines. In Ficure 8, the diagram for one
such solution is shown ([13], p. 404). The cubic curve, a portion of which is shown as
NCQ, intersects the circle QNC at the points that solve the sixth-degree equation.
The cubic curve involved in this construction, generated by the motion of the
parabola CDF, is the cubic curve (5) once again.

Descartes said that he could construct the solution to every problem in geometry.
We can now see why he thought that!
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FIGURE 8

Conclusion

Now that we have seen Descartes in action, let us assess his influence on problem-
solving. First, consider the mathematics that we now call “analysis.” Descartes’
Geometry solved hard problems by novel methods. There was, as an additional aid for
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his successors, the simultaneous and analogous work of Fermat; though Fermat's work
on analytic geometry, tangents, and areas was not printed until the 1670s, it was
circulated among mathematicians in the 1630s and 1640s and exerted great influence.
Geometry itself attracted many followers. Continental mathematicians, especially
Frans van Schooten and Florimond Debeaune, wrote commentaries and added
explanations for Descartes” often cryptic statements. They also extended Descartes’
methods to construct other loci. The second edition of Schooten’s commentary on
Descartes’ Geometry (with a Latin translation) was published in 1659-1661 together
with several other influential works based on Descartes. One was Jan de Witt's
Elements of Curves, which systematized analytic geometry, including a discussion of
constructing conic sections from their equations ([6], p. 115-116); another was
Hendrik van Heuraet's work on finding arc lengths. Schooten’s collection helped
inspire both John Wallis and Isaac Newton. Wallis “seized upon the methods and
aims of Cartesian geometry” ([6], p. 109) and went even further in replacing
geometric concepts by algebraic or arithmetic ones. Many mid-seventeenth-century
mathematicians, including Wallis, James Gregory, and Christopher Wren, influenced
both by Descartes and by Fermat, used algebraic methods to make further progress
on the problem of tangents, and—as Descartes had suggested, but did not do—to
find areas. Men like van Heuraet, William Neil, and Wren also found arc lengths for
some curves this way ([5], p. 162), which Descartes, who couldn’t do it, had said
couldn’t be done ([13], p. 340). Wallis also extended the algebraic approach of
Descartes to infinitesimals. In the 1660s, Isaac Newton carefully studied Schooten’s
edition of Descartes, using it (together with the work of men like Barrow, Wallis, and
Gregory) as a key starting point in his invention of the calculus ([35], pp. 106-111,
128-130). In 1674, less than two years before his own invention of the calculus,
Gottfried Wilhelm Leibniz worked his way through Descartes’ Geometry; he was
especially interested in the algebraic ideas ([21], p. 143). He later even examined
some of Descartes’ unpublished manuscripts ([21], p. 182—183).

Some scholars have credited Descartes with bringing about a revolution in analysis
([7], pp- 157-159, 506; [3], p. 304; for dissenting views, see [31], pp. 110-111; [21], pp.
202-210; [18], p. 55; [19], p. 164). But at the very least we may say of the Geometry
what Thomas Kuhn once said about Copernicus’ On the Revolution of the Celestial
Orbs ([26], p. 134); though it may not have been revolutionary, it was “a revolution-
making text.” The problem-solving methods introduced in Descartes’ Geometry and
developed in the commentaries on it were clearly seminal throughout the seventeenth
century, influencing both Newton and Leibniz, whether or not Descartes was the first
inventor of these techniques. And such influence continued through the eighteenth
century and beyond ([17], pp. 156-158, 505-507).

Incidentally, the systematic approach to analytic geometry we all learned in school
is not in either Descartes or Fermat (though Fermat, unlike Descartes, did plot
elementary curves from their equations), but dates from various eighteenth-century
textbooks, especially those from the hands of Euler, Monge, Lagrange, and Lacroix
([16], pp. 192-224). Descartes, though, was not a textbook writer, but a problem-solver.
The essence of his influence was in his new approach and his self-consciousness about
method. These highlight his achievement as a problem-solver.

Second, then, let us look at his influence on problem-solving in general. The
problem-solving methods we teach our students are the direct descendants of
Descartes’ methods. This is not because he passed them down to us in a set of rules
(although he did). Nor is it because his methods work for the problems in elementary
textbooks (although they do). It is because his methods solved many outstanding
problems of his day. Descartes saw himself as a problem-solver because he had a
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method. He saw himself also as a teacher of problem-solving. One can see this even
in the way he left hard questions as exercises to the reader, as he put it at the end of
the Geometry, “to leave for others the pleasures of discovery.” (See [13], p. 413.) His
Geometry teaches us how to solve problems because it contains a set of solved
problems whose successful solutions validate his methods. We may not care about the
Pappus four-line problem, but we certainly prize the problem-solving power of a
generalized algebra. Descartes’ methods have come to us indirectly—who reads the
Geometry nowadays?—but they have come to us because they are embedded in the
work of his successors: In algebraic notation and equation theory, in analytic geome-
try, in calculus, in Lagrange’s view that algebra is the study of general systems of
operations, and in the more abstract and general subjects built upon these achieve-
ments. Because of his influence on later mathematicians, Descartes’ methods are
embedded also in the way we teach mathematics, in the standard collections of
problems and solutions. In fact, for routine problems, the task of applying Descartes’
analytic methods is, as he intended, fairly mechanical. Some of the Rules for
Direction of the Mind explicitly parallel the method of the Geometry, (2], pp.
177-178) and Pélya is thus right to have made such rules explicit for modern
students. Inventing new mathematical methods—say, like analytic geometry— is,
however, not a routine task. Even here, for Descartes, “method” is crucial.

Third, then, for those of us who want to invent great and new things like analytic
geometry, to teachers and students of mathematics, Descartes has something else he
wants us to learn, and that is his emphasis on method in general. Here he, together
with his great contemporary Sir Francis Bacon, have inspired many. For instance,
Leibniz saw his differential calculus as a problem-solving method, explicitly compar-
ing it with analytic geometry, saying “From [my differential calculus] flow all the
admirable theorems and problems of this kind with such ease that there is no more
need to teach and retain them than for him who knows our present algebra to
memorize many theorems of ordinary geometry” ([27], excerpted in [34], p. 281). Or,
in our century, there is Pélya’s sophisticated emphasis on teaching about method. Let
me put Descartes” lesson this way: Raise problem-solving techniques to conséious-
ness. Reflect on the methods that are successful and on their strengths and weak-
nesses. Then apply them systematically in attacking new problems. That is how
Descartes himself invented analytic geometry, as he said in the Discourse on Method.:
“I took the best traits of geometrical analysis and algebra, and corrected the faults of
one by the other.” (See [12], p. 13, 20.)

Fourth and last, let us briefly consider a key point in Descartes” philosophy: that
the methods of mathematics could solve the problems of science. Here, Descartes the
philosopher learned from Descartes the mathematician that method was important,
that the right method could solve previously intractable problems. He used the ideas
of reduction and analysis in his philosophy of science. For instance, he argued that all
macroscopic phenomena could be explained by analyzing nature into its component
parts, bits of matter in motion. (See [14], pp. 409-414) and ([36], pp. 32-38).
Descartes came to believe that the most powerful methods were both general and
mathematical. His Principles of Philosophy (1644) attempted to deduce all the laws of
nature from self-evident first principles; his principles XXXVII and XXXIX are
equivalent to Newton’s First Law of Motion (1687) ([8], pp. 182-183).) In fact,
Descartes went so far as to state that everything that could be known could be found
by a method modelled on that of mathematics. He wrote,

Those long chains of reasoning, so simple and easy, which enabled the
geometers to reach the most difficult demonstrations, had made me
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wonder whether all things knowable to man might not fall into a similar
logical sequence. If so, we need only refrain from accepting as true that
which is not true, and carefully follow the order necessary to deduce each
one from the others, and there cannot be any propositions so abstruse that
we cannot prove them, not so recondite that we cannot discover them
((12], pp. 12-13; 19).

Descartes’ vision is clearly echoed by what Leibniz wrote in 1677 about his own
search for a general symbolic method of finding truth: “If we could find characters or
signs appropriate for expressing all our thoughts as definitely and as exactly as
arithmetic expresses numbers or geometric analysis expresses lines, we could in all
subjects in so far as they are amenable to reasoning accomplish what is done in
Arithmetic and Geometry.” (See [28], p. 15.) Again, consider the prediction of the
great prophet of progress of the Enlightenment, the Marquis de Condorcet, that
Descartes” methods could solve all problems. Although the “method” of algebra “is
by itself only an instrument pertaining to the science of quantities,” Condorcet wrote,
“it contains within it the principles of a universal instrument, applicable to all
combinations of ideas.” This could make the progress of “every subject embraced by
human intelligence ...as sure as that of mathematics.” (See [9], pp. 238, 278-279;
quoted in [17], p. 222.)

Descartes has been attacked as a methodological imperialist and a reductionist, and
lauded as an intellectual liberator and one of the founders of modern thought (e.g.,
[11], [18], [24], [33]). For good or ill, the power of Descartes’ vision has shaped
Western thought since the seventeenth century, and his mathematical work helped
inspire his philosophy. But whatever our assessment of Descartes the philosopher
may be, his importance for the mathematician is clear. The history of the past 350
years of mathematics can fruitfully be viewed as the story of the triumph of Descartes’
methods of problem-solving.
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