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Abstract

Rates of Convergence to Self-Similar Solutions of Burgers’

Equation

by Joel Miller

May 2000

Burgers’ Equation ut + cuux = νuxx is a nonlinear partial differential equation which

arises in models of traffic and fluid flow. It is perhaps the simplest equation describing

waves under the influence of diffusion. We consider the large-time behavior of solu-

tions with exponentially localized initial conditions, analyzing the rate of convergence

to a known self-similar single-hump solution. We use the Cole-Hopf Transformation

to convert the problem into a heat equation problem with exponentially localized

initial conditions. The solution to this problem converges to a Gaussian. We then

find an optimal Gaussian approximation which is accurate to order t−2. Transforming

back to Burgers’ Equation yields a solution accurate to order t−2.
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Chapter 1

INTRODUCTION

The general equation

ut + cuux = νuxx (1.1)

with c, ν > 0 is known as Burgers’ Equation. It arises in applications modeling traffic

flow, fluid flow in certain conditions, magneto-hydrodynamics, atmospheric behavior,

and many other physical systems (cf. [6]). It is one of the simplest examples of a

nonlinear partial differential equation, and it thus is useful as an example for studying

their behavior. For this reason it has received considerable study.

Several people have investigated the large-time behavior of Burgers’ Equation.

A self-similar solution is found in Whitham [6]. Some recent work by Chern and

Liu [1], [2], [3] and Escobedo and Zuazua [4], [8] shows rates of convergence to self-

similar solutions. Chern and Liu found a self-similar asymptotic approximation which

differs from the true solution by a uniform error of order 1/t. Zuazua and Escobedo

studied a generalization in higher dimension, and found a self-similar asymptotic state

with a similar error.

In this thesis, we improve on these estimates, making the assumption that the

initial conditions are exponentially localized. We find a self-similar asymptotic state

whose uniform error is of order 1/t2.

To simplify our analysis of the problem, we can scale time and space to yield the

equation

ut + uux = uxx (1.2)
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To see this, let τ = αt and ξ = βx. Then Equation (1.1) becomes

αuτ + cβuuξ = νβ2uξξ

Setting α = c2/ν and β = c/ν leaves (1.2).



Chapter 2

TRANSFORMATION TO HEAT EQUATION

We are interested in the large-time asymptotic behavior of Burgers’ Equation:

ut + uux = uxx (2.1)

given initial conditions u(x, 0) = f(x) which are exponentially localized, that is,

|f(x)| ≤ ce−a|x| c, a > 0. (2.2)

We can conclude from the exponential localization condition (2.2) that the moments,

Mj(f) =
∫ ∞

−∞
xjf(x) dx (2.3)

are bounded, |Mj(x)| ≤ 2cj!/aj+1. In particular, the mass, M0(f) =
∫∞
−∞ f(x) dx is

finite. We will make the additional assumption that f(x) ≥ 0 and that it is nonzero

for some region with positive measure. This restriction can be relaxed, but it makes

the analysis cleaner.

To begin our analysis, we turn to the Cole-Hopf transformation1 [6].

u = −2φx/φ (2.4)

which reduces Burgers’ Equation to the heat equation: φt = φxx.

We can determine φ explicitly in terms of u. We get the ordinary differential

equation

φx +
u
2
φ = 0

1See Appendix A for a derivation
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which solves to

φ(x, t) = exp
[

−1
2

∫ x

−∞
u(s, t) ds

]

(2.5)

In particular, the initial conditions become

φ(x, 0) = exp
[

−1
2

∫ x

−∞
u(s, 0) ds

]

Note that the integral in the exponent approaches M0(f) as x →∞ and 0 as x → −∞

In between, it is bounded because the integral is monotonically increasing. By the

maximum principle of the heat equation [5] we can conclude that for all t > 0

0 < e−M0(f)/2 ≤ φ(x, t) ≤ 1 < ∞. (2.6)

Since φ(x, t) is not localized, we cannot use tools such as the Fourier Transform.

We can modify the problem to create a localized initial condition by using the

following observation: if φt = φxx, then φtx = φxxx. Defining ψ = −φx, we achieve

ψt = ψxx. Analyzing the initial condition for ψ, we get

ψ(x, 0) =
1
2
u(x, 0) exp

[

−1
2

∫ x

−∞
u(s, 0) ds

]

≡ h(x). (2.7)

Because u(x, 0) is exponentially localized and the exponential term is bounded, we

conclude h(x) is exponentially localized. We can determine φ in terms of ψ as

φ(x, t) = 1−
∫ x

−∞
ψ(s, t) ds. (2.8)

In particular, since φ is strictly positive, we know that for all x
∫ x

−∞
ψ(x, t) dx < 1. (2.9)

We will be able to recover u from ψ and φ by modifying Equation (2.4):

u = 2ψ/φ. (2.10)



Chapter 3

ANALYSIS OF THE HEAT EQUATION

We have now transformed the original problem into solving

ψt = ψxx (3.1)

ψ(x, 0) = h(x)

where h is exponentially localized.

Because h is exponentially localized, we know that its Fourier Transform1 exists.

Applying the Fourier Transform we get

̂ψt(k, t) = −k2
̂ψ(k, t)

̂ψ(k, 0) = ̂h(k)

which can be solved as ̂ψ(k, t) = ̂h(k)e−k2t.

We expand ̂h(k) for k > 0 using the Taylor remainder theorem.

̂h(k) =

(

2
∑

j=0

̂h(j)(0)
j!

kj

)

+
̂h(3)(c)

3!
k3 c ∈ (0, k)

Note that c = c(k) depends on k. Using identities (B.5) and (B.4)

̂h(k) =

(

2
∑

j=0

(−i)jMj(h)
j!

kj

)

+
F[(−ix)3h(x)](c)

3!
k3

=

(

2
∑

j=0

(−i)jMj(h)
j!

kj

)

+

∫∞
−∞(−ix)jh(x)e−icx dx

3!
k3

where Mj(h) =
∫∞
−∞ xjh(x) dx is the j-th moment of h.

1See Appendix B for facts about the Fourier Transform.
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At this point we want to find an self-similar asymptotic approximation for ψ. We

will do this by finding a self-similar solution to the heat equation whose zeroth, first,

and second moments (equivalent to mass, mean, and variance) match those of ψ.

We start by observing that given the heat equation with initial conditions Cδ(x),

we get the solution [5]
Ce−x2/4t

√
4πt

. (3.2)

Under the change of variables x 7→ x − x∗ and t 7→ t + t∗ the heat equation in

unchanged, that is, the heat equation commutes with translations in space and time,

we conclude that the heat equation with initial conditions Cδ(x − x∗) at t = −t∗ is

solved by the self-similar Gaussian

G(x, t) =
Ce−(x−x∗)2/4(t+t∗)

√

4π(t + t∗)
.

It is this observation that allows us to improve on previous results. Previous asymp-

totic estimates were found by choosing the optimal value for C. We are able to also

choose the optimal values for x∗ and t∗.

We will see later that t∗ ≥ 0. At t = 0, G will solve the initial condition

g(x) ≡ G(x, 0) = Ce−(x−x∗)2/4t∗/
√

4πt∗

We can expand ĝ in the same manner we expanded ̂h above. We want to find values

for C, x∗, and t∗ which make g match the first moments of h.

We need to solve the system [7]

M0(h) =
∫ ∞

−∞
g(x) dx (3.3)

M1(h) =
∫ ∞

−∞
xg(x) dx (3.4)

M2(h) =
∫ ∞

−∞
x2g(x) dx (3.5)

by proper choice of C, x∗, and t∗. To solve (3.3) we use the fact that the integral on

the right side is simply C, so we choose C = M0.
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We now solve (3.4)

M1 =
∫ ∞

−∞
xg(x)

= M0

∫ ∞

−∞

e(−x−x∗)2/4(t+t∗)

√

4π(t + t∗)
x dx

= M0

(

∫ ∞

−∞

e−ξ2/4(t+t∗)

√

4π(t + t∗)
ξ dξ + x∗

∫ ∞

−∞

e−ξ2/4(t+t∗)

√

4π(t + t∗)
dξ

)

where ξ = x − x∗. Using the fact that the first integrand has odd symmetry, we get

the first integral goes to 0. The second integral evaluates to 1. So we conclude that

M1 = M0x∗, and so x∗ = M1/M0.

Finally we solve (3.5)

M2 =
∫ ∞

−∞
x2g(x)

=
∫ ∞

−∞
x2G(x, t) dx

∣

∣

∣

∣

t=0

Let S(t) =
∫∞
−∞ x2G(x, t) dx. We want S(0) = M2. We know that S(−t∗) =

∫∞
−∞ x2M0δ(x∗) dx = M0x2

∗. We also have

d
dt

S(t) =
∫ ∞

−∞
x2Gt dx

=
∫ ∞

−∞
x2Gxx dx

= x2Gx − 2xG|∞−∞ + 2
∫ ∞

−∞
Gdx

= 2M0

So we have S(−t∗) = M0x2
∗ and S′ = 2M0. From this it follows that M2 = S(0) =

M0x2
∗ + 2M0t∗. Since we know x∗ = M1/M0, we solve this to obtain

t∗ = (M2M0 −M2
1 )/M2

0 .

Some calculus shows that an equivalent way of expressing t∗ is

t∗ =
1

M0

∫ ∞

∞
(x− x∗)2h(x) dx.
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It turns out that t∗ is positive because of our assumption that u(x, 0) ≥ 0. This

assumption guarantees that h ≥ 0. From this we have M0 > 0. Since
∫∞
∞ (x −

x∗)2h(x) dx > 0, we have t∗ > 0. Dropping the assumption u(x, 0) ≥ 0 is possible as

long as M0 6= 0, but it may allow t∗ < 0, corresponding to a gaussian whose initial

conditions are at some positive time.

We now have ̂ψ = ̂he−k2t and ̂G = ĝe−k2t where the first three terms of the

expansion of ̂h and ĝ are identical. Define E to be the error between ψ and G. That

is

E(x, t) = ψ(x, t)−G(x, t) (3.6)

Then using the Taylor Remainder Theorem, ̂E(k) = ̂ψ − ̂G will be given by (̂h −

ĝ)′′′(c) = k3e−k2t
∫∞
−∞ x3(h− g)(x)e−icx dx where g = G(x, 0) and c = c(k) ∈ (0, k).

For future reference, it will be useful to have a uniform bound in the x-variable

on |E(x, t)| and on |
∫ x
−∞ E(s, t) ds|. To bound |E| we first find a bound on | ̂E|.

| ̂E| =
∣

∣

∣

∣

k3e−k2t
∫ ∞

−∞
x3(h− g)e−icx dx

∣

∣

∣

∣

≤ |k3e−k2t|
∫ ∞

−∞
|x3(h− g)||e−icx| dx

≤ |k3e−k2t|
∫ ∞

−∞
|x3(h− g)| dx

≤ Ce−k2t|k3| (3.7)

Where we have used the fact that h− g is exponentially localized so that the integral

must be finite.

We can now find the bounds we need.

|E| =
∣

∣

∣

∣

1
2π

∫ ∞

−∞

̂E dk
∣

∣

∣

∣

≤ 1
2π

∫ ∞

−∞
| ̂E| dk

≤ 1
2π

∫ ∞

−∞
Ce−k2t|k3| dk

≤ 2C
2π

∫ ∞

0
e−k2tk3 dk
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≤ C
2πt2

(3.8)

Using F[
∫ x
−∞ E(ξ, t) dξ] = ̂E(k, t)/k and similar techniques, we can find

∣

∣

∣

∣

∫ x

−∞
E(s, t) ds

∣

∣

∣

∣

≤ C
4t3/2

√
π

. (3.9)

We now have bounds on |E(x, t)| and
∫ x
−∞ |E(x, t)|, and we can return to Burgers’

Equation.



Chapter 4

RETURN TO BURGERS’ EQUATION

Using Transformation (2.10) and Equation (3.6) we return to Burgers’ Equation,

getting

u(x, t) =
2ψ(x, t)
φ(x, t)

=
2[G(x, t) + E(x, t)]

φ(x, t)

We expect the solution corresponding to G to be an asymptotic approximation

for u. We use (2.8) and (2.10) to give

θ(x, t) =
2G(x, t)

1−
∫ x
−∞ G(s, t) ds

as the Burgers’ Equation solution corresponding to the Heat Equation solution G.

We consider the difference between u and θ.

u(x, t)− θ(x, t) =
2 [G + E]

[

1−
∫ x
−∞ Gds

]

− 2Gφ

φ(x, t)
[

1−
∫ x
−∞ Gds

]

=
2
(

G
∫ x
−∞ E ds + E

[

1−
∫ x
−∞ G + E ds

])

φ(x, t)
[

1−
∫ x
−∞ Gds

] (4.1)

where in the second step we substituted for φ in the numerator using Equation (2.8)

and performed some algebra.

To get a uniform bound on this error, we need to determine bounds on the indi-

vidual terms of (4.1). We will start off by bounding the first term of the numerator
∣

∣

∣

∣

G
∫ x

−∞
E

∣

∣

∣

∣

ds =

∣

∣

∣

∣

∣

M0
e−(x−x∗)2/4(t+t∗)

√

4π(t + t∗)

∫ x

−∞
E ds

∣

∣

∣

∣

∣
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≤ M0
√

4π(t + t∗)

C
4t3/2

√
π

≤ CM0

8πt2
(4.2)

Before we can bound the second term of the numerator, we need some more

information about
∫ x
−∞ Gds. We know that it is strictly positive because G is positive,

and we know that its magnitude is strictly increasing. We further know that as x

goes to infinity, this goes to 1 − φ(∞, 0). Since φ(∞, 0) = exp[−M0(f)/2] > 0, we

know that M0(G) = M0(h) < 1.
∣

∣

∣

∣

E
[

1−
∫ x

−∞
Gds

]∣

∣

∣

∣

≤ C(1−M0)
2πt2

(4.3)

We now seek a bound on the denominator. We know from Equation (2.6) that

φ ≥ a for a = e−M0(f)/2 and that 1−
∫ x
−∞ G > 1−M0. From this it follows that

|u(x, t)− θ(x, t)| <
2
(

CM0
8πt2 + C(1−M0)

2πt2

)

a(4−M0)

<
C(4− 3M0))

4a(1−M0)πt2
(4.4)

Where C =
∫∞
−∞ |x

3(g − h)| dx, M0 =
∫∞
−∞ h dx, and a = inf φ(x, 0) = e−M0(f)/2. In

particular, this is O(t−2)
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EXAMPLE

We consider Burgers’ Equation

ut + uux = uxx (5.1)

with the tophat initial condition

u(x, 0) =







0 |x| > 1

1 |x| ≤ 1

This initial condition transforms to

ψ(x, 0) =







0 |x| > 1

e−2(x+1) |x| ≤ 1

where

ψt = ψxx (5.2)
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In Figure 5.1 we show how the true solution to (5.2) converges to the optimal

gaussian solution. Notice that at time t = 10, this is a very good approximation, and

x
1086420-2-4-6-8
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0

(a) t = 0

x
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0

(b) t = 1
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x
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0

(d) t = 100

Figure 5.1: Heat Equation Convergence [red = true solution; green = approximation]

at time t = 100, there is no detectable difference between the true solution and the

asymptotic approximation.
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We now consider the true solution to Burgers’ Equation u compared with the

solution to which the optimal gaussian corresponds. This is shown in Figure 5.2.

Again, note that at t = 10 this is a very good approximation, and at t = 100, there

is no detectable error.

x
1086420-2-4-6-8

1

0.8

0.6

0.4

0.2

0

(a) t = 0

x
1086420-2-4-6-8-10

0.3

0.2

0.1

0

(b) t = 1

x
3020100

0.12

0.1

0.08

0.06

0.04

0.02

0

(c) t = 10

x
403020100-10-20-30

0.03

0.02

0.01

0

(d) t = 100

Figure 5.2: Burgers’ Equation Convergence [red = true solution; green = approximation]
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The convergence in our solution is very good in comparison to the asymptotic

approximation from Chern [1] shown in Figure 5.3.
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Figure 5.3: Chern’s Convergence [red = true solution; green = approximation]
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CONCLUSIONS AND FUTURE WORK

Burgers’ Equation with exponentially localized initial conditions has self-similar

behavior as t grows. We have found an asyptotic approximation which matches the

true solution with an error term of order t−2. This is an improvement on previous

work of Chern and others which found asymptotic approximations with errors of order

t−1.

In future work, we would like to find Lp norms on the error terms. The Lp norms

of the error found by Chern for his approximation are of order t−1+1/2p. We suspect

that we can achieve t−2+1/2p. We also hope to extend this sort of analysis to other

nonlinear PDEs, in particular the lubrication model of a thin fluid film

ut + umux = −(unuxxx)x.



Appendix A

THE COLE-HOPF TRANSFORMATION

The Cole-Hopf Transformation was discovered independently by Cole and Hopf

around 1950. It changes Burgers’ Equation ut + uux = uxx into the Heat Equation

φt = φxx as shown in [6]

To derive the transform, we let u = γx. Then Burgers’ Equation can be integrated

yielding γt + γ2
x/2 = γxx. Let γ = −2 log φ. Then we get

−2
φt

φ
+ 2

φ2
x

φ2 = −2
φφxx − φ2

x

φ2

Applying some algebra to this yields φt = φxx



Appendix B

FOURIER IDENTITIES

We define the Fourier Transform by

F[g(x)] = ĝ(k) =
∫ ∞

−∞
g(x)e−ikx dx

The transform is inverted by

g(x) =
1
2π

∫ ∞

−∞
ĝ(k)eikx dk

We have the following identities (cf. [5]):

F[αf(x) + βg(x)] = α ̂f + βĝ (B.1)

F[g′(x)] = ikĝ (B.2)

F[gt(x, t)] = ĝt (B.3)

F[(ix)jg(x)] = ĝ(j)(k) (B.4)

Note that from Equation (B.4)

ĝ(j)(0) =
∫ ∞

−∞
(ix)jg(x)e0 dx

= ijMj(g) (B.5)

We have the transform for a gaussian g(x, t) = e−x2/4πt/
√

4πt is

ĝ = e−k2t (B.6)

We finally develop the transform of shifts in x and t:

F[g(x− x∗)] = e−ikxĝ (B.7)

F[g(x, t + t∗)] = ĝ(k, t + t∗) (B.8)
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