Brownian Motion and Planar Regions: Constructing Boundaries from h-functions

Otto Cortez

May 2000

In this thesis, we study the relationship between the geometric shape of a region in the plane, and certain probabilistic information about the behavior of Brownian particles inside the region. The probabilistic information is contained in the function $h(r)$, called the harmonic measure distribution function.

Consider a domain Ω in the plane, and fix a basepoint z_0. Imagine lining the boundary of this domain with fly paper and releasing a million fireflies at the basepoint z_0. The fireflies wander around inside this domain randomly until they hit a wall and get stuck in the fly paper. What fraction of these fireflies are stuck within a distance r of their starting point z_0? The answer is given by evaluating our h-function at this distance; that is, it is given by $h(r)$.

In more technical terms, the h-function gives the probability of a Brownian first particle hitting the boundary of the domain Ω within a radius r of the basepoint z_0. This function is dependent on the shape of the domain Ω, the location of the basepoint z_0, and the radius r.

The big question to consider is: How much information does the h-function contain about the shape of the domain’s boundary? It is known that an h-function cannot uniquely determine a domain, but is it possible to construct a domain that generates a given h-function? This is the question we try to answer.

We begin by giving some examples of domains with their h-functions, and then some examples of sequences of converging domains whose corresponding h-functions also converge to the h-function. In a specific case, we prove that artichoke domains converge to the wedge domain, and their h-functions also converge. Using another class of approximating domains, circle domains, we outline a method for constructing bounded domains from possible h-functions $f(r)$. We prove some results about these domains, and we finish with a possible for a proof of the convergence of the sequence of domains constructed.