Rates of Convergence to Self-Similar Solutions of Burgers’ Equation

Joel Miller

May 2000

Burgers’ Equation $u_t + cu_x = \nu u_{xx}$ is a nonlinear partial differential equation which arises in models of traffic and fluid flow. It is perhaps the simplest equation describing waves under the influence of diffusion. We consider the large-time behavior of solutions with exponentially localized initial conditions, analyzing the rate of convergence to a known self-similar single-hump solution. We use the Cole-Hopf Transformation to convert the problem into a heat equation problem with exponentially localized initial conditions. The solution to this problem converges to a Gaussian. We then find an optimal Gaussian approximation which is accurate to order t^{-2}. Transforming back to Burgers’ Equation yields a solution accurate to order t^{-2}.