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THIRD AND FOURTH BINOMIAL COEFFICIENTS

ARTHUR T. BENJAMIN AND JACOB N. SCOTT

Abstract. While formulas for the sums of kth binomial coefficients can be shown inductively
or algebraically, these proofs give little insight into the combinatorics involved. We prove
formulas for the sums of 3rd and 4th binomial coefficients via purely combinatorial arguments.

1. Introduction

In this paper, we present combinatorial proofs of the following two identities.

Theorem 1.1. For n ≥ 0,
∑

k≥0

(

n

3k

)

=
2n +m

3
, (1.1)

where m depends on n and is equal to 2, 1,−1,−2,−1, 1, when n is congruent to 0, 1, 2, 3, 4, 5
(mod 6), respectively.

Theorem 1.2. For n ≥ 1,
∑

k≥0

(

n

4k

)

=
2n +m2dn/2e

4
, (1.2)

where m = 2, 1, 0,−1,−2,−1, 0, 1, when n is congruent, respectively, to 0, 1, 2, 3, 4, 5, 6, 7
(mod 8).

Both of these identities can be proved by induction or using algebraic methods, or as special
cases of the general result [1, 2, 3] that for any integers 0 ≤ a < r and n ≥ 0,

∑

k≥0

(

n

a+ rk

)

=
1

r

r−1
∑

j=0

ω−ja(1 + ωj)n,

where ω = ei2π/r is a primitive rth root of unity.
But since these are theorems about combinatorial objects, it seems only natural that they

should be given combinatorial proofs. In our proof of Theorem 1, we show that among the 2n

subsets of [n] = {1, 2, . . . , n}, we can group almost all of them into orbits of size three, where
in each orbit, the sizes of the three sets are all distinct modulo three. Thus if tn denotes the
number of subsets of [n] with size divisible by three, then tn should be approximately 2n/3.

2. Proofs

Combinatorial Proof of Theorem 1.1.

Suppose X is a subset of [n] that does not contain elements 1 or 2. Then we create the
orbit

{X,X ∪ {1},X ∪ {1, 2}}.
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Notice that the sizes of the three sets in the orbit are distinct modulo 3. Moreover, every
subset of [n] occurs in exactly one orbit of this kind, unless it contains the element 2 but not
the element 1. We can extend this rule so that if for some 1 ≤ m ≤ n/2 − 1, X contains the
numbers 2, 4, . . . , 2m, but not the numbers 1, 3, . . . , 2m − 1, 2m + 1, nor the number 2m + 2,
then we create the orbit

{X,X ∪ {2m+ 1},X ∪ {2m+ 1, 2m+ 2}}.

Again the sizes of the sets in any orbit are distinct modulo 3, and every subset of [n] appears
in exactly one orbit, with the exception of the subset En = {2, 4, 6, . . . , n} when n is even, or
the two subsets En−1 = {2, 4, 6, . . . , n− 1} and E′

n−1 = {2, 4, 6, . . . , n− 1, n} when n is odd.
Thus, if n ≡ 2 or 4 (mod 6), then tn = (2n − 1)/3, since |En| is not a multiple of three, but

if n ≡ 0 (mod 6), then |En| is a multiple of three, so the number is increased by one to obtain
tn = (2n + 2)/3. Likewise, if n ≡ 3 (mod 6), then tn will be (2n − 2)/3, since neither |En−1|
nor |E′

n−1| will be multiples of 3, but if n ≡ 1 or 5 (mod 6), then one of these two numbers is
a multiple of three, so we obtain tn = (2n + 1)/3, as desired. �

We leave it as an exercise for the reader to modify the above proof to show that for n ≥ 0,
∑

k≥0

( n
1+3k

)

and
∑

k≥0

( n
2+3k

)

have the same right hand side as Theorem 1, except that m is

equal to −1, 1, 2, 1,−1,−2 or −1,−2,−1, 1, 2, 1, when n is congruent to 0, 1, 2, 3, 4, 5 (mod 6),
respectively.

Combinatorial Proof of Theorem 1.2.

The left side of this identity counts binary strings of length n where the number of ones is
a multiple of four. We call such strings good, and let fn denote the number of good strings of
length n. We define the weight of a string to be the sum of its entries. Here we place almost
all of these 2n strings into orbits of size four, where the weight of each string in an orbit is
distinct modulo four.

Let X = x1x2 · · · xn denote a binary string of length n, and let k denote the smallest number
for which xk = xn+1−k. If k exists, and 1 ≤ k < n/2, then we create the orbit

{X,X ⊕ {k} ⊕ {n+ 1− k},X ⊕ {k + 1},X ⊕ {k} ⊕ {n+ 1− k} ⊕ {k + 1}},

where X ⊕ {j} is the same string as X with xj replaced by xj + 1 (mod 2). For example,
the string X = 1011101110 has k = 3, and X ⊕ {3} ⊕ {8} = 1001101010. Notice that each
object in the orbit has the same value of k and generates the same orbit. If we let w denote
the weight of X, then the weights of the elements in the orbit are respectively,

w, w + 2, w + s, w + 2 + s (mod 4),

where s is either 1 or −1. Thus the weights are all distinct modulo four. Let En denote the
set of “exceptional” strings where k does not exist or (when n is even) is equal to n/2. Then
since each orbit has exactly one good string, we have

fn =
2n − |En|

4
+ εn,

where εn is the number of good exceptional strings. By counting the good exceptional strings,
we’ll show that the above expression will simplify to

fn =
2n +m2dn/2e

4
(2.1)

for the appropriate value of m.
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When n is even, we must have k ≤ n
2
− 1, so |En| = 2

n

2
+1, since we can freely choose the

elements x1, . . . , xn

2
−1, xn

2
, xn

2
+1, but the remaining elements are forced. Upon “reflection,”

we see that the weight of such a string must be
n

2
− 1 + xn

2
+ xn

2
+1.

If n is a multiple of 8, then n
2
− 1 ≡ −1 (mod 4), and there are two ways to create a good

string (by choosing xn

2
= 0, xn

2
+1 = 1 or xn

2
= 1, xn

2
+1 = 0), hence εn = 2

n

2 , and therefore

m = 2 in expression (2.1). If n ≡ 2 (mod 8), then n
2
− 1 ≡ 0 (mod 4), and there is just one

way to create a good string (by choosing xn

2
= xn

2
+1 = 0), so εn = 2

n

2
−1, and therefore m = 0

in expression (2.1). By the same line of reasoning, we also get m = 0, when n ≡ 6 (mod 8),
and when n ≡ 4 (mod 8), we have εn = 0 and m = −2.

When n is odd, then |En| = 2
n+1

2 , since the values of x1, . . . , xn−1

2

, xn+1

2

can be freely chosen.

The weight of such a string is n−1

2
+ xn+1

2

. If n ≡ 1 or 7 (mod 8), then there is one way to

choose xn+1

2

to create a good string, resulting in εn = 2
n−1

2 and m = 1. Whereas, if n ≡ 3 or 5

(mod 8), there are no good exceptional strings, resulting in εn = 0 and m = −1. �

Again, we leave it as an exercise to show that for n ≥ 1,
∑

k≥0

(

n
1+4k

)

,
∑

k≥0

(

n
2+4k

)

, and
∑

k≥0

( n
3+4k

)

have the same right-hand side as Theorem 2, except the values of m are re-
placed by 0, 1, 2, 1, 0,−1,−2,−1 and −2,−1, 0, 1, 2, 1, 0,−1 and 0,−1,−2,−1, 0, 1, 2, 1, when
n is congruent to 0, 1, 2, 3, 4, 5, 6, 7 (mod 8), respectively.
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