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Abstract

Examples of Volume-Preserving Great Circle Flows of S3

by Ryan Haskett

May 2000

This summer Herman Gluck and Weiqing Gu proved the last step in a process

that took conformal maps between two complex spaces and related them to Volume-

Preserving Great Circle Fibrations of S3. These fibrations, which are non-intersecting

flows, break down under certain conditions. We obtained the fibrations by applying

the process to different conformal maps then calculated the angles where they inter-

sect. This paper centers around the developments in the method for converting the

conformal maps and finding the critical angles. Finally, the examples are included in

their various stages of completeness.
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Chapter 1

INTRODUCTION

This work looks at examples of a process Herman Gluck and Weiqing Gu [1]

finished during the summer of 1999 that takes conformal maps and builds volume-

preserving great circle fibrations on S3. Fibrations are non-intersecting flows. The

original purpose was to look at how the flows given by these conformal maps intersect

and therefore fail to be fibrations. In addition to giving the background information

on this process, this paper presents new methods used to simplify and make parts of

the process possible for more complex maps. However, the methods fail at various

points due to calculational intensity. All the worked examples are then presented as

far as these methods could be solved starting with the only complete example and

moving toward maps in which only the first step was possible.

1.1 The Process

In Gluck and Gu [1] the authors prove the following

Theorem 1.1.1 Let V be a smooth unit vector field on the round 3-sphere, such that

the orbits of V are great circles and the flow of V is volume-preserving. If V is defined

on the entire 3-sphere, then V must be tangent to a Hopf fibration. But if V is only

defined on a proper open subset of the 3-sphere, which for convenience we take to be

connected, then there are many examples which are not tangent to any Hopf fibration.

All these flows are analytic, and each can be extended to a volume-preserving great

circle flow defined on a maximal connected open subset.
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Now the space of great circles on S3 is isomorphic to the planes through the origin

in R4. The set of such planes forms the Grassmann manifold (G2R
4). Gluck and Gu

[1] use the natural diffeomorphism G2R
4 ∼= S2×S2 and the following characterization

of great circle fibrations of S3: a submanifold of G2R
4 is the base space of a fibration

of S3 by oriented great circles if and only if it is the graph of a distance-decreasing

map from either S2 factor to the other. A distance-decreasing map in this case takes

any curve on the first sphere and maps it to a shorter curve on the second sphere.

Distance-decreasing maps are made by taking a map and restricting it to its distance-

decreasing points on the first sphere. An oriented great circle fibration defined only on

some connected open subset of the 3-sphere will correspond to a distance-decreasing

map from a connected open subset of one S2 factor to the other.

Gluck and Gu [1] continue with the following theorem.

Theorem 1.1.2 Let F be a smooth fibration of a connected open subset of S3 by ori-

ented great circles. Then the unit speed flow along the fibers of F is volume-preserving

if and only if the corresponding distance-decreasing map from a connected open subset

of S2 to S2 is holomorphic.

Conformal maps when converted to a map between S2 and itself using the stere-

ographic projection are holomorphic maps. Combined with the distance-decreasing

condition above, the maps give volume-preserving great circle fibrations on S3. In

order to look at the breakdown of these fibrations, we look at where the maps are

no longer distance-decreasing. Since the map can be distance-decreasing from either

S2 factor to the other to be valid and if at a point it is distance-increasing in one

direction is distance-decreasing in the other, the only breakdown points are the points

where it is distance-preserving.

To summarize, the whole process (shown in Fig. 1.1) starts with a conformal map

and converts it to a map between S2 and itself. Then, calculates where that map is

distance-preserving. That section of the map is then converted into G2R
4 where each
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plane is the wedge product of two vectors. Finally, we visualized the flows in S3 and

their intersections.

Figure 1.1: Pictorial View of the Full Process

The following example was given in [1] for the full process with some changes

made in the names of the variables to fit with the rest of the examples.

1.2 Original Example: f : W → 1/2W

We separate the map into its real and imaginary parts

W = u+ iv

1/2W = 1/2u+ i1/2v

Re(f) = 1/2u

Im(f) = 1/2v

The next portion converts the map to a map between two spheres ((x, y, z)→ (x̃, ỹ, z̃))

using the spherical projection formula (Figure 2.1)

x̃ = (1 + z̃)Re(f)
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ỹ = (1 + z̃)Im(f)

x = (1 + z)u

y = (1 + z)v

The individual coordinates on the target sphere are found in terms of the first.

1− z̃2 = x̃2 + ỹ2

= (1 + z̃)2Re2(f) + (1 + z̃)2Im2(f)

= 1/4(1 + z̃)2(u2 + v2)

= 1/4(1 + z̃)2 x
2 + y2

(1 + z)2

1− z̃ = 1/4(1 + z̃)
1− z2

(1 + z)2

z̃ =
3 + 8z + 5z2

5 + 8z + 3z2

x̃ = (1 + z̃)Re(f)

= (1 +
5z + 3

3z + 5
)(

1

2

x

1 + z
)

=
4x

3z + 5

ỹ =
4y

3z + 5

The map is then changed to the spherical coordinates shown in Figure 2.2 the

target sphere is the same with tilded coordinates.

σ̃ = σ

cos θ̃ =
3 + 5 cos θ

5 + 3 cos θ

sin θ̃ =
4 sin θ

5 + 3 sin θ

Since the map just maps the two azimuthal coordinates to each other the map is

distance-preserving when the map takes a circle at a particular polar angle to the

same radius circle on the other sphere.

r = r̃
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r = sin θ

r̃ = sin θ̃

sin θ = sin θ̃

=
4 sin θ

5 + 3 cos θ

Canceling sin θ gives the distance-preserving equation

1 =
4

5 + 3 cos θ

and the distance-preserving angles

θ0 = arccos(−1/3)

θ̃0 = π − arccos(−1/3)

The following is the family of fibrations

Wp = (cosα e′1 + sinα e′3) ∧ (cos β e′2 + sin β e′4) (1.1)

and in this example the simple map gives nice simplifications.

µ = (σ̃ + σ)/2

= σ

ν = (σ̃ − σ)/2

= 0

e′1 = cos σ e1 + sinσ e2

e′2 = − sinσ e1 + cos σ e2

e′3 = e3

e′4 = e4

Also, α and β work out nicely for this map at the distance-preserving angle

α0 = (θ0 − θ̃0)/2
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= (θ0 − (π − θ0))/2

= θ0 − π/2

β0 = (θ0 − θ̃0)/2

= π/2

giving the fibrations

Wp = (cosα0 e
′
1 + sinα0 e3) ∧ e4

= (sin θ0 e
′
1 + cos θ0 e3) ∧ e4

Using ρ as the parameterization of the circles gives a useful form of the fibration,

Wp = (sin θ0 cos ρ cos σ, sin θ0 cos ρ sinσ, cos θ0 cos ρ, sinρ)

which all intersect at (0, 0, 0, 1) when ρ = ±π/2. To get a better view we use the

following simplifications in the (e1, e2) plane

x2
1 + x2

2 = sin 2θ0 cos 2ρ

this gives a circle parameterized by σ. Doing the same to the (e3, e4) plane gives an

ellipse

(
x3

cos θ0

)2 + x2
4 = 1

We map the ellipse to the x-y plane and rotating the circle around the ellipse to

visualize the fibrations in three dimensions. Figure 1.2 shows part of the output of

the Mathematica program that was written to visualize the intersections (Appendix

A). The pinching of the ellipse at the critical angles is clearly visible showing the

break down of the fibrations.
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Figure 1.2: Visualization for f : W → 1/2W



Chapter 2

METHOD

2.1 Converting a Conformal Map to a Map Between S2 and Itself

We will call the initial conformal map f . This map can be split into its real and

imaginary parts. Starting on the second of the unit spheres, which will be denoted

from now on by tilde coordinates,

1− z̃2 = x̃2 + ỹ2

Then using the north pole stereographic projection formula as shown in Figure 2.1 x̃ = (1 + z̃)Re(f)

ỹ = (1 + z̃)Im(f)

combine as follows to give the coordinates of the 2nd unit sphere in terms of the

original map.

1− z̃2 = (1 + z̃)2(Re(f)2 + Im(f)2)

1− z̃ = (1 + z̃)|f |2

z̃ =
1− |f |2

1 + |f |2
x̃ = (1 + z̃)Re(f)

=
2Re(f)

1 + |f |2

ỹ =
2Im(f)

1 + |f |2

Next, we find the new map in spherical coordinates (Figure 2.2) in terms of the

map for the 2nd sphere.
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cos θ̃ = z̃

=
1− |f |2

1 + |f |2

sin θ̃ = (x̃2 + ỹ2)1/2

=
2|f |

1 + |f |2

sin θ̃ cos σ̃ = x̃

Figure 2.1: North Pole Stereographic Projection

Figure 2.2: Spherical Coordinates on the First and Second Sphere
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=
Re(f)

1 + |f |2
2|f |

1 + |f |2
cos σ̃ =

Re(f)

1 + |f |2

cos σ̃ =
Re(f)

|f |

sin σ̃ =
Im(f)

|f |

To summarize the relations between the points on the second sphere and the conformal

map,

cos θ̃ =
1− |f |2

1 + |f |2
(2.1)

sin θ̃ =
2|f |

1 + |f |2
(2.2)

cos σ̃ =
Re(f)

|f |
(2.3)

sin σ̃ =
Im(f)

|f |
(2.4)

The angles on the target sphere can now be found in terms of |f |, Re(f) and

Im(f). The three quantities |f |, Re(f) and Im(f) can be put into the angles of

the first sphere using the stereographic projection and then changed to spherical

coordinates. We can do these two parts of the process after any step (as long as they

are done in order) giving us the freedom to place them in the simplest spot. Often it is

more convenient to do only the stereographic projection and then plug into formulas

2.1-2.4, saving the change into spherical coordinates for last.

Either way this process finds a formula for the angles of the target sphere in

terms of the angles from the first sphere or in other words a map from S2 into itself.

However many conformal maps became much too complicated at the end of this step

to complete the rest of the analysis.
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2.2 Distance Preserving

Now that we have the map between the two spheres we need to find the distance

preserving boundary. To do this generally we use the following method relating a

differential length on each of the spheres. We used a differential method because we

need to find if specific points are distance decreasing. We start with the method used

by Gluck and Gu[1] comparing the distances of curves on the sphere using

s(t) =
∫ t

0
|α′(t)| dt

which converts to the following by differentiating and using the first fundamental

form,

ds

dt
= |α′(t)|

ds

dt
=

√
E
du2

dt2
+ 2F

du

dt

dv

dt
+G

dv2

dt2

ds2 = E du2 + 2F du dv +Gdv2

For a unit sphere with the parameterization

~x(θ,σ) = (sin θ cos σ, sin θ cos σ, cos θ)

E = 1, F = 0 and F = sin 2θ. This gives the differential distance

ds2 = dθ2 + sin 2θ dσ2

ds̃2 = dθ̃2 + sin 2θ̃ dσ̃2

In order for the map to be distance decreasing the differential distances must be equal.

ds2 = ds̃2

dθ2 + sin 2θ dσ2 = dθ̃2 + sin 2θ̃ dσ̃2

We can get the forms for θ̃ and σ̃ in terms of both θ and σ from formulas 2.1 - 2.4.

Using those formulas and their forms after implicit differentiation we can plug in for
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the right side of the above equation giving

dθ2 + sin 2θ dσ2 = g(θ,σ) dθ
2 + h(θ,σ) dσ

2

where g and h depend on the map.

The coordinates θ and σ are independent so we can split the above into two

equations

1 = g(θ,σ) (2.5)

sin 2θ = h(θ,σ) (2.6)

which can be simultaneously solved for the points at which the map is distance pre-

serving. The differential length method agrees with answers given by an arc-length

method, but also gives answers to maps which don’t have azimuthal symmetry. This

method gives ugly nonlinear equations which can often only be solved numerically.

Numerical solutions make visualizing the flows even harder so most of the maps of

average complexity stop at this point.

2.3 Visualization of the Flows

The final analysis of each map involves raising the distance-preserving points on the

map from the spheres to their corresponding great circles on S3 and then looking

at how the great circle fibrations intersect. Unfortunately, visualizing in four dimen-

sions requires the reduction to three dimensions to be understood while keeping the

intersection information. I present the beginning of the method.

Finding the family of great circles (Wp) involves using the natural isomorphism

relating the spaces of the map (S2×S2) and our target space G2R
4. Following Gluck

and Gu, we calculate the flows with the function

Wp = (cosα e′1 + sinα e′3) ∧ (cos β e′2 + sin β e′4) (2.7)
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where α, β and the primed axes are given by

α = 1/2(θ − θ̃)

β = 1/2(θ + θ̃)

and the primed axes are rotated off the standard axes of R4 by these angles.

µ = 1/2(σ̃ + σ)

ν = 1/2(σ̃ − σ)

e′1 = cosµ e1 + sinµ e2

e′2 = − sinµ e1 + cosµ e2

e′3 = cos ν e3 + sin ν e4

e′4 = − sin ν e3 + cos ν e4

Figure 2.3 is a picture of how this formula works in R4.

Figure 2.3: Creation of a Great Circle

For the simple map (like the f : W → 1/2W from the introduction) in which

the azimuthal angle on the first sphere maps to the same azimuthal angle on the
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target sphere for all points as example one the dependence of the azimuthal angle

just parameterizes ellipses in the (e1, e2) and (e3, e4) planes the fibrations can be

visualized as a torus. The breakdown then shows as a singularity of the torus. For

any map without that special symmetry this method gets rid of important azimuthal

angle dependence and fails to show the intersections.

Attempts were made at analytically solving for intersections amongst the fibra-

tions. Also, we tried many numerical visualization schemes, but too much information

is lost viewing the 4-dimensional flows on a computer screen.



Chapter 3

EXAMPLES

3.1 Reading the Examples

Each of the examples begin with a explanation of how far the process progressed on

that map. After that the process will be worked out in the order of the method from

the beginning to whenever the example became too complicated to complete. The

first example includes a full explanation so the reader can get an understanding of

the processes. The rest of the examples have few words in the interests of brevity.

Table 3.1 shows how far each of the examples is completed.
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Conformal Map Conversion Distance-preserving Visualization

f : W → 1/2W−1 X X X

f : W → cW X X

f : W → 1/2W+1
W−1

X X

f : W →W c X X

f : W → W 2 X X

f : W → eW X Numerically

f : W → (1−W )−1 X

f : W → tanW X

f : W → sinW X

Table 3.1: Steps Completed for Each Example

3.2 f : W → 1/2W−1

The intersection of the flows for this map are very similar to f : W → 1/2W . First,

we must put the map into component form from the first complex plane (u, v).

W = u+ iv

1/2W−1 = 1/2
u− iv
u2 + v2

Re(f) = 1/2
u

u2 + v2

Im(f) = 1/2
−v

u2 + v2

We set up the map in terms of x, y and z on the first sphere using the following

stereographic projection equations

 u = x
1+z

v = y
1+z
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remembering that the new coordinates are on a sphere for simplification.

Re(f) = 1/2
u

u2 + v2

= 1/2
x

1 + z

(1 + z)2

x2 + y2

= 1/2
x

1 + z

(1 + z)2

1− z2

= 1/2
x

1− z
Im(f) = 1/2

−y
1− z

|f |2 = Re2(f) + Im2(f)

= 1/4
1− z2

(1− z)2

= 1/4
1 + z

1− z

These equations could be converted to spherical coordinates now, however that only

makes the calculations more complicated so that will be done later.

Now we find the angles of the target sphere in terms of the coordinates of the first

using equations 2.2 and 2.3.

sin θ̃ =
2|f |

1 + |f |2

= 2
(1 + z)1/2

2(1− z)1/2

4(1− z)

5− 3z

= 4
(1 + z)1/2(1− z)1/2

5− 3z

= 4
(1− z2)1/2

5− 3z

sin σ̃ =
Im(f)

|f |

=
−y

1− z
(1− z)1/2

(1 + z)1/2

=
−y

(1− z2)1/2

With these formula the coordinates of the first sphere can be changed to spherical
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coordinates giving the complete map between the two spheres.

sin θ̃ = 4
(1− cos 2θ)1/2

5− 3 cos θ

= 4
sin θ

3 cos θ − 5

sin σ̃ =
− sin θ sinσ

sin θ

= sin (−σ)

Similarly,

cos θ̃ =
5 cos θ − 3

3 cos θ − 5

cos σ̃ = cos σ

The map can be simplified to the following three equations.

cos θ̃ =
5 cos θ − 3

3 cos θ − 5
(3.1)

sin θ̃ =
4 sin θ

3 cos θ − 5
(3.2)

σ̃ = −σ (3.3)

We now find where the map is distance-preserving following section 2.2. First, we

implicitly differentiate 3.1 and 3.2

cos θ̃ dθ̃ = 4
cos θ(3 cos θ − 5) + 3 sin 2θ

(3 cos θ − 5)2
dθ

5 cos θ − 3

3 cos θ − 5
dθ̃ = 4

3− cos θ

3 cos θ − 5
dθ

dθ̃ =
−4

3 cos θ − 5
dθ

dσ̃ = −dσ

so we can find the formula for the distance-preserving map.

dθ2 + sin 2θ dσ2 = dθ̃2 + sin 2 θ̃dσ̃2

= (
−4

3 cos θ − 5
)2dθ2 + (4

sin θ

3 cos θ − 5
)2dσ2



19

Both independent parts reduce to the following equation

1 = (
−4

3 cos θ − 5
)2

for which there is only one solution for 0 < θ < 2π.

θ0 = arccos 1/3

= 70.530

At this distance-preserving angle on the first sphere the corresponding angle on the

target sphere comes from equations.

sin θ̃0 =
4 sin θ0

5− 1

= sin θ0

cos θ̃0 =
5/3− 3

1− 5

= 1/3

So, the following nice relations hold that will help us find the flows (the second is just

restated from above).

θ0 = θ̃0

σ = −σ

These formula for the map at the distance-preserving angles gives simple forms

for equations 2.8-2.15

α = 1/2(θ − θ̃)

= 0

β = 1/2(θ + θ̃)

= θ0

µ = 1/2(σ̃ + σ)
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= 0

ν = 1/2(σ̃ − σ)

= −σ

e′1 = cosµ e1 + sinµ e2

= e1

e′2 = − sinµ e1 + cosµ e2

= e2

e′3 = cos ν e3 + sin ν e4

= cos σ e3 − sinσ e4

e′4 = − sin ν e3 + cos ν e4

= sinσ e3 + cos σ e4

The flows follow using equation (2.7).

C = (cosα e′1 + sinα e′3) ∧ (cos β e′2 + sin β e′4)

= e1 ∧ (cos θ0e2 + sin θ0(sinσ e3 + cosσ e4))

We parameterize the circles by ρ.

Cρ = (cos ρ, sin ρ cos θ0, sin ρ sin θ0 sinσ, sin ρ sin θ0 cos σ)

When ρ = 0, π the flows all intersect at (±1, 0, 0, 0). The (e1, e2) plane forms an

ellipse and the (e3, e4) plane forms a circle both parameterized by σ.

x2
1 +

x2
1

cos θ0

= 1

x2
3 + x2

4 = sin ρ sin θ0

The Mathematica program in Appendix A gives the following visualizations for the

flows.
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Figure 3.1: Visualization for f : W → 1/2W−1
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3.3 f : W → cW

This map was a good test for the theory that reduces to the map f : W → 1/2W in

the introduction.

W = u+ iv

cW = cu+ icv

Re(f) = cu

= c
x

1 + z

Im(f) = c
y

1 + z

|f |2 = c2(u2 + v2)

= c2 x
2 + y2

(1 + z)2

= c2 1− z
1 + z

The map between the two spheres is

sin θ̃ =
2c sin θ

1 + c2 + (1− c2) cos θ

cos θ̃ =
(1− c2) + (1 + c2) cos θ

(1 + c2) + (1 + c2) cos θ

σ̃ = σ

which reduces to the example in the introduction when c = 1/2.

We differentiate to find where the map is distance-preserving.

dθ̃ =
2c

(1 + c2) + (1− c2) cos θ
dθ

dσ̃ = dσ

dθ2 + sin 2θ dσ2 = dθ̃2 + sin 2θ̃ dσ̃2

= [
2c

(1 + c2) + (1− c2) cos θ
]2dθ2

+[
2c sin θ

(1 + c2) + (1− c2) cos θ
]2dσ2
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Again, the distance-preserving formula is independent of σ and gives the following

circles on the first sphere.

cos θ =


c+1
c−1

if c < 0

c−1
c+1

if c > 0

3.4 f : W → W c

This map is an interesting generalization that gives a distance-preserving equation.

Re(f) = (
1− z
1 + z

)c cos (c arctan (y/z))

Im(f) = (
1− z
1 + z

)c sin (c arctan (y/z))

|f | = (
1− z
1 + z

)c

Which gives the map between the two spheres

sin θ̃ =
2 sin cθ

(1 + cos θ)c + (1− cos θ)−c
(3.4)

σ̃ = cσ (3.5)

and the distance-preserving equation

2c sin c−1θ = (1 + cos θ)c + (1− cos θ)−c (3.6)

3.5 f : W → W 2

This specific case of the above map has fairly simple flow equations, but our method

for visualization does not work. Starting with 3.4 and 3.5 we get the map between

the spheres

sin θ̃ =
2 sin 2θ

(1 + cos θ)2 + (1− cos θ)−2

=
sin 2θ

1 + cos 2θ

cos θ̃ =
2 cos θ

1 + cos 2θ

σ̃ = 2σ
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From equation 3.6 the distance-preserving equation is

4 sin θ = 1 + cos 2θ

which gives the distance-preserving angles.

sin θ0 =
√

3− 1

sin θ̃0 =

√
3− 1

2

For the visualization only the µ and ν work well for this map.

µ = 1/2(σ̃ + σ)

= 3/2σ

ν = 1/2(σ̃ − σ)

= 1/2σ

e′1 = cos 3/2σ e1 + sin 3/2σ e2

e′2 = − sin 3/2σ e1 + cos 3/2σ e2

e′3 = cos 1/2σ e3 + sin 1/2σ e4

e′4 = − sin 1/2σ e3 + cos 1/2σ e4

We parameterize the great circles by ρ and get these flows.

Cρ = (cosα cos ρ cos 3/2σ − cos β sin ρ sin 3/2σ,

cosα cos ρ sin 3/2σ + cos β sin ρ cos 3/2σ,

sinα cos ρ cos 1/2σ − sinβ sin ρ sin 1/2σ,

sinα cos ρ sin 1/2σ + sin β sin ρ cos 1/2σ)

We were not able to solve for the intersection of these flows.

3.6 f : W → 1/2W+1
W−1

This example is still under construction because I just got an idea.
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Re(f) = 1/2
z

x− 1

Im(f) = 1/2
y

x− 1

|f |2 = Re2(f) + Im2(f)

=
z2 + y2

4(x− 1)2

= 1/4
1 + x

1− x
Completing the preparation gives the following map between the two spheres.

cos σ̃ = − cos θ

(1− sin 2θ cos 2σ)1/2
(3.7)

sin σ̃ = − sin θ sinσ

(1− sin 2θ cos 2σ)1/2
(3.8)

sin θ̃ = 4
(1− sin 2θ cos 2σ)1/2

5− 3 sin θ cos σ
(3.9)

cos θ̃ =
3− 5 sin θ cosσ

5− 3 sin θ cosσ
(3.10)

The following two quantities are introduced to make the calculations easier to follow

ζ = 1− sin 2θ cos 2σ

η = 5− 3 sin θ cosσ

We differentiate to find where the map is distance preserving.

dθ̃ = 4
cos θ cosσ

η
√
ζ

dθ − 4
sin θ sinσ

η
√
ζ

dσ

dσ̃ = −sinσ

ζ
dθ − sin θ cos θ cos σ

ζ
dσ

The cross terms (dθ dσ) cancel nicely in the following equation giving the distance-

preserving formula

dθ2 + sin 2θ dσ2 = dθ̃2 + sin 2θ̃ dσ̃2

= 16
cos 2θ cos 2σ + sin 2σ

ζη2
dθ2

+16
sin 2θ sin 2σ + sin 2θ cos 2θ cos 2σ

ζη2
dσ2
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Both of the independent parts of that equation give the following equation to solve

16(cos 2θ cos 2σ + sin 2σ) = ζη2

16ζ = ζη2

Converting to Cartesian coordinates ζ = 1 − x2 which only equals zero at the two

points on the sphere where

x = ±1

These values when plugged into the equations for the map between the spheres give

sin θ̃ = 0

cos θ̃ = ∓1

which are the top and bottom points on the target sphere. The map does not include

these points so we continue. When the map is not at those points the distance-

preserving equation reduces to

16 = η2

16 = 9 sin 2θ cos 2σ − 30 sin θ cos σ + 25

0 = 3x2 − 10x+ 3

Which gives only one solution in the valid range for x (−1 ≤ x ≤ 1)

(sin θ cosσ =) x = 1/3

which is a circle at a constant x on the first sphere.

We simplify the process of finding the flows at these points by finding the points

on the target sphere where the map is distance-preserving using 3.4-3.7

sin θ̃ = 2
√

2/3

cos θ̃ = 1/3

sin σ̃ =
−
√

2

4
(9 sin 2θ − 1)1/2

cos σ̃ =
−3
√

2

4
cos θ
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The flow equations from here on out get very complicated.

3.7 f : W → eW

The formula for where this map is distance-decreasing is too complicated for an ana-

lytical solution. Therefore the flows cannot be found.

W = u+ iv

eW = eu(cos v + i sin v)

Re(f) = eu cos v

Im(f) = eu sin v

|f | = eu

The map becomes

sin θ̃ = 2
eζ

e2ζ + 1

σ̃ =
sin θ sinσ

1 + cos θ

where ζ has the value

ζ =
x

1 + z

=
sin θ cosσ

1 + cos θ

The complicated distance-preserving formula

dθ̃ =
2eζ

e2ζ + 1
(

cos σ

1 + cos θ
dθ − sin θ sinσ

1 + cos θ
dσ)

dσ̃ =
sin θ cos σ

1 + cos θ
dθ +

sinσ

1 + cos θ
dσ

reduce to this formula to find the distance-preserving angle.

(e2ζ + 1)2(1 + cos θ)2 = 4e2ζ (3.11)
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This equation has no analytic solutions, but using the Maple program in Appendix

C we can get a look at where in the θ-σ space (represented by t and s respectively)

the map is distance-preserving.

Figure 3.2: Distance-Preserving Points for f : W → eW

This elliptical object has no analytical form that can be plugged into the fibration

equations to do the visualization.
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3.8 f : W → sinW

This map is very similar to f : W → eW . It has only been completed to the map

between the two spheres.

W = u+ iv

sinW = sinu cosh v + i cosu sinh v

Re(f) = sinu cosh v

Im(f) = cos u sinh v

|f |2 = sin 2u cosh 2v + cos 2u sinh 2v

= sin 2u+ sinh 2v

The map between the two spheres is

sin θ̃ = 2
(cos 2ζ + cosh 2η)1/2

sin 2u+ cosh 2η

cos σ̃ =
cos ζ sinh η

(cos 2ζ + cosh 2η)1/2

where ζ and η are

ζ =
x

1 + z

=
sin θ cos σ

1 + cos θ

η =
y

1 + z

=
sin θ sinσ

1 + cos θ

This formula looks like the f : W → eW formula and poses many of the same problems.

3.9 f : W → (1−W )−1

Again, we completed this map only to the map between the spheres.

W = u+ iv
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(1−W )−1 =
1− u+ iv

u2 + v2 − 2u+ 1

Re(f) =
1 + z − x
2(1 + x)

Im(f) =
y

2(1 + x)

|f |2 =
1 + z

2(1 + x)

The corresponding map between the two spheres is the following.

sin θ̃ = 2

√
2(cos θ − sin θ cosσ + 1)1/2

cos θ − 2 sin θ cos σ + 3

cos σ̃ = (
cos θ − sin θ cosσ + 1

2
)1/2

3.10 f : W → tanW

This map has been converted to a map between the two spheres. The map starts

with

W = u+ iv

tanW =
sin ζ cos ζ − i cosh η sinh η

sin 2ζ + sinh 2η

Re(f) =
sin ζ cos ζ

sin 2ζ + sinh 2η

Im(f) =
cosh η sinh η

sin 2ζ + sinh 2η

|f |2 =
sin 2ζ cos 2ζ + cosh 2η sinh 2η

(sin 2ζ + sinh 2η)2

where

ζ =
x

1 + z

=
sin θ cosσ

1 + cos θ

η =
y

1 + z

=
sin θ sinσ

1 + cos θ
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The corresponding map between the two spheres is the following.

sin θ̃ =
−2

2 cosh 2η

√
(cos 2ζ − cosh 2η)(sin 2ζ − cosh 2η)

cos σ̃ =
sin ζ cos ζ

√
sin 2ζ − cosh 2η√

cos 2ζ − cosh 2η
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.1 Appendix A: Mathematica Visualization Programs

.1.1 Visualization Program for f : W → 1/2W

This Mathematica code plots the flows of f : W → 1/2W onto a torus.

Do[

t1 = ArcCos[(3+5Cos[t])/(5+3Cos[t])];

a1 = (t-t1)/2;

b1 = (t+t1)/2;

a = Sin[a1];

b = Sin[b1];

Rt[a1_,b1_][p_] := Cos[a1]^2 Cos[p]^2 + Cos[b1]^2 Sin[p]^2;

r[x_][a1_,b1_][p_] := x + Rt[a1,b1][p];

surf[p,p1] := {Cos[p] (r[a][a1,b1][p] + Rt[a1,b1][p] Cos[p1]),

(r[b][a1,b1][p] + Rt[a1,b1][p] Cos[p1]) Sin[p], Rt[a1,b1][p] Sin[p1]};

ParametricPlot3D[surf[p,p1] // Evaluate, {p, 0, Pi}, {p1, 0, 2Pi},

PlotPoints -> {20,40}, PlotRange -> {{-2.5,2.5}, {-2.5,2.5}, {-1,1}},

PlotLabel -> ""];,

{t, 0, ArcCos[-1/3],ArcCos[-1/3]/6 }];

.1.2 Visualization Program for f : W → 1/2W−1

This Mathematica code plots the flows of f : W → 1/2W−1 onto a torus.

Do[

t1 = ArcSin[(4Sin[t])/(3Cos[t]-5)];

a1 = (t-t1)/2;

b1 = (t+t1)/2;

a = Cos[a1];
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b = Cos[b1];

Rt[a1_,b1_][p_] := (Sin[a1]^2 Cos[p]^2 + Sin[b1]^2 Sin[p]^2)^(1/2);

r[x_][a1_,b1_][p_] := x + Rt[a1,b1][p];

surf[p,p1] := {Cos[p] (r[a][a1,b1][p] + Rt[a1,b1][p] Cos[p1]),

(r[b][a1,b1][p] + Rt[a1,b1][p] Cos[p1]) Sin[p], Rt[a1,b1][p] Sin[p1]};

ParametricPlot3D[surf[p,p1] // Evaluate, {p, 0, Pi}, {p1, 0, 2Pi},

PlotPoints -> {20,40}, PlotRange -> {{-2.5,2.5}, {-2.5,2.5}, {-1,1}},

PlotLabel -> ""];,

{t, 0, ArcCos[1/3],ArcCos[1/3]/6 }];

.2 Appendix B: Finding the Distance-Preserving Points of f : W → eW

This Maple code finds the Distance-Preserving Points of f : W → eW .

y := sin(t)*sin(s)/(1+cos(t));

z := sin(t)*cos(s)/(1+cos(t));

plot3d(2*exp(z)/(1+exp(2*z))*(z+y)/sin(t),t=0..Pi,s=0..2*Pi,view=.99..1.01);
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