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Abstract

Brownian Motion and Planar Regions: Constructing
Boundaries from A-Functions
by Otto Cortez, '00

May 2000

In this thesis, we study the relationship between the geometric shape of a region in the
plane, and certain probabilistic information about the behavior of Brownian particles
inside the region. The probabilistic information is contained in a function h(r), called
the harmonic measure distribution function.

Consider a domain €2 in the plane, and fix a basepoint z; anywhere inside this
domain (2. Imagine lining the boundary of this domain with fly paper and releasing
a million fireflies at the basepoint z;. The fireflies wonder around inside this domain
randomly until they hit a wall and get stuck in the fly paper. What fraction of these
fireflies are stuck within a distance r of their starting point z;? The answer is given
by evaluating our h-function at this distance; that is, it is given by A(r).

In more technical terms, the h-function gives the probability of a Brownian first
particle hitting the boundary of the domain 2 within a radius r of the basepoint
zg- This function is dependent on the shape of the domain €2, the location of the
basepoint zy, and the radius 7.

The big question to consider is: How much information does the A-function contain
about the shape of the domain’s the boundary? It is known that an h-function cannot
uniquely determine a domain, but is it possible to construct a domain that generates

a given h-function? This is the question we try to answer.



We begin by giving some examples of domains with their A-functions, and then
some examples of sequences of converging domains whose corresponding h-functions
also converge to the correct h-function. In a specific case, we prove that artichoke
domains converge to the wedge domain, and their h-functions also converge. Using
another class of approximating domains, circle domains, we outline a method for
constructing bounded domains from possible hA-functions f(r). We prove some re-
sults about these domains, and we finish with a possible approach for a proof of the

convergence of the sequence of domains constructed.
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Chapter 1

INTRODUCTION

In this thesis we consider the relationship between the two-dimensional informa-
tion of the shape of a domain’s boundary and the one-dimensional information given
by the h-function of this domain. The main problem considered here is that of con-
structing a domain given a possible h-function. We begin with some definitions and

examples.

1.1 Definition

There are two equivalent definitions of the h-function we wish to consider. The
first deals with Brownian particles and lends the problem some physical intuition.
The second uses a more traditional definition of harmonic measure, the solution of a

Dirichlet problem.

Definition 1.1.1. Consider a domain €2 in the extended complex plane whose bound-
ary consists of a finite number of disjoint Jordan curves and/or arcs. Inside this
domain, there is a basepoint z. Let r > 0 and define E, = B(z,r) N 0Q. The
harmonic measure distribution function, or h-function, at a radius r is the probability
that a Brownian particle starting at the basepoint z; inside the domain € first hits
the boundary of its domain within a radius r of zy, that is, the probability that the
particle hits E,. before it hits any other part of the boundary. It is a function of the

basepoint zy, the domain (2, and the radius 7.



Definition 1.1.2. Let ) be a domain in the extended complex plane whose boundary
consists of a finite number of disjoint Jordan curves. Let r > 0, and define E, =
B(zp,7) N 0. The harmonic measure of E, is given by evaluating at 2z the solution

of the following Dirichlet problem:

Ay = 0 in §;
1 on E,,

0 otherwise.

The h-function is the collection of solutions to this problem for fixed zy and for all r.

The traditional notation for the harmonic measure distribution function for a
domain Q with basepoint zo at a radius r is w(zo, Fr,€2), where E,. is defined as

above. We use this notation, and we also use the shorter form hq(r).

1.2 Examples Using Discs

Perhaps the simplest domain to consider is the unit disc with the basepoint at the
center. The h-function is simple. For radii less than 1, h(r) = 0 because no boundary
has been included. For radii greater than or equal to 1, h(r) = 1 because all of
the boundary is included, see Figure 1.1. As an aside, the harmonic measure of
any segment of the boundary is simply the arc length of this segment over 27 (the
fraction of the total arc length of the unit circle) since Brownian particles have an
equal probability of hitting any part of the unit circle. For disjoint segments, one
would sum the arc lengths and put them over 27.

A more complicated domain is the disc with an off-center basepoint shown below.
Here, d is the distance from the basepoint to the nearest point on the boundary and D
is the furthest distance from the basepoint to a point on the boundary. Throughout
this thesis, d and D keep these definitions. For r > d but near d, one would expect

the h-function to increase rapidly since Brownian particles are much more likely to
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Figure 1.1: The unit circle and its h-function.

hit parts of boundaries nearest to where they are released. As r increases to D, the
h-function should increase more slowly.

For a simple domain like this, one can calculate the h-function explicitly. Harmonic
measure is a conformal invariant. To calculate the A-function of this domain we map
it to a domain in which we know the h-function, such as the upper half plane. The
region E, is the region B(zo, ) NS, the intersection of the disk of radius r centered
at zo and the boundary 0f) of the domain 2. This is the region we are interested
in. The function A(r) is equal to the probability of a Brownian particle hitting this
region F, before it hits any other part of 0€2. To calculate the A-function we map
this domain to the upper half plane, keeping track of the endpoints of F,.

For this calculation, we can assume the center of the circle is at the origin, its

radius is 1, and 2y lies on the horizontal axis. We can use the conformal map

i(l +20)(2 — 1)
(0= 1)(1+2)

B(z) = (1.1)

to map the off-center basepoint domain to the upper half plane. Using the law of
cosines, we can see the endpoints of F, are at

1 2 _ .2
Zy = exp [ii cos ! (%)] ) (1.2)



Figure 1.2: The disc with an off-center basepoint zp.

A short calculation shows that these points map to

1+ 2 1 (1+22-r?
B(z,) = tan | = STARTT ). 1.3
(24) :on—l an <2cos < 2o (1.3)

and the basepoint zy maps to ®(zg) = i. Now, the harmonic measure in the upper
half plane is given by 1/7 times the angle of sight between the basepoint, in this case
1, and the endpoints of the segment on the boundary we are interested in, in this
case ®(z,). (This we know by mapping the unit circle domain conformally to the
upper half plane, and calculating the upper half plane’s h-function.) Thus, we have

a formula for the A-function of the off-center basepoint disc domain, and after some

2 D [r?2—d?
h('f') = ; arctan [ E m ] . (14)

The graph of this function is shown in Figure 1.3. For this example, d = 20

calculation we obtain

and D = 80. As we expected, the h-function increases rapidly for values of r slightly
greater than d and less rapidly for middle values of 7. As r gets close to D, it increases
rapidly again. One would suspect this is because the rate at which boundary is being

added as r increases also increases here. The h-function is always zero for values
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Figure 1.3: The h-function of the disc with an off-center basepoint.

of r < d since no boundary is inside the disc of radius r. For bounded domains,
the h-function is identically one for » > D since all the boundary is included in the
circle of radius r centered at the basepoint zy,. For non-bounded domains the h-
function approaches one asymptotically. For d < r < D the function is monotonically
increasing.

Calculating the h-function for domains, even simple domains, is an excellent ex-

ercise in geometry.

1.3 Previous Results and Useful Definitions and Theorems

This thesis is a continuation of the work done by Marie Snipes, Professor Ward’s
previous research student. She obtained some significant results. The first of these

which deals with circle domains, are defined in Chapter 3.

Theorem 1.3.1 (Snipes). Let f(r) be an arbitrary increasing step function with n
steps, f(d) =0 and f(D) = 1. Then there exists a circle domain Q whose h-function
is equal to f(r).



Furthermore, she shows that once the number of arcs is chosen and the positions
of their midpoints are fixed there is continuous a one-to-one and onto mapping from
the set of arc lengths in circle domains to the set of harmonic measures of these
arcs. Thus, a step function can uniquely determine a circle domain. Snipes also
showed that, given a bounded domain satisfying some additional conditions, one can
approximate the domain with a sequence of converging circle domains, and their
h-functions also converge to the proper h-function.

Other work has also been done by Professors Lesley Ward and Byron Walden.
Their work includes some results on the non-uniqueness of domains, and on bounds
on h-functions for r = d.

The rest of this section is a list of useful definitions and theorems taken from texts

by Garnett and Marshall, and Pommerenke.

Theorem 1.3.2 (Garnett and Marshall, Ex. 21, Appendix B). Suppose 2 is
a finitely connected Jordan domain and suppose that E C {z € Q0 : |z| > R} is a finite
union of arcs on 0. Let zg € Q with |z| < 1o < R. Suppose that {z : |z| = 1o} and
{z : |z| = R are in the same component of the complement of QN {z : 1y < |z| < R}.
Suppose further that J. C {z € Q : |z| = r} separates zy from E, ro <r < R, and let
rO(r) be the length of J,. Then

w(z0, B, Q) < %exp (—7r /R Tg@» , (1.5)

if ©(r) is measurable.

Definition 1.3.1 (Carathéodory kernel convergence). Let wy, € C be given,
and let G, be domains with wy € G, C C. We say that G, - G as n —

with respect to wy in the sense of kernel convergence if

1. either G = {wp}, or G is a domain # C with wy € G such that some neighbor-

hood of every w € G lies in G, for large n, and



2. for w € OG there exist w, € 0G,, such that w, — w as n — oo.

Theorem 1.3.3 (Carathéodory kernel theorem). Let f,, map D conformally on-
to G, with f,(0) = wy and f(0) > 0. If G = {wy} let f(z) = 0, otherwise let f
map D conformally onto G with f(0) = wy and f'(0) =0. Then, asn — oo, f, = f

locally uniformly in D < G,, — G with respect to wy.

Definition 1.3.2 (Local connectivity). The closed set A C C is locally connected
if for every € > 0 there exists a § > 0 such that for any two points a, b in A with

la —b| < 6, we can find a path in A connecting a and b whose diameter is less than e.

Definition 1.3.3 (Uniform local connectivity). A sequence of sets {4,} is uni-
formly locally connected if for every e > 0 there exists § > 0 independent of n such
that for any two points a,, b, in A, with |a, — b,| < J, we can find a path in A,

connecting a,, and b, whose diameter is less than e.

Theorem 1.3.4. Let f map D conformally onto the bounded domain G. Then the

following four conditions are equivalent:
1. f has a continuous extension to D;
2. 0G is a curve, that is 0G = {p(() : ¢ € T} with continuous p;
3. 0G s locally connected;
4. C\ G is locally connected.

Theorem 1.3.5. Let f, map D conformally onto Gy, with f,(0) = 0. Suppose that
there exist Ry and R such that B(0, Ry) C G,, C B(0, R), and that C\ G,, is uniformly
locally connected. If f,(2) = f(z) as n — oo for each z € D, then the convergence is

uniform in D.



1.4 Main Problem

In a collection of research problems in complex analysis [3], K. Stephenson posed
some questions about domains and their A-functions. All the questions dealt with the
bigger question of how much information about the shape of a domain’s boundary is

encoded in its h-function. The question we consider here is:

Given a possible h-function, can one construct a domain which generates

this h-function?

We have made some progress in answering this question.

1.5 OQutline of Thesis

We begin with an example of converging domains. In Chapter 2 we show that arti-
choke domains converge to the wedge domain, in the sense of Carathéodory kernel
convergence, and that the h-functions of these domains also converge to the h-function
of the wedge domain. In Chapter 3, we outline a scheme for constructing bounded do-
mains from possible h-functions. we show that for functions that are continuous and
have f(d) = 0, the arc at radius d must shrink to a point. We also outline some of the
behavior of circle domains. There may be a way to calculate the A-functions of circle
domains. It would seem that as the approximations to the function f(r) get better,
the arcs of circle domains decrease to the proper lengths. Chapter 4 shows some nu-
merical examples of this. In this chapter, we also plot the map from the space of arc
lengths to the space of harmonic measures. All known examples of non-uniqueness
of domains deal with unbounded or multiply connected domains. In Chapter 5 we
outline a method for constructing examples of bounded, non-unique, simply connect-
ed domains with the same h-function. In Chapter 6 we give a possible approach to
a proof of the convergence of domains generated by the scheme in Chapter 3. Work

remains to be done on this proof.



Chapter 2

A MoDEL EXAMPLE: WEDGES AND ARTICHOKES

In this chapter we give an example of a sequence of converging domains, €2, —
(), generating a sequence of h-functions which converge to the correct h-function,
hn(r) — h(r). In general, if one knows the domain 2 satisfying certain properties,
one can construct an approximating sequence of domains which converges to €2 and
whose h-functions also converge. I show this for the specific case of the wedge domain
and artichoke domains.

Let €0, be a sequence of domains with a fixed outer circle of radius D centered at
the basepoint zy = 0, and 2" + 1 line segments beginning at radius d and stretching
radially outward to the outer circle. Here 0 < d < D. The boundary of the domain
) consists of the outer circle and two radial line segments. The first is located on
the positive real axis. The second is located at an angle ¢ from the positive real axis
and begins at the same distance d from z;. For n > 1, the boundary consists of these
first two radial line segments and 2" — 1 other line segments which divide the angle ¢
into 2" equal sections; see Figure 2.1. We call these €2, artichoke domains since the
disc with inward projections resembles the base of an artichoke.

Let 2 be the domain with a boundary consisting of the circle of radius D centered
at the basepoint z5, which has a wedge cut out of angle ¢ and inner radius of d; see
Figure 2.2. As n — o0, it should be clear that the domains €2, converge to the domain
2, at least in the rough sense that the domains €2, begin to look more and more like
the domain 2. We want to show that the h-functions for these domains also converge

pointwise, that is, hq, (r) — ha(r) for each r > 0.

Theorem 2.0.1 (Artichoke Convergence Theorem). The sequence of artichoke
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Figure 2.1: The artichoke domain €2,,.

domains {0, } converges to the wedge domain Q) in the sense of Carathéodory kernel

convergence, and the sequence of h-functions {hq, (1)} converges to hqo(r) pointwise.

Proof:  To verify that the sequence of artichoke domains {€2,} converges to the
wedge domain € in the sense of Carathéodory convergence (Definition 1.3.1) we may
use wo=0. The first condition holds automatically since the 2,’s are nested and
decreasing. The second conditions holds automatically also for boundary points w in
the outer circle or the radial segments in the boundary of €, since these points also
lie in all of 0€2,,. It also holds for all w in the inner circular arc in the boundary of €2,
since as n increases, any point on this arc can be approximated arbitrarily closely by
the tips of radial line segments in 0€,,.

To show that h,(r) — h(r) pointwise, we will use the intermediate domains G,,.
Define the domain G, to be the intersection of €2, with the wedge domain of angle
¢, outer radius D, and inner radius r], = d + J,; see Figure 2.3. As n increases, then
0, decreases by a factor of two for each n. First we must show that for each r > 0,
|ha, (r) — hg, (r)] = 0 as n — 0.

Let us define the two domains R; and R,. The boundary of domain R; consists

of two radial lines, one starting at d and extending to D on the real axis, and the
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Figure 2.2: The wedge domain €.

other at an angle . The basepoint is z5 = 0. The second domain R, has the same
boundary except that there is an arc joining the two radial lines at a radius of d + §.
Let E in R; be the section of boundary within a radius d + § of zy, on the inside of
the channel. Let £ in R, be the inside of the channel in R, including the arc joining

the two radial lines. See Figure 2.4.

Lemma 2.0.1. The difference between the probability of hitting E in Ry and the
probability of hitting E in Ry, from the basepoint zq, approaches zero exponentially as
the channel width o decreases. Specifically:

<d+ 5 — xo)’z‘wt(‘%)

8
| Py, (hit E) — Py, (hit E)| < >
d— Zo

- (2.1)

Proof:  The proof of this is very similar to the proof shown in [9] and uses an

estimate for harmonic measure from [5] shown in Section 1.3. This estimate says that

8 d+6n dx
raoy< 8 B 2.2
w(zo, F,Q) < - XP [ 7r/d 2(z _xo)tan%} ’ 22

where F = {z € 0Q : |z| > d + 6}. Also, this w(zy, F,Q) is equivalent to the
probability of hitting E° from the arc a distance d + ¢ from z,. The right hand side
of (2.2) evaluates to the right hand side of (2.1). O
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Figure 2.3: The intermediate domain G,.

Now we wish to show that this result remains true for a collection of channels such
as in our domains G,,. Let b; be the arc of radius d + § between the i*" and (i + 1)
spike.

on_1

P(cross U b, hit E¢) = Z P(cross b;, hit E°)
i=0
on_1

= Z P(cross b;)P(hit E€ from b;)

2n—1 (d_l_é_x())—gcot(‘;)
ZPcrossb
d—l'o

8 (dL—xO)_gcm(%). (2.3)

™ d—.’EO

IN

This implies that |hq, (1) — hg, (r)] = 0 as n — oo.

Finally, we want to show that hg, (r) — hq(r) as n — oo. Notice that the
Riemann map f,, which takes G,, to the unit disk is not one-to-one, since G,, is not
a Jordan domain. Instead, f, is two-to-one on parts of the boundary, specifically on
the spikes. It is however possible to form a well-defined, continuous inverse ;! in a

manner very similar to that described in [9]. Since f~! and f, ! are well defined, then
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Figure 2.4: The domains R; and Ra.

the boundaries 0G,, and 0f) are locally connected. The rest of the proof is as in [9]
except for showing that 0G,, is uniformly locally connected. For this we let €,6 > 0.
Let ¢,, be the angle between adjacent radial lines. Let d,, be the length of each spike.
See Figure 2.3. Let a, and b, be two points in dG,, such that |a, — b,| < §. Choose
N large enough so that for n > N, d,, < ¢/3 and ¢,(r + d,,) < €/3. Now a possible
path along the boundary 0G,, from point a, to b, would be down one spike, across

the arc, and up the other spike, and this path has a diameter less than e¢. Thus, 0G,,
O

is uniformly locally connected.



Chapter 3

APPROXIMATIONS USING CIRCLE DOMAINS

The previous chapter gave an example of a sequence of converging domains, €2,, —
2, whose corresponding sequence of h-functions, {h,(r)}, also converges. Moreover,
this sequence converges to the right function, that is h,(r) — h(r), where h(r) is the
h-function of the domain 2. In the example, the wedge domain was approximated
using an artichoke domain; see Figures 2.2 and 2.1. A result similar to this can be

achieved using circle domains [9)].

Definition 3.0.1. A circle domain is a domain that is bounded by a circle and
contains concentric arcs within this circle. It is bounded by a circle of radius D. The
center of this circle is the basepoint z;. We often take zg to be 0. Inside this circle are
concentric boundary arcs centered at the horizontal which goes through the center
of the circle, the basepoint z5. The midpoint of the nearest arc is placed a distance
d from z, along the horizontal. The other arcs are centered at dyadic points in the

interval (d, D).

A circle domain is shown in Figure 3.1. From this figure, one can easily imagine
that a sequence of circle domains will converge to the wedge domain, at least in
the sense that they begin to look the same. Because circle domains are not simply
connected, it is necessary to construct intermediate domains in a similar way as we
did for the artichoke domains in Chapter 2. These intermediate domains converge to
the wedge domain in the sense of Carathéodory kernel convergence.

As with many domains, there are no analytic formulas for the A-functions of

artichoke domains or circle domains. The major difficulty with artichoke domains
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Figure 3.1: An example of a circle domain.

is that they have boundary spikes. There is a greater difficulty with circle domains
because these are not simply connected. We do not have conformal mappings of
these domains to domains in which we know the A-function. This problem may be
overcome with artichoke domains since they are at least simply connected, so they
can be conformally mapped to the disc or upper half plane. However, one would still
need an explicit Riemann mapping in order to calculate the h-function.

There are two properties which make circle domains much more attractive than
artichoke domains in trying to construct boundaries from h-functions. The first of
these is that the A-functions of circle domains are step functions. Any circle of radius
r about zy either includes a boundary arc or it does not meet that arc. As r increases
from zero, at first no boundary is included, so h(r) = 0 for r < d. When r = d
a lot of boundary is included all of a sudden. So h(r) jumps to a height hy. As
r continues to increase toward the radius of the next arc, r*, the h-function stays
constant because no new boundary is being included. When r = r*, the h-function
jumps up again because a lot of new boundary is being added instantaneously. So
the h-functions of circle domains are step functions. The shape of the h-functions of

artichoke domains are unknown. We could try numerical techniques to approximate
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these h-functions and get some intuition about their shape, but this is time consuming
and computationally intensive.

The second property is that there is a continuous, one-to-one correspondence
between the arc lengths of arcs in a circle domain and the heights of the steps in
the h-function. That is to say, if we let D be the space of circle domains with n arcs
at specified radii r, ..., r,, with arc midpoints on the positive real axis, and let R
be the space of all possible h-functions of the circle domains D, then there exists a
mapping F' : D — R that is continuous, one-to-one and onto. The space D consists
of all n-tuples (z1,...,z,) such that x; € [0,27] for i = 1,...,n. The space R is the
space of all n-tuples (y1,...,y,) where 0 <y <--- <y, <119, Theorem 2.1]. This
is a strong result for circle domains, and we do not have an analogous, continuous
bijection for artichoke domains.

In creating a scheme for constructing bounded domains, it would seem that circle
domains would be more convenient. The following is a simple scheme along these

lines.

3.1 Scheme For Constructing Bounded Domains

Let f(r) be a continuous, monotonically increasing function on the interval I = [d, D].
Also, let f(r) =0 forr < dand f(r) =1 for r > D. We can divide the interval [d, D]

into 2" dyadic intervals as follows:

D—d D—d
I = d+j7,d+(j+1)7),0§j<2". (3.1)
We can approximate the function f(r) with a step function A, (r). We choose h, () so
it has jumps at dyadic points d+ j(D —d)/2"™ in the interval I. We let h,(r) equal the
average of f(r) over the interval I;, for r € I;. As n — oo, hy(r) — f(r) pointwise.

The question that remains is whether or not the domains which generate the h,(r)’s

as h-functions also converge?
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To prove that these domains do converge, one would have to show that the length
of each arc A7, that appears in a domain 2, stabilizes as more and more arcs appear
on either side of it (see Section 3.2 for an explanation of notation). We prove some

results along these lines.

3.2 New Labeling of Arcs

n

7ms Where (), is the circle domain

Now we introduce a new labeling for the arcs, A
with 2" arcs which generates the step function h,(r), j is the arc number in the circle
domain 2,,,, where j increases with the distance from zy, and €2, is the domain in
which the arc at radius 7, = d+(j — 1)2—;‘1 first appears; see Figure 3.2. The domain
Qo would only contain one arc, A(1),07 at the same radius d as the arc labeled A%,o in
Q. The lengths of A?, and A}, might be different. The domain Q; would contain
the previous arc and the one labeled A3 . In the domain €, the arcs A3, and A},

would be added.

Q,

Figure 3.2: Example of the new arc labeling.

This labeling allows us to relate an arc to a specific step in the function h,(r),



18

the step beginning at 7;,,. An interesting note about these steps is that for n > m,
hy(rjm) is strictly decreasing as n increases if the heights of the steps of h,(r) are
given by the averages of the function f(r) over the intervals I;. This is because f(r)

is increasing, and each h,(r) is right-continuous.

3.3 The Length of the Arc of Smallest Radius Goes to Zero

Theorem 3.3.1 (First Arc). Let f(r) be a monotonically increasing continuous
function such that f(d) =0 and f(D) =1, and let h,(r) be a step function approz-
imation of f(r) as described below. Then the magnitude of the first arc approaches

zero, |ATy| — 0, as n — oo,

Proof: We can approximate the function f(r) using a series of step functions we
call h,(r). Each of the step functions h,(r) has 2" steps. The 5 step in each of these

has a height equal to the average value of f(r) over the interval

D—d D—d
I:[d—i—j 5 ,d+(j+1) 5 ) (3.2)

covered by this step, where 0 < j < 2". That is

By (d+jD2; d) = DQEd /I f(r)dr. (3.3)

By [9, Thm. 2.1] we know that each of these step functions is generated by a circle

domain €2,, of the following form. The boundary of this domain consists of concentric
arcs centered at a basepoint zy = 0 and enclosed by a circle of radius D, also centered
at zg. In €,, we can choose all boundary arcs to have midpoints with the same
argument. For simplicity, we require these midpoints to lie on the positive real axis.
With these constraints, the domain is unique. We know that each of the steps in A, (r)
pertains to a boundary arc in this domain €2,,. Specifically, the height of the jump in
hn(r) at r is the harmonic measure of the arc at radius r seen from z,. Further, the
total height of h,(r) at r is the total harmonic measure of all the arcs at radii less

than or equal to r, seen from z,. Each €2, has 2" arcs.
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The first approximation of f(r) is the step function hg(r). It has one step that
covers the interval I = [d, D) and has a height given by Equation (3.3); that is, its
height is the average value of f(r) on [d, D). The domain 2 is a domain containing
one boundary arc at radius d inside the full circle of radius D. We continue to
approximate the function by taking averages over successively smaller dyadic intervals
inside this interval [d, D). For example, the function h;(r) consists of two steps, the
first over the interval [d,d + £5%) and the second over the interval [d + 254, D).
The domain €2; contains two boundary arcs, one at radius d and the other at radius

d+ %. Continuing in this way we see that as n — oo the height of the first step

in the function h,(r), that is the average of f(r) over [d,d + Z-%), approaches zero
because f(r) is continuous at d. This height is the harmonic measure, w(z, AT, ),
of the arc AT at radius d. This arc is the closest arc to our basepoint z. In general,

the harmonic measure of the arc A"

7 ms from 2o in €, is given by

w(Z(), A;L’m, Qn) = hn(’l'j,m) — hn(r2”—m(j—1),n)a (34)

where 7 and ron-m(j_1),, are the radii of the arcs A7, and Aj._..;_,) , respectively

(for n > m). For simplicity, we refer to the first arc, arc A7,, A;. We want to show
that |A;| — 0 as n — oo.

First we define the domains €2,, I';, and € ; see Figure 3.3. The domain €, is
the circle domain whose harmonic measure distribution function is given by the step

function h,(r), the n'® approximation of f(r). The domain I, is identical to €,

D—d

on s 18

except that the second arc, the arc A3, (A for short) at radius rop, = d +
longer. All other arcs being equal, there is now a higher probability of hitting arc
A, in the domain I',,, and thus the harmonic measure of A; must decrease by the
monotonicity of harmonic measure. In general, an increase in the length of an arc
increases the harmonic measure of that arc while decreasing the harmonic measure
of other parts of the boundary. We call this property the monotonicity of harmonic

measure. So we have the inequality w(zg, A1, I's) < w(zo, A1, ).
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Q, L, Q,

Figure 3.3: Some important domains to consider.

Let the domain €, be the limiting case of I',, where the arc at r, is a full circle.
Then w(zp, A1, Q) < w(zo, A1, ). We want to show the inequality

A
% < w(zp, A1, ) < w(20, A1, ) (3.5)

holds.

Define the domain €2 to be a full disc of radius d, see Figure 3.4. For this it is
convenient to think of the harmonic measure functions w(z, A4;,€Y,) and w(z, A1, 20)
as solutions to the Dirichlet problems for the domains €2/, and €2 with boundary values
of 1 on A; and 0 everywhere else. The arc A; has the same length in both domains. In
2" it forms part of the boundary circle. Recall that w(zq, A1,$2) = |A1]/27. By [2],
Corollary 4.7.6, we know that a solution to the problem exists in €2/,. By the maximum
principle for harmonic functions we know that the maxima and minima of solutions
to Dirichlet problems occur on the boundary. Thus, for all z in the domain €7, the
strict inequality

0 <w(z,A1,0) (3.6)

holds.
Now consider the function g(z) = w(z, A1, — w(z, A1,Q) in the domain 2.

This function g(z) is harmonic in ", equals zero only on the boundary arc A; and is
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0

QH
n

Figure 3.4: The domain Q.

positive for all other values on the boundary of €2//. The maximum principle implies

that g(z) > 0 everywhere inside 2. Therefore the inequality

A
|2—1‘ = w(20, 41, ,) < w(zo, 41, 2,) (3.7)
m

must hold. This gives us inequality (3.5).
Since |A1|/27 < w(zy, A1, ) = hy(d) = 0 as n — oo, it follows that |A;| — 0 as

n — o0. O

3.4 The Harmonic Measure of Each Arc Goes to Zero

Lemma 3.4.1. The harmonic measure of any indiwidual arc approaches zero as n —

Q.

Proof: We know the harmonic measure of an arc A;'Lm is

wW(20, A7 1y ) = B (7jm) — B (7j-10) (3.8)

J,m?
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where 7, and r;_y,, are the radii of arcs A7, and A7, respectively. Notice that
hy(rjm) is decreasing as n increases for n > m, and has a greatest lower bound of
f(rjm). Similarly, h,(r;_1,) is increasing as n increases for n > m and has a least
upper bound of f(r;,,). These two bounds are the same because f is continuous, and
because of the definition of A, (r) in terms of averages of f(r) over small intervals near
Tjm- Thus w(zo, A%, ) — 0 as n — oo. O

]lm,

3.5 Comments About Possible Domains

The previous lemma implies that as n increases our circle domains are becoming
smoother, that is, the length of the j*! arc is getting closer to the length of the (j—1)%
arc and the (j + 1) arc. If the function f(r) is continuous then the limiting domain
should have no arc spiking out, for this would correspond to a discontinuity in the
possible harmonic measure distribution function f(r). Similarly, the limiting domain
should not have parts of circles as boundaries since these would also correspond to
discontinuities in the function f(r). In both of these cases, this is because too much

boundary is added at once. Thus the domains shown in Figure 3.5 are not possible

for continuous functions f(r).

Q, Q,

Figure 3.5: These are some impossible domains for continuous functions f(r).
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This method of constructing domains seems to imply that for any possible h-
function f(r) there is a bounded domain. Moreover, there is such a domain that
is symmetric about the horizontal. This symmetry is a bit counterintuitive, and
this property comes from an arbitrary decision in positioning the arcs inside our
circle domains. The arcs do not have to be symmetric about the horizontal; their
midpoints could be specified to lie at any given arguments. Choosing the horizontal

was a decision made in the interest of simplicity.

3.6 Other Ways to Choose Step Heights

Choosing step heights for the function A, (r) which approximates a possible contin-
uous h-function f(r) to be the averages of this function over the intervals I; (as in
Equation (3.1)) was an arbitrary decision. Other possible ways to choose step heights
would be to set them equal to the maximum, or minimum, of the function f(r) over
the intervals I, We would still have pointwise convergence, h,(r) — f(r) for all
7> 0.

The h-functions of these three methods arise from domains with slightly varying
behavior. For example, if we use the minimum value of f(r) over the interval I; for
the step heights of our functions h,(r), then we immediately see that the arc length
of the first arc is zero. That is, the first arc is just a point. With respect to the
first arc, taking the maximum value of f(r) over the intervals I; gives domains that
behave much like those which generate step heights given by the average of f(r) over
the intervals I;.

Taking the step heights to be averages leads to step heights which change at every
iteration. That is, for a given radius r; ,,, the step height would decrease as n increases.
For the other two methods, the height of the steps at these radii remains the same
for n > m. This gives us a better grasp of what is going on with the domains because

there is less movement in the step functions.
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3.7 Behavior of Circle Domains

Consider a continuous, monotonic function f(r) such that f(d) = 0 and f(D) = 1.
Approximate this function with the step functions h,(r) whose step heights are the
minimum values of f(r) over the dyadic intervals I;, for j = 1,...,2". Let n = 2;
then the domain €2, has four arcs. The first arc, Aio, has arc length zero, so it is a
point. Assume for the moment that [A3 | = 0 also. Call this domain €. Then the
h-function of this domain appears as in Figure 3.6. Adding the arc Ag’l would cause

the h-function of the domain €2, to change as follows (see Figure 3.7).

L L L L L )
20 30 40 50 60 70 80
Radius r

Figure 3.6: The h-function of domain (.

The domain € would change to some other domain Q5 with [A3,| > 0. This
must cause at least one of the arcs in domain €}, to decrease in arc length. This is
because the height of hq;(r42) has not changed from hg;(r42), while there has been
new boundary added to arc A%,l. Notice, the height of hey, (r) at r42 is the harmonic
measure of all the arcs in domain (2}, and it is too high. Thus, by the monotonicity
of harmonic measure, at least one arc should decrease in length. The value of hs(r22)
is now lower than it should be, so it would seem that |A3,| needs to increase. By a

similar argument, |A,| needs to decrease.
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L L L L L ,
20 30 40 50 60 70 80
Radius r

Figure 3.7: The change in the h-function of domain .

Similar arguments can be made for the cases where the step heights are taken to

be the averages or maximum of f(r) over the intervals ;.

3.8 Computing h-Functions of Circle Domains

It may be possible to compute the A-functions of one-arc circle domains analytically.
In an unpublished work by Byron Walden, he derives the h-function for two-slit
domains. A slit domain is a domain in the extended complex plane with finite length
slits of boundary along the real axis. It may be possible to find an explicit, conformal
mapping from our one-arc circle domains to one of these domains, and thus have an
analytic formula for the A-function of a circle domain. Computation of the modules of
these domains would give some information on the feasibility of this approach, since

the module is also a conformal invariant. See [1].



Chapter 4

NUMERICAL RESULTS

4.1 Decreasing Arc Lengths

Let f(r) be a continuous, monotonic function such that f(d) = 0 and f(D) = 1,
where 0 < d < D. The functions h,(r) are step function approximations to f(r).
The height of each step in h,(r) comes from the average of the function f(r) over
some dyadic interval. Say the interval was [a,b]. Then in the next approximation
this interval, would be broken up into two, [a,a + (b — a)/2] and [a + (b — a)/2,b].
Moreover, each of the two step heights is the same distance from the step that came

before it in the previous approximation since

att52 1 b
a1 ‘““((b—aw/ 100+ G575 | fm‘“")
(4.1)

See Figure 4.1. That is, the average of f over [a,b] is equal to the average of its
averages on the two halves of [a, b]. In the example, the interval [a, b] = [35, 65]. We
tried to use this fact to show that the magnitude of the arc nearest the base point z,
|AT |, is decreasing to zero instead of simply going to zero. (Notation is explained
in Section 3.2.) Specifically, we were trying to use this to show that [A? ;| > |A] l.
While we were not able to prove this rigorously, we have some numerical evidence
to support this idea. It also seems that the other arcs are decreasing monotonically.
The desired step heights were arrived at by integrating averages with integrate.cc
(a C++ program which integrates averages of functions over specified intervals), and
the magnitudes of the angles were estimated by using 6circle2.cc (a C++ program

started by Snipes which simulates Brownian particles in circle domains). The source
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code for these is included in the appendices.

09r

0.6

05r-

04 L L L L I )
20 30 40 50 60 70 80
Radius r

Figure 4.1: The symmetry of step heights taken by averaging.

The following tables and figures give numerical examples of approximating the
h-function for the circle with the off-center base point domain shown in Figure 1.3.
The h-function is given by Equation (1.4). The program 6circle2.cc tests guesses
for arc lengths needed to produce a given h,(r). In this way, we can estimate the
lengths of the arcs in our circle domains. The circle domain used had an outer circle of
radius D = 80 and the arc nearest the base point z; at the center of the circle domain
is a distance d = 20. The first domain, €2y, has one arc a distance d away from z;
with a magnitude of 0.427. (Our convention is that this magnitude is half the angle
subtended at zy by the arc.) The harmonic measure of this one arc is roughly the
average of the function f(r) over the interval [d, D] = [20, 80]. The domain is drawn
in Figure 4.2. The dotted lines indicate the actual domain being approximated, that
is, the domain with the off-center base point. The arcs extend past what is expected.

The domain €2; has two arcs of boundary inside the circle of radius 80. These

arcs are located at radii 719 = d = 20 and ro; = 50. The estimated magnitudes for
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Al
Mag. (% of ) 0.42
ho(r1,0) 0.7326
Actual Avg. 0.738899

Table 4.1: Numerical results from domain .

Figure 4.2: The domain .

these arcs A} j and Aj ; are 0.3157 and 0.727 respectively. Since there is some variance
between the harmonic measure of these arcs and the actual harmonic measure desired,
some more refinement can be made to these arc lengths. These arc lengths are quite
close though, and as can be seen in Figure 4.3, the arcs are still too large.

The domain €25 contains four boundary arcs inside the circle of radius 80. The
two new arcs are located at radii 792 = 35 and 749 = 65. The arc lengths are
|A} o = 0.2457, |A3 5| = 0.505m, |A3 | = 0.6517, and |A3,| = 0.797. Again these are
just estimates to the lengths of the arcs, as one can see by comparing the harmonic

measures against the actual harmonic measures desired. Again, one can see in Figure
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A, A,
Mag. (% of 1)  0.315 0.72
ha(ris) 0.5979  0.8984
Actual Avg. 0.595597 0.882201

Table 4.2: Numerical results from domain ;.

Figure 4.3: The domain ;.

4.4, that these arc lengths are still too large.

It would seem the arcs are bounded below by the dotted circle in the figures
above. Doing some calculations, we can calculate these bounds to be: |A7,| > 0,
|AZ 5| > 0.44297, |AZ | > 0.59707, and |[A},| > 0.73507. These numbers seem to
support the idea that arc lengths should be decreasing, and perhaps monotonically

decreasing.
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A, A, A AL
Mag. (% of ) 0.245 0.505 0.651 0.79
ha(7i ;) 0.4656 0.7258 0.8423 0.9271
Actual Avg. 0.465423 0.725771 0.838257 0.926145

Table 4.3: Numerical results from domain 5.

Figure 4.4: The domain 5.

4.2 Mappings

The following figures show the mappings D — R discussed in Chapter 3. Only the R
space is shown. Figure 4.5 shows the map for a two-arc circle domain with an outer
circle of radius D = 80. The first arc is at radius d = 20 and the second arc is at
radius 50. The points plotted represent the harmonic measures of the first (horizontal
axis) and second (vertical axis) arcs, as the lengths of the arcs are increased from 0
to 27 in increments of 27 /10. This map shows how strong the shadowing effect of the

first arc is on the second arc. Figure 4.6 is the R space for the domain with a third
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arc added at radius 35. The important detail here is to notice that the map in Figure
4.5 is a level set of this three dimensional map. Adding more arcs to circle domains
only adds more dimensions to these maps. These maps are continuous. The real
question is, does convergence in one infinite dimensional space imply convergence in
another? (These figure were produced using the C++ program 3arcs_4.cc, which is
an edited version of a program written by Snipes to simulate Brownian motion inside

circle domains.)

* * * * ¥ T4 ‘*”* * ’S%*
* * *
* * * *
¥ * |
0.9 * *
* * * %
* * *
* Hk
0.8 * * * ¥ i
* *
* *
* * %
07 * * b
*
* *¥
0.6 * B
* * *
% *

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.5: The space R for a two-arc circle domain.
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Figure 4.6: The space R for a three-arc circle domain.



Chapter 5

NON-UNIQUENESS OF BOUNDED DOMAINS

The method described in Section 3.1 would create bounded domains that are
symmetric about a horizontal axis. With this method, it would seem that from any
possible h-function f(r) with f(d) = 0 and f(D) = 1 we could create a symmet-
ric domain. Up to rotations, translations, and inversions, this is probably the only
symmetric domain which would generate this function as its h-function. Examples of
non-uniqueness of domains for a given h-function have been given in [10] and [9]. Ex-
amples in [10] have been of two unbounded domains with the same h-function or one
unbounded domain with the same h-function as a bounded domain. The examples in
[9] are of circle domains. While these are bounded, they are not simply connected.

In this chapter we try to find other bounded, simply connected domains with the

same h-functions by giving a scheme for how we might find such domains.

5.1 Scheme for Bounded Non-Unique Domains

Consider a new type of circle domains I',,. These domains have an outer circle of
radius D centered at the base point zy, and also have concentric boundary arcs. The
midpoints of these arcs are not along the horizontal going through the base point z,
though. The midpoints are along a line beginning at a horizontal distance d from the
base point z, and offset by an angle ¢, see Figure 5.1. As with our previous circle
domains, these also have a continuous, one-to-one and onto mapping from D to R
[9, Theorem 2.1]. If we had a sequence of circle domains 2, which converged, and

whose h-functions converged to the right function, then we would suspect we could



34

find a collection of I';, domains with the same h-functions, and that these would also
converge. Once again, we are left with showing a sequence of converging h-functions
is generated by a sequence of converging domains. And, at this stage, we do not have

the estimates on harmonic measure necessary to complete this argument.

L,

Figure 5.1: The domains I',.



Chapter 6

STRATEGY FOR SHOWING CONVERGENCE OF DOMAINS

Suppose f(r) is a continuous, monotonic function which is identically zero on the
interval (—oo, d] and identically one on the interval [D, cc), where 0 < d < D. We
wish to construct a domain 2 whose h-function is f(r). We begin by approximating
the function f(r). A close approximation of the function f(r) is given by splitting
the interval up into 2" dyadic intervals. Define a step function, h,(r), which on each
of the 2™ dyadic intervals is identically equal to the minimum value of f(r) over that
interval. We expect that the domain 2,, which corresponds to the h-function h,(r)
should be reasonably close to the domain we are looking for, for large n. Now, we can
close off the tunnels in this domain by joining the endpoints of the arcs with straight

line segments, as shown with domains 2, and €/, below.

Q, Q,

Figure 6.1: Possible bounding domains for the domain we are looking for.
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If the function f(r) is continuous over the entire interval [d, D], then we wish to
join the last arc, arc A3, , (see Section 3.2 for notation), to the circle of radius D at
the point along the horizontal going through the basepoint z; at an angle of 7 from
the center of the first arc, arc AT. If f(r) is not continuous at r = D, then a bound
needs to be found for this last arc, and we could join this arc with the outer circle
with radial line segments. We expect that hq, (r) < f(r) < heg (r) for most r. This is
because in order for a Brownian particle to hit one of the arcs it must first cross the
lines between the two arcs, the solid lines in Figure 6.1. We expect the h-functions to
look like those in the graphs in Figure 6.2. If this is true, we could now pin down the
domain we are looking for by squeezing the function f(r) between hgq, (1) and hg (7).
We expect that as n increases, the maximum distance between the functions hgq, (1)
and hq (1) goes to zero (i.e. |hq,(r) — ha: (r)| — 0). This is because, as n increases,
the probability of getting very far into any tunnel falls off exponentially, as shown by
the estimate of Garnett and Marshall [5]. Thus, the approximation to our limiting
domain given by €2/ is not a bad one, but it is a bit too big. To remedy this the only

solution seems to be that each of the arcs must decrease in arc length.

| I I I I
20 30 40 50 60 70 80

Figure 6.2: Possible h-functions for the domains we are interested in.



Chapter 7

FURTHER WORK

It seems plausible that the sequence of circle domains which would generate the
sequence of functions h,(r), which in turn, approximate a possible h-function f(r),
would converge to a limiting domain with the proper h-function. Work still needs to
be done in showing the domain discussed in Chapter 6 in fact do bound the function
f(r) from above. In particular, we would like to show that these domains do not
generate h-functions with strange behavior like too many points of inflection. After
this is shown, it should be possible to show the stability of arclengths for the arcs in
our sequence of circle domains.

More work should also be done in the study of the maps discussed in Chapter
3 from the space of circle domains to the space of harmonic measures. It may also
be possible to actually calculate the h-functions of some circle domains in the way

discussed in Section 3.8.
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Appendix A

INTEGRAT.CC

/*

* Input:

* a, b: limits of integration.

* n: number of trapezoids.

* Qutput: Estimate of the integral from a to b of f(x)

* using the trapezoidal rule and n trapezoids, and then
* take average value over integral.

*

*x Note: f£(x) is hardwired.

*/
#include<stdio.h>
#include<iostream.h>
#include<stdlib.h>
#include<math.h>

const double D

80;

const double d 20;

//const double M_PI = 3.141592653589793;

void Get_data(double &, double &, int &, int &);
double Trap(double, double ,int ,double);

double Average(double &, double &, int &, double &);
double simpleAverage(double, double, double);

void Qutput(double &, double &);

int main(int argc, charx* argv) {

double a; /* Left endpoint x/
double b; /* Right endpoint */
double b_also;

double a_also;

int n; /* Number of trapezoids x/
double h; /* Trapezoid base length */
double integral; /* Integral over my interval */
double average;

int parts; /* Parts to break into */

Get_data(a, b, n, parts);
h = (b-a)/(((int) (n/parts))*parts) ;
a_also = a;
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b_also = a + (b-a)/parts;
average = 0;
for (int i=0;i<parts;i++)

{
integral = Trap(a_also, b_also, (int)(n/parts), h);
average = simpleAverage(integral,a_also,b_also);

Output (a_also,average) ;
a_also = b_also;
b_also = b_also + (b-a)/parts;
}
cout << a_also << "\t" << 1 << "\n";
return O;
} /* main =*/

ek s s ok ke ok ok sk o o e ke sk oo e ok sk o o o ks ke ok sk o o ke ks e ke ok sk o ke ok sk s ke ke ke s o ke sk sk sk e ok sk sk ok ok /
/* Function Get_data

* Reads in the user input a, b, and n.

* Input parameters:

* 1. int my_rank: rank of current process.

* 2. int p: number of processes.

* OQutput parameters:

* 1. doublex a_ptr: pointer to left endpoint a.
* 2. double* b_ptr: pointer to right endpoint b.
* 3. int* n_ptr: pointer to number of trapezoids.
* Algorithm:

* 1. Process 0 prompts user for input and

* reads in the values.

* 2. Process 0 sends input values to other

* processes.

*/

void Get_data(double &a_ptr, double &b_ptr, int &n_ptr, int &parts_ptr)
{
cerr << "Enter a (left limit, double):";
cin >> a_ptr;
cerr << "Enter b (right limit, double):";
cin >> b_ptr;
// cerr << "Enter n (partitioms, int): ";
// cin >> n_ptr;
n_ptr=1000000;
cerr << "Enter number of parts (arcs, int):";
cin >> parts_ptr;
cerr << n_ptr << " partitions \n";
} /* Get_data */

ek sk ok o ke ok ok s o o o ke e o o ok ke e o o ok ke s ok ok sk o o o ke sk o ke ok sk o o ok sk sk s s ke ke s o ke ke sk sk o o ok ko ook /
double Trap(

double 1local_a /* in %/,

double 1local_b /% in %/,
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int local_n /* in */,
double h /* in */)
{
double integral; /* Store result in integral */
double x;
int i;

double f(double x); /* function we’re integrating */
integral = (f(local_a) + f(local_b))/2.0;
x = local_a;
for (i = 1; i <= local_n-1; i++) {
X =X + h;
integral = integral + f(x);
}
integral = integralxh;
return integral;
} /*x Trap */

ek sk o o ke ok ok s o o o ke ke e o o o ke e o o ok ke s s ok ok sk o o o ke sk o ke ok sk o o ok ke sk s o ke ke s o e ke sk sk o o ok ko o ok /
double f(double x)
{
//return x*x;
return ((2/M_PI)*atan((D/d)*sqrt((x*x-d*d)/(D*D-x*x))));
}/x £ ox/

// Average uses Trap and divides by (b-a)
double Average(double &local_a, double &local_b,int &local_n,
double &h)
{
return (Trap(local_a,local_b,local_n,h)/(local_b - local_a));
}

double simpleAverage(double sum, double x, double y)
{

return (sum/(y-x));

¥

void Output(double &integ, double &avg)
{
cout.precision(16);
cout << integ << "\t" << avg << "\n";

¥



Appendix B

6CIRCLE2.CC

//Marie Snipes
//0tto Cortez (Summer 1999)
//Summer, 1998

/* This a program that starts a brownian particle at the origin of a
circle domain and records when and where it hits the boundary of
the domain. We can specify the number of runs that the computer

will execute. In addition, this time, each arc keeps track of the

number of times it has been hit, and the Display function prints
this out at the end of the program. This way, we do not have to
fix the arc radii in order to count the hits. */

#include<iostream.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>

// create a class called Arc
class Arc
{
public:
Arc(double, double);
double CheckForBoundaryHit(double [2][2]);
double Distance(void);
double Angle(void);
int number0fBoundaryHits;
double distance, angle;

};

//constructor for class Arc
Arc::Arc(double d, double a)

{
distance = d;
angle = a;
number0OfBoundaryHits = O;
}

//create a class called Node (this will be the linked list)

class Node



{
public:

Node(double, double);

Arc arc;

Node *next; //next is a pointer to a Node.
};

//constructor for class Node
Node: :Node(double distance, double angle) : arc(distance, angle)
{
next = NULL;
}

const double stepsize = 1;

//const double M_PI = 3.141592653589793;

double PickTheta();

void Move(double [2][2], double);

double CheckWholeBoundary(Node *, double [2][2]);
double Arg(double, double);

int WithinBounds(double, double);

Node *Add_Arc(Node *start, double, double);

void Display_Arcs(Node *start);

int main( void )
{
double theta;
double coord[2][2] = {{0,0}, {0,0}};
double arcAngle; //note: arcangle varies between 0 and M_PI
double arcRadius;
double outerCircleRadius;
int numberOfMoves;
int numberOfArcs;
srand (time (NULL)) ;
int numberOfRuns;
cout.precision(16);
//cerr << "What is the radius of the outer circle?";
//cin >> outerCircleRadius;
outerCircleRadius = 80;
while (outerCircleRadius <= 0)
{
cout << "Invalid arc radius. Please choose an outer circle radius > 0."
<< endl;
cerr << "What is the radius of the outer circle?";
cin >> outerCircleRadius;

}
Node *start = new Node(outerCircleRadius, M_PI);

//cerr << "How many arcs are in the domain?";

44



{

}

}
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//cin >> numberOfArcs;
number0fArcs = 4;

for (int j=0; j<numberOfArcs; j++) //create linked list of arcs
{
cerr << "What is the radius of arc " << j+1 << "?";
cin >> arcRadius;
while (arcRadius >= outerCircleRadius && arcRadius !'= 0 || arcRadius < 0)

cout << "Invalid arc radius. Please choose an arc radius < "
<< outerCircleRadius << " and > 0." << endl;

cout << "What is the radius of arc " << j+1 << "?7";

cin >> arcRadius;

//now we are sure that arcRadius < outerCircleRadius

cerr << "What is its angle?";

cin >> arcAngle;

start = Add_Arc(start, arcRadius, M_PI*arcAngle);
}

//cerr << "How many runs?";
//cin >> numberOfRuns;
number0fRuns = 10000;
// start simulation
for (int index = 0; index < numberOfRuns; index++)
{
double coord[2][2] = {{0,0}, {0,0}};
for (numberOfMoves = 1; (numberOfMoves <= 10000000) &&
(CheckWholeBoundary(start, coord) == 0); numberOfMoves++)
{
theta = PickTheta();
Move(coord, theta);
}
if (index % 1000 == 0)

cerr << "x";

}
cerr << "\n";
Display_Arcs(start) ;
return 0;

double PickTheta( void )

{

double x, z;
x = rand();
z = 2%M_PI*(1 + x)/(RAND_MAX + 1);
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return z;

}

void Move(double coord[2][2], double theta)
{

double dx, dy;

dx = stepsize * cos(theta);

dy = stepsize * sin(theta);

// cout << coord[0][0] << ", " << coord[0][1] << endl;
coord[0] [0] = coord[1][0]; // set "old x" to "new x"
coord[0][1] = coord[1][1]; // set "old y" to "new y"
coord[1] [0] = coord[0][0] + dx; // set "new x" to "old x + dx"
coord[1][1] = coord[0][1] + dy; // set "new y" to "old y + dy"
}
double CheckWholeBoundary(Node *start, double coord[2][2])
{
Node *current;
for(current = start; current !'= NULL; current = current—>next)
// (*current) .next=current->next
if (current->arc.CheckForBoundaryHit (coord) != 0)
{

current->arc.numberOfBoundaryHits =
current->arc.number0OfBoundaryHits + 1;
return current—)arc.CheckForBoundaryHit(Coord);
¥

return 0;

}

double Arc::Distance()
{return distance;}

double Arc::Angle()
{return angle;}

double Arc::CheckForBoundaryHit (double coord[2][2])
{
double oldDistanceFromOrigin, newDistanceFromOrigin, argold, argnew, m,
templ, temp2, ickyvarl, ickyvar2, x_a, x, y;
int argoldInBounds, argnewInBounds;

oldDistanceFromOrigin = sqrt((coord[0] [0])*(coord[0] [0]) +
(coord[0][1]1)*(coord[0][11));

newDistanceFromOrigin = sqrt((coord[1] [0])*(coord[1][0]) +
(coord[11[11)*(coord[11[11));

if ((oldDistanceFromOrigin < distance && newDistanceFromOrigin < distance) ||
(oldDistanceFromOrigin > distance && newDistanceFromOrigin > distance))
return 0;
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/*if this is not true then we crossed the circle, in which case we
need to see if where we crossed was actually within the angle of
the arc.*/

if (angle == M_PI)

return distance;
argold = Arg(coord[0][0], coord[0][1]);
/*if we saved this from the last computation we might take less time
to do the calculation, but we’d need more memory to store the value.
Also applies to oldDistanceFromOrigin, etc*/

argnew = Arg(coord[1]1[0], coord[1][1]);

argoldInBounds = WithinBounds(angle, argold);

argnewInBounds = WithinBounds(angle, argnew);
if (newDistanceFromOrigin == distance)
{
if (argnewInBounds == 0)
return 0;
else

return distance;

}

if ((oldDistanceFromOrigin < distance && newDistanceFromOrigin > distance) ||
(oldDistanceFrom0Origin > distance && newDistanceFromOrigin < distance))

{
if (argnewInBounds == argoldInBounds)

if (argnewInBounds == 0)
return O;

else
return distance;

else
m = (coord[1][1] - coord[0][1])/(coord[1]1[0] - coord[0][0]);

templ = m*coord[0][0] - coord[0][1];
temp2 = 1 + m*m;

ickyvarl = m*templ;
ickyvar2 = sqrt(distance*distance*temp2? - templ*templ);

x_a = (ickyvarl + ickyvar2)/temp2;

if( ((coord[0][0] < x_a) && (x_a < coord[1]1[0]1)) ||
((coord[1][0] < x_a) && (x_a < coord[0][0]1)) )
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X = x_a;
/* In the case where x_1 = x_2, we crossed the arc
vertically, in which case the args were equal, which we

already took care of.x/

else
x = (ickyvarl - ickyvar2)/temp2;

y = sqrt(distancexdistance - x*x);

if (WithinBounds(angle, Arg(x, y)) == 0)

return 0;
else
return distance;
}
}
}

double Arg(double x, double y) //Arg returns a value between 0 and Pi.
{
double arg;
arg = atan(y/x);
if (x >= 0)
{
return arg;
}
if (x < 0)
{
if (y >= 0) return (M_PI + arg);
else return(arg - M_PI);
}
return (-1*M_PI);
} // end of Arg

int WithinBounds(double arcangle, double argToCheck)
{

if (fabs(arcangle) >= fabs(argToCheck))
return 1;

else
return 0;

}

Node *Add_Arc(Node *start, double distance, double angle)
// returns a pointer to the start node while adding that arc to the
// list in order of how far it is from the origin.

{

int count;
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Node *yptr, *previous, *current;
yptr = new Node(distance, angle);

// Display_Arcs(start);

for(count = 1, current = start, previous = NULL;
(current != NULL) && (yptr->arc.Distance() > current->arc.Distance());
count++, previous = current, current = current->next) ;

if ((xyptr) .arc.Distance() == (*current).arc.Distance())
{
delete yptr;
cout << "You tried to add an arc where you already had one." << endl;
return start;

}

if (current == start) // add to front of an existing list

{

(*xyptr) .next = start;
return yptr;

}

(*previous) .next = yptr; // add to the middle of an existing list
(*yptr) .next = current;

return start;

}
void Display_Arcs(Node *start)
{
int Sum=0;
Node *current, *previous;
for (current = start, previous = NULL; current != NULL;
previous = current, current = current->next)
{
Sum=current->arc.numberOfBoundaryHits + Sum;
}
for (current = start, previous = NULL; current != NULL;
previous = current, current = current->next)
{
cout << "distance: " << current->arc.Distance() << endl
<< "angle: " << current->arc.Angle() << endl
<< "number of boundary hits: " << current->arc.numberOfBoundaryHits
<< endl;
cout << "Avg: " << ((current->arc.number0fBoundaryHits) / Sum) << "\n\n";
}
cout << "\n\n Sum: " << Sum << "\n";



Appendix C

3ARCS_4.CC

//Marie Snipes
//0tto Cortez (Spring 2000)

/* This program simulates Brownian motion inside circle domains with
three arcs. It adjusts the arc lengths to make the maps from the
domain space to the harmonic measure space and outputs information

in a form that can be used by matlab.x*/

#include<iostream.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>

// create a class called Arc

class Arc

{

public:
Arc(double, double);
double CheckForBoundaryHit(double [2][2]);
double Distance(void);
double Angle(void);
int numberOfBoundaryHits;
double average;
void Reset(void);
void editAngle(double);
double distance, angle;

};

//constructor for class Arc
Arc::Arc(double d, double a)

{
distance = d;
angle = a;
number0OfBoundaryHits = O;
}

//create a class called Node (this will be the linked

class Node

list)



{
public:

Node(double, double);

Arc arc;

Node *next; //next is a pointer to a Node.
};

//constructor for class Node
Node: :Node(double distance, double angle) : arc(distance, angle)
{
next = NULL;
}

const double stepsize = 1;

const double D = 80;

const double d = 20;

const int MAX_ITER = 10;

//const double M_PI = 3.141592653589793;

double PickTheta();

void Move(double [2][2], double);

Node *GetInitialData(double &,int &,int &);
double CheckWholeBoundary(Node *, double [2][2]);
double Arg(double, double);

int WithinBounds(double, double);

Node *Add_Arc(Node *start, double, double);

void Simulate(Node *start,int &, int , int, int);
void Display_Arcs(Node *start, int , int, int);

int main( void )

{
double outerCircleRadius;
int numberOfArcs;
int numberO0fRuns;
srand (time (NULL)) ;
cout.precision(16);
Node *start = GetInitialData(outerCircleRadius,number0fArcs,numberOfRuns) ;
for (int iterl = 0; iterl <= MAX_ITER; iteril++)
{
for (int iter2 = 0; iter2 <= MAX_ITER; iter2++)
{
for (int iter3 = 0; iter3 <= MAX_ITER; iter3++)
{
Simulate(start,number0OfRuns,iterl,iter2,iter3);
Display_Arcs(start,iterl,iter2,iter3);
cerr << iterl << " " << iter2 << " " << iter3 << "\n";
}
}

}

ol



return 0;
} //end main

double PickTheta( void )
{
double x, z;
x = rand();
z = 2xM_PI*(1 + x)/(RAND_MAX + 1);
return z;
} // end of PickTheta()

void Move(double coord[2][2], double theta)

{
double dx, dy;

dx = stepsize * cos(theta);

dy = stepsize * sin(theta);

coord[0] [0] = coord[1][0]; // "old x" = "new x"
coord[0][1] = coord[1][1]; // "old y" = "new y"
coord[1][0] = coord[0][0] + dx; // "new x" = "old x + dx"
coord[1]1[1] = coord[0][1] + dy; // "new y" = "old y + dy"

} // end of Move()

// return 1 for hit, O for no hit. Add 1 to number of hits to arc hit
double CheckWholeBoundary(Node *start, double coord[2][2])
{

Node *current;

for(current = start; current !'= NULL; current = current—>next)
// (xcurrent) .next=current->next)
if (current->arc.CheckForBoundaryHit (coord) != 0)
{

current->arc.number0fBoundaryHits =
current->arc.number0fBoundaryHits + 1;
//return current->arc.CheckForBoundaryHit (coord) ;
return 1;
}
return 0;
} // end of CheckWholeBoundary()

double Arc::Distance()
{return distance;}

double Arc::Angle()
{return angle;}

double Arc::CheckForBoundaryHit(double coord[2][2])
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double oldDistanceFromOrigin, newDistanceFromOrigin, argold,
argnew, m, templ, temp2, ickyvarl, ickyvar2, x_a, x, y;
int argoldInBounds, argnewInBounds;

oldDistanceFromOrigin = sqrt((coord[0] [0])*(coord[0] [0])
+ (coord[0] [1])*(coord[0][11));

newDistanceFromOrigin = sqrt((coord[1] [0]) *(coord[1][0])
+ (coord[1][1])*(coord[1]1[1]));

if ((oldDistanceFromOrigin < distance && newDistanceFromOrigin < distance) ||
(oldDistanceFrom0Origin > distance && newDistanceFromOrigin > distance))
return 0;

//if this is not true then we crossed the circle, in which case we
//need to see if where we crossed was actually within the angle of
//the arc.

if (angle == M_PI)
{
//cerr << "hit circle \n";
return 1;

X
argold

Arg(coord[0] [0], coord[0][1]);
Arg(coord[1][0], coord[1][1]);

argnew

argoldInBounds = WithinBounds(angle, argold);
argnewInBounds = WithinBounds(angle, argnew);

if (newDistanceFrom0Origin == distance)
{
if (argnewInBounds == 0)
return O;
else
return 1;

}

if ((oldDistanceFromOrigin < distance && newDistanceFromOrigin > distance) ||
(oldDistanceFrom0Origin > distance && newDistanceFromOrigin < distance))
{
if (argnewInBounds == argoldInBounds)
{
if (argnewInBounds == 0)
return 0;
else
return 1;

else



}

double Arg(double x, double y)

{

}

m = (coord[1][1] - coord[0][1])/(coord[1]1[0] - coord[0][0]);
templ = mkcoord[0][0] - coord[0][1];
temp2 = 1 + m*m;

ickyvarl
ickyvar?2

m¥templ;
sqrt(distancexdistancextemp? - templ*templ);

x_a = (ickyvarl + ickyvar2)/temp2;

if( ((coord[0][0] < x_a) && (x_a < coord[1]1[01)) ||
((coord[1][0] < x_a) && (x_a < coord[0][0]1)) )
X = x_a;

/* In the case where x_1 = x_2, we crossed the arc
vertically, in which case the args were equal, which we
already took care of.*x/

else
x = (ickyvarl - ickyvar2)/temp2;

y = sqrt(distancexdistance - x*x);

if (WithinBounds(angle, Arg(x, y)) == 0)
return 0;

else
return distance;

}

return 1;
// end of Arc.CheckBoundaryHit ()

double arg;
arg = atan(y/x);

if (x >= 0)
{
return arg;
}
if (x < 0)
{
if (y >= 0) return (M_PI + arg);
else return(arg - M_PI);
}
return (-1*M_PI);
// end of Arg

// returns 1 if within arc, or 0 if outside arc

//Arg returns a value between 0 and Pi.

o4
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int WithinBounds(double arcangle, double argToCheck)

{

}

N

{

if (fabs(arcangle) >= fabs(argToCheck))
return 1;

else
return O;

// end of WithinBounds()

ode *Add_Arc(Node *start, double distance, double angle)
// returns a pointer to the start node while adding that arc to the
// list in order of how far it is from the origin.

int count;
Node *yptr, *previous, *current;
yptr = new Node(distance, angle);

// Display_Arcs(start);

for(count = 1, current = start, previous = NULL;
(current != NULL) && (yptr->arc.Distance() > current->arc.Distance());
count++, previous = current, current = current->next) ;

if ((*yptr) .arc.Distance() == (*current).arc.Distance())

{

delete yptr;
cout << "# You tried to add an arc where you already had one." << endl;
return start;

}
if (current == start) // add to front of an existing list
{
(*xyptr) .next = start;
return yptr;
}

yptr; // add to the middle of an existing list
(xyptr) .next = current;

(*previous) .next

return start;

} // end of Node.AddArc()

void SetCoord(double startPt, double coord[2][2])
{

coord[0][0] = 0;
coord[0][1] = 0;
coord[1][0] = startPt;
coord[1][1] = 0;

} // end of SetCoord()



void Display_Arcs(Node *start, int iter, int iter2, int iter3)

{

int Sum = 0;

int SumArc20 = 0;

int SumArc35 = 0;

int SumArcb0 = 0;

Node *current, *previous;

for (current = start, previous = NULL; current != NULL;
previous = current, current = current->next)

' if (current->arc.distance <= 20)
SumArc20 = SumArc20 + current->arc.numberOfBoundaryHits;
if (current->arc.distance <= 35)
SumArc35 = SumArc35 + current->arc.numberOfBoundaryHits;
if (current->arc.distance <= 50)
SumArc50 = SumArcb0 + current->arc.numberOfBoundaryHits;
Sum=current->arc.number0fBoundaryHits + Sum;
}

for (current = start, previous = NULL; current != NULL;
previous = current, current = current->next)

‘ if (current->arc.distance == 20)
current->arc.average = (double)SumArc20 / (double)Sum;

if (current->arc.distance == 35)
current->arc.average = (double)SumArc35 / (double)Sum;

if (current->arc.distance == 50)

current->arc.average = (double)SumArc50 / (double)Sum;

}
if (iter == 0 && iter2 == 0 && iter3 == 0)
{
cout << "p = [";
for (current = start, previous = NULL; current != NULL;
previous = current, current = current->next)

cout << current->arc.Distance() << ";\n";

cout << "J]; \n";

}
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for (current = start, previous
previous = current, current = current->next)

{
if (current->arc.distance == 20)
{
cout << "H1_" << iter << "_" << iter2 << "("
<< current->arc.average << ";\n";
cout << "A1_" << iter << "_" << iter2 << "("
<< current->arc.angle << ";\n";
}
else if (current->arc.distance == 50)
{
cout << "H2_" << iter << "_" << iter2 << "("
<< current->arc.average << ";\n";
cout << "A2_" << iter << "_" << iter2 << "("
<< current->arc.angle << ";\n";
}
else if (current->arc.distance == 35)
{
cout << "H3_" << iter << "_" << iter2 << "“("
<< current->arc.average << ";\n";
cout << "A3_" << iter << "_" << iter2 << "("
<< current->arc.angle << ";\n";
}
else
{
cout << "H4_" << iter << "_" << iter2 << "("
<< current->arc.average << ";\n";
cout << "A4_" << iter << "_" << iter2 << "("

<<

}

current->arc.angle << ";\n"; }

} //end Display_Arcs

<<

<<

<<

<<

<<

<<

<<

<<

Node *GetInitialData(double &radius,int &arcs,int

{

double arcRadius;

double arcAngle;

NULL; current !'= NULL;

(iter3+1)

(iter3+1)

(iter3+1)

(iter3+1)

(iter3+1)

(iter3+1)

(iter3+1)

(iter3+1)

&runs)

cerr << "What is the radius of the outer circle? \t";

cin >> radius;

cerr <<

radius << "\n";

arcs = 3;

cerr <<
cin >>
cerr <<

"How many runs? \t";
runs;
runs << "\n";

while (radius <= 0)

{

cerr << "Invalid arc radius.

<< "circle radius > 0.\n";

Please choose an outer"

<<

<<

<<

<<

<<

<<

<<

<<

//note: arc angle varies between O and M_PI

"n=n

n)=n

n)=n
n)=n

ny=n

="

n)=n

n)=n
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cerr << "What is the radius of the outer circle?\t";
cin >> radius;
}
Node *start = new Node(radius, M_PI);
for (int j=0; j < arcs; j++) //create linked list of arcs
{
cerr << "What is the radius of arc " << j+1 << "?";
cin >> arcRadius;
while (arcRadius >= radius && arcRadius != 0 || arcRadius < 0)

cerr << "Invalid arc radius. Please choose an arc radius < "
<< radius << " and > 0. \n";

cerr << "What is the radius of arc " << j+1 << "7 \t";

cin >> arcRadius;

cerr << "What is its angle?";
cin >> arcAngle;
start = Add_Arc(start, arcRadius, M_PI*arcAngle);
}
return start;
} //end Node *GetInitialData

void Simulate (Node *start, int &Runs, int iter, int iter2, int iter3)

{
double theta;
Node *current, *previous;

for (current = start, previous = NULL; current != NULL;
previous = current, current = current->next)
{
if (current->arc.distance == 20)

current->arc.angle = ((double)iter/(double)MAX_ITER)*M_PI;
current->arc.number0fBoundaryHits = 0;
//cerr << current->arc.angle << "\n";

else if (current->arc.distance == 50)
current->arc.angle = ((double)iter2/(double)MAX_ITER)=*M_PI;
current->arc.number0OfBoundaryHits = 0;

//cerr << current->arc.angle << "\n";

else if (current->arc.distance == 35)
current->arc.angle = ((double)iter3/(double)MAX_ITER)*M_PI;
current->arc.number0fBoundaryHits = 0;

//cerr << current->arc.angle << "\n";

else



current->arc.number0OfBoundaryHits = 0;

}
for (int i = 0; i < Runs; i++)
{
double coord[2][2] = {{0,0}, {0,0}};
for (int j = 1; (j <= 10000000) &&
(CheckWholeBoundary(start, coord) == 0); j++)

theta = PickTheta();
Move(coord, theta);

if (i % 1000 == 0) cerr << "x";
}
cerr << "\n";
// end Simulate
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