
Claremont Colleges
Scholarship @ Claremont

Scripps Senior Theses Scripps Student Scholarship

2012

Where Is the Best Place to Sit on a Roller Coaster?
Forces, Physics, and Fun at Disneyland
Kelsey Lubetich
Scripps College

This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Lubetich, Kelsey, "Where Is the Best Place to Sit on a Roller Coaster? Forces, Physics, and Fun at Disneyland" (2012). Scripps Senior
Theses. Paper 125.
http://scholarship.claremont.edu/scripps_theses/125

http://scholarship.claremont.edu
http://scholarship.claremont.edu/scripps_theses
http://scholarship.claremont.edu/scripps_student
mailto:scholarship@cuc.claremont.edu

Where is the Best Place to Sit on a Roller Coaster?

Forces, Physics, and Fun at Disneyland

A Thesis Presented

by

Kelsey Lubetich

To the Keck Science Department

 Of Claremont McKenna, Pitzer, and Scripps Colleges

In partial fulfillment of

The degree of Bachelor of Arts

Senior Thesis in Physics

April 23, 2012

 2

Table of Contents

Section Page

Table of Contents 2

Abstract 3

Introduction 4

Materials and Methods 5

Results and Analysis 8

Conclusion 14

Acknowledgments 15

Works Cited 16

Appendix 1: Equipment and Software 17

Appendix 2: Java Code 20

Appendix 3: Acceleration Graphs 35

Appendix 4: Z Acceleration Bunny Hills Data Table 38

Appendix 5: Bunny Hills Graphs 40

 3

Abstract

The work presented in this thesis was undertaken to quantitatively determine the best

place to sit on a roller coaster. Maximizing the time spent feeling weightless and the highest

value of negative Z acceleration were used as criteria for the best seat. Acceleration values

were measured on the California Screamin’ roller coaster at Disney California Adventure

Park using an iPhone and an application to record data from its accelerometers. After

analyzing acceleration data, it was determined that the front row had the greatest negative

acceleration in the z direction and was therefore the “best place” to sit.

 4

Introduction

 Most people who enjoy roller coasters have a favorite place to sit when riding, but no

quantitative reasons for sitting there. When I ride roller coasters, especially roller coasters at

Disneyland, my favorite sensation is weightlessness. Because I find it the most fun feeling,

maximizing the time spent feeling weightless is the criteria for the best place to sit for this

thesis. I was interested in looking at the time and acceleration values needed for free fall, so

an accelerometer was used on a roller coaster to take measurements of acceleration. The

answer to the question, “where is the best place to sit on a roller coaster?” will be the seat

that has to greatest negative acceleration in the z direction and the most time spent in “free

fall.”

 5

Materials and Methods

 In order to measure the forces while on a roller coaster, an accelerometer is needed.

Conveniently, today’s iPhones come with an accelerometer already inside, and one only

needs an application to access the raw data that is recoded by the phone’s sensors. Many

applications exist, but only two were used in this experiment. The first application used was

Accelerometer Data Pro (ADP) by Wavefront Labs. ADP records and stores the X, Y, and Z

values of the iPhone’s accelerometer data relative to the phone’s three axes1, as shown in

Figure 1. Values of acceleration are recorded in units of g. After initial trials, it was

determined that ADP did not measure the sufficient values of acceleration needed for this

experiment.

Figure 1: The X, Y, and Z-axes of an iPhone.2 The
top of the iPhone is in the +y direction while the
front of the phone is in the +z direction.

 The second application used in this experiment was Sensor Data (SD) by Wavefront

Labs. SD was selected for use in all trials because it has the option of recording the User

Acceleration, which represents the acceleration that the user is giving the iPhone, neglecting

the constant effect of gravity. With SD, the X, Y, and Z values of the acceleration are all

zero when the device is sitting still. An extended discussion of how to use SD to record and

save data can be found in Appendix 1.

 In this experiment, California Screamin’ at Disney California Adventure Park was the

only roller coaster used to measure forces. Screamin’ has one inversion, so the coaster has

seats with individual shoulder restraints. When sitting in the seat with the restraint on, the

iPhone was held with the back, or –z direction, flat against the seat, and the +y direction

 6

facing the front of the coaster train. When the left seats were measured, the phone was held

on the outside of the seat with my left hand between my leg and the outside wall, so that the

phone was closest to the outside edge of the car. For the right seats, the phone was closest to

the right edge of the car and was held with my right hand, as shown in Figure 2. It was not

possible to hold the phone completely flush against the seat because of how it was being

held, but it was kept as flat and parallel to the seat as possible while still maintaining a firm

hold.

Figure 2: The iPhone being held
while measuring the right seat of the
car. The phone is held in the right
hand between the rider and the outside
edge of the car.

Ideally, the acceleration for every seat on Screamin’ would have been measured and

compared. A train on Screamin’ has twelve rows for a totally of twenty-four seats. Given

the time constraints of this thesis, there was not enough time to reasonably gather data for

every seat of the train. To simplify comparison, I decided to only look at the front and back

rows of the train. By looking at these two rows, I measured the acceleration for four

different seats: row 1 left, row 1 right, row 12 left, and row 12 right.

 7

After riders are seated and restrained on Screamin’, the cars move to the launch

portion of the track. In order to have all the trials begin at roughly the same time, the Start

Capture button was pressed after the train had come to a stop at the launch station. Because

the train was stopped, ideally all accelerations would begin at zero and it would be easy to

see when the train suddenly started moving. Even so, trains occasionally pause for different

time intervals before launch, so this was taken into consideration when the data was

analyzed.

Before trials were run on Screamin’, SD had to be calibrated to make sure it reported

accurate values of acceleration. This was accomplished by dropping the iPhone straight

down for each of its six directions. If SD worked correctly, the values reported for

acceleration should have been positive when the phone was dropped with a positive axis

facing down and negative with a negative axis facing down. The results of this calibration

can be found in Table 1 and were found to be opposite of what was expected. This error was

corrected by multiplying all data by a factor of -1 before analysis.

Table 1: SD calibration data.

 Two different iPhones were used for acceleration measurement. One phone was used

to measure the acceleration in the left seats while the other was used to measure the

acceleration in the right seats. Both phones were calibrated and were found to have the same

calibration error previously discussed. Because two phones were used for measurement, it

was possible to measure both the left and right seat of a row at the same time. The left and

right data for each trial of row 1 or row 12 occurred during the same ride on Screamin’. This

was done to minimize outside factors such as differing masses of the train that could affect

the speed and therefore acceleration of the ride. It was not possible to record all four seats

for the same ride.

Axis Facing Down +x -x +y -y +z -z

Value of Acceleration (g) -1 1 -1 1 -1 1

 8

Results and Analysis

 Before true data analysis could begin, the raw data was extensively manipulated to

get it into a useful form. Because the data was recorded at a frequency of 10 Hz, there are

around a thousand data points for each trial. When all data points were considered, the

resulting graphs were very spiky with outlying data points. To remedy this, a rolling average

of three points was used for all plots. The data was averaged using the Java code found in

Appendix 2. Once the data was averaged, the X, Y, and Z acceleration data were all

multiplied by -1 to fix the direction error found during calibration.

 Because each trial started at slightly different times, the timestamps for all the trials

didn’t match up so the runs could not yet be compared. When Screamin’ starts at the launch,

the train is stationary until, all of a sudden, the train rapidly accelerates forward while the

track remains flat. This launch was useful in determining when the actual ride began because

it is easy to see on a graph of the data when the train suddenly accelerates forward (Figure 3).

The time point just before the Y acceleration rapidly increases was taken to be the new zero

time for each trial. The value of that time was subtracted from all future data points to adjust

for the new time reference. With the adjusted time values, just after t=0 the rapid increase in

Y acceleration can be seen (Figure 4). Because all trials share this rapid Y increase, the data

could now be easily matched up with all trials beginning at t=0.

 9

Figure 3: Graph of Y acceleration using the original time of row 1, right seat, trial 4.

Figure 4: Graph of Y acceleration using the adjusted time of row 1, right seat, trial 4.

 Once all the trials were time adjusted, there was still too much data to reasonably

compare. To compensate for this, all the trials for each seat were averaged together to come

up with one set of data for each of the four seats measured. Finally, the data was condensed

into sets that could be graphed with four lines, one for each seat, for the X, Y, and Z

accelerations. These graphs for the X, Y, and Z Acceleration can be found in Appendix 3. In

all three graphs, row 1 left is the blue line, row 1 right is red, row 12 left is green, and row 12

right is purple.

 I have defined the best seat as the seat with the greatest negative Z acceleration and

the most time spent in free fall. There are many times during Screamin’ where the rider feels

like she is floating, but only a few of these moments occur when the track is also flat and

would therefore only have acceleration in the z direction. To determine when the rider

experiences free fall, a YouTube video4 of the ride was compared to experiences on the

coaster. Notable track events, the times at which they occurred, and the perceived additional

forces accompanying them were recorded in Table 2.

 There are four notable places the rider feels like she is floating. The first time free

fall occurs, the track is angled at the top of the first hill, meaning some of the Z acceleration

 10

is split in the X and Y directions. This means that the tops of the bunny hills are the only

places where the rider both floats and the track is flat.

Track Event Video Time Ride Time Perceived Extra

Force

Launch 0:21 0” L ����

End of Flat Launch 0:26 5” No extra force

Top of 1st Hill 0:29 8” L ���� (floating)

Bottom of Lift Hill 0:47 26” L ����

Top of 2nd Hill 0:58 37” No extra force

Start of Loop 1:15 54” No extra force

Top of Loop 1:17 56” Γ � � � �

Bottom of Loop 1:19 58” L ����

Bottom of Post-

Loop Hill

1:27 66” L ����

Start of Bunny Hills 1:39 77” No extra force

First Dip 1:41 80” L ����

Top of 1st Bunny

Hill

1:42 81” L ���� (floating)

Second Dip 1:43 82” L ����

Top of 2nd Bunny

Hill

1:44 83” L ���� (floating)

Third Dip 1:46 85” L ����

Top of 3rd Bunny

Hill

1:47 86” L ���� (floating)

End of Ride 2:02 101” L ����

Table 2: For each track event on California Screamin’, the time it occurred in the video
was recorded, then the actual time from the ride launch, and finally the direction of the
additional force that the rider perceives. “L” represents the seat of the roller coaster when
it is upright while “Γ” represents the seat when it is upside down, something that only
occurs once during the loop of the coaster.

Because I am interested in the maximum time spent in free fall, from this point on I

will only be looking at the Z acceleration. There are three bunny hills on Screamin’, and

they occur roughly from 77” to 86”. As expected, around these times there are peaks and

valleys on the graph of Z Acceleration that correspond with the hills (Figure 5). The valleys

of Figure 13 correspond to the tops of the bunny hills while the peaks correspond to the dips.

 11

The rider feels like she is floating when the train goes over the peaks on the bunny hills, so

free fall occurs when there is negative Z acceleration.

Figure 5: Graph of the Z Acceleration during the “bunny hills”.

 When looking at the graph of the bunny hills, each seat has three valleys that

correspond to the tops of the three bunny hills, but the valleys occur at different times for row

1 and row 12. This is because the train is so long that the entire train cannot experience the

bunny hills at the same time. When the front of the train reaches the second bunny hill, it’s

about the same time that the back of the train crests the first hill. The hills are roughly two

seconds apart and it’s about two seconds that the front and back seats are apart on the graph.

For row 1, the bunny hilltops occur at ~81, ~83, and ~86 while for row 12, they occur at ~83,

~86, and ~88. See Appendix 5 for individual graphs of row 1 and 12 over the bunny hills. A

rider feels like she is floating when there is a valley in the acceleration in the Z direction.

The seat with the highest value of negative Z acceleration has been defined as the best place

to sit on the roller coaster.

 The highest values of negative Z acceleration were found for each of the three bunny

hills. The complete data table can be found in Appendix 4, but the maximum values have

been recorded in Table 3. For every hill, the front row right seat has the highest value of

 12

negative acceleration. The second hill has the greatest value of acceleration recorded with a

= -1.07949g.

 Maximum Negative Z Acceleration (g)

 1L Z 1R Z 12L Z 12R Z

First Hill -0.99666 -1.02482 -0.89938 -0.95076

Second Hill -0.98391 -1.07949 -0.87305 -0.86473

Third Hill -0.72246 -0.89294 -0.57801 -0.56740

Table 3: The maximum negative Z accelerations at the top of all three bunny hills.

If the left or right position of the car is ignored, the values for each row can be

averaged together, as is done in Table 4. After the accelerations are averaged for each row,

row 1 has the highest negative values of acceleration over all three hills. The difference in

the acceleration between row 1 and row 12 is 0.08567g for the first hill and increases linearly

for the next two hills. The greatest difference in acceleration between the rows occurs on the

third hill.

 Maximum Negative Z Acceleration (g)

 Row 1 Row 12 Difference

First Hill -1.01074 -0.92507 0.08567

Second Hill -1.03170 -0.86889 0.16281

Third Hill -0.80770 -0.57270 0.23500

Table 4: The average negative Z acceleration for each row over the bunny hills.

In addition to the maximum value of negative acceleration, the additional criterion of

time spent in free fall is being used to determine the best seat. In order to measure the time

spent in free fall, for the purposes of this experiment, free fall is defined as a value of

acceleration that is less that -0.75g in the Z direction. With this definition, the time spent in

free fall for each seat is shown in Table 5. The front row right seat spends the most time in

free fall on nearly every hill, something that corresponds with its higher negative acceleration

values.

 13

 Time Spent in Free Fall (seconds)

 1L Z 1R Z 12L Z 12R Z

First Hill 0.3 0.4 0.4 0.5

Second Hill 0.6 0.6 0.3 0.5

Third Hill 0.0 0.2 0.0 0.0

Table 5: Time spent in free fall for the three bunny hills. Free fall has been defined as a
time with an acceleration less than -0.75g.

 I defined the criteria for the best seat to be the seat with the greatest value of negative

Z acceleration and the greatest time spent in free fall. Using this definition, the front row of

California Screamin’ is the best place to sit. However, the definition of free fall acceleration

may be incorrect. During the ride, the rider feels like she is floating, if only briefly, during

all the bunny hills in both the front and back rows of the train. According to my free fall

definition, the rider does not spend time in free fall on every hill. In future research, perhaps

a better definition of what constitutes free fall can be determined.

Conclusion

 The best place to sit on a roller coaster is the front row because it has both the greatest

values of negative Z acceleration and the greatest time spent in free fall. This theory has

currently only been tested on the California Screamin’ roller coaster, but the definition will

likely be true for other coasters of a similar type. A future application of this research could

be to test this theory on other roller coasters. The methods are fairly easy to replicate and the

application used is under $10 if the user already has an iPhone. It is unknown if the result of

the front row best seat would hold true for different types of coasters, such as coasters with

more inversions, without inversions, or without bunny hills, but the same definition of the

best seat can be used. The results of this experiment were surprising; in the past I have

always enjoyed sitting in the back of roller coasters more than the front because I thought the

back had the wilder ride. According to the acceleration data recorded during this experiment,

that is not the case. I enjoy the feeling of weightlessness on roller coasters, so from now on I

will be sitting in the front. If you enjoy weightlessness as well and only have one ride on a

roller coaster, sit in the front for the best experience.

 15

Acknowledgments

 This thesis would not have been possible without the encouragement and support of

Scot Gould and his approval of my crazy idea of a topic. I am also grateful to Thomas

Dershem for his support. Grazie mille, dear readers. I am forever indebted to Shannon

Lubetich for being my right-seat buddy and picture twin and enduring the arduous task of

many trips to Disneyland. I would also like to thank the amazing commenters on my

Touring Plans blog post for sharing their favorite spots on roller coasters, even though I did

not end up sharing their opinions in my introduction.

 16

Works Cited

1. "Accelerometer Data." 2010. Wavefront Labs. <http://wavefrontlabs.com/Wavefront_

Labs/Accelerometer_Data.html>.

2. "Event Handling Guide for iOS." IOS Developer Library. 3 Oct. 2011. Apple, Inc.

<https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/Even

tHandlingiPhoneOS/EventHandlingiPhoneOS.pdf>.

3. "Sensor Data." 2010. Wavefront Labs. <http://wavefrontlabs.com/Wavefront_Labs/

Sensor_Data.html>.

4. TheCoasterViews. "California Screamin' (HD POV) Disney's California Adventure."

YouTube. 29 Nov. 2009. <http://www.youtube.com/watch?v=v_cHDsHuMbE>.

 17

Appendix 1: Equipment and Software

 Sensor Data (SD) by Wavefront Labs was used in this experiment (Figure 6). SD can

record data from more of the iPhone’s sensors than ADP, including the 3D accelerometer and

3D gyroscope.3 In this experiment, the Acceleration, essentially the same data recorded by

ADP, and User Acceleration were recorded. The data values that the user wants to record are

simply clicked in the Configuration Settings screen (Figure 7). The User Acceleration

represents the acceleration that the user is giving to the iPhone, while factoring out gravity.

With SD, the X, Y, and Z values of the acceleration are all zero when the device is sitting

still.

Figure 6: SD’s title screen.

Figure 7: Some of the data that can be
recorded using SD. The checked options
are the only ones that SD actually records
and saves.

To record a data run, the appropriate configuration settings are selected, and then the

Start Capture button is pressed (Figure 8). SD automatically selects a filename for the data

run. The iPhone needs to remain in its “awake” setting with the screen active while SD is

recording. While SD is running, the number of Samples increases and the Start Capture

 18

button changes to a Stop Capture button. When the run is over, the Stop Capture button is

pressed and the data file is automatically saved to the SD Library (Figure 9).

Figure 8: The Capture screen for SD. The
frequency that values are recorded can be
selected from 1 to 100 Hz.

Figure 9: SD’s Library. Files are named
based on the date and time of recording.
Files saved in SD can later be exported
onto a computer.

Once collected, to export the data onto a computer, plug in the iPhone and open

iTunes. After clicking on the iPhone under Devices, navigate to the Apps tab (Figure 10).

Under File Sharing, once SD is selected, individual files can be clicked on and saved them to

a location on your computer (Figure 11).

 19

Figure 10: Click the iPhone
under Devices and navigate
to the Apps tab.

Figure 11: SD files
can be saved to
your computer.

 20

Appendix 2: Java Code

AverageThree.java

import java.io.*;

import java.util.ArrayList;

/**

 * @author Kelsey Lubetich

 * @date 2/20/12

 **/

/*

 * A class that takes in a file of numbers, and then averages them together in

 * groups of three values. The average values are returned in a new file.

 */

public class AverageThree {

 //two ArrayLists that keep track of the original list of values

 // and the calculated list of averages

 private ArrayList<Double> valueList = new ArrayList<Double>();

 private ArrayList<Double> averagedList = new ArrayList<Double>();

 //the number of lines in the list of values,

 // starts out at 0

 private int valueListCount = 0;

 //the number of lines in the averaged list of values,

 // also starts out at 0

 private int averagedListCount = 0;

 /*

 * @param filename, the file of numbers to be averaged

 * the constructor opens the file, and reads in its contents.

 * the numbers in the file are put into the valueList arraylist.

 */

 public AverageThree(String filename){

 //lets the user know that the file is being read in

 System.out.println("Reading file...");

 //used in file input

 FileReader reader;

 BufferedReader buffer;

 try {

 //creates the objects used during file input

 reader = new FileReader(filename);

 buffer = new BufferedReader(reader);

 //reads the first line of the file and starts the line count

 // at 0

 String line = buffer.readLine();

 valueListCount = 0;

 //keeps track of the number read in off the file

 double number;

 //the program keeps reading in lines until its value is null

 while(line != null){

 //gets the double from the line and adds the number to the

 // arraylist

 number = Double.parseDouble(line);

 valueList.add(number);

//reads in the next line of the file and updates the line //

 count

 line = buffer.readLine();

 valueListCount++;

 21

 }

 //closes the file input objects

 reader.close();

 buffer.close();

 } catch (FileNotFoundException e) {

 System.out.println("Error: File not found.");

 } catch (IOException e) {

 System.out.println("Error: I/O Excpetion");

 }

 }

 /*

 * takes the valueList and averages it together over sets of three

 * values. the values are the put into the averagedList arraylist.

 */

 public void average(){

 //lets the user know the file is now being averaged

 System.out.println("Averaging file...");

 //all the values used to calculate the average start at 0

 averagedListCount = 0;

 double val1 = 0, val2 = 0, val3 = 0;

 double average = 0;

 //gets the first three values in valueList

 val1 = valueList.get(averagedListCount);

 val2 = valueList.get(averagedListCount + 1);

 val3 = valueList.get(averagedListCount + 2);

 //values keep getting averaged until there are not enough values

 // to average together at the end, or when there are less than

 // three values left in the arraylist

 while(averagedListCount+3 < valueListCount){

 //the average is the sum of all three values divided by 3. then

 // the average is added to the averagedList arraylist and its

 // count is increased.

 average = (val1 + val2 + val3) / 3;

 averagedList.add(average);

 averagedListCount++;

 //then the next three values are taken from valueList. each time,

 // two of the previous values are averaged along with one new

// one.

 val1 = valueList.get(averagedListCount);

 val2 = valueList.get(averagedListCount + 1);

 val3 = valueList.get(averagedListCount + 2);

 }

 //the averagedList can optionally be printed out to the console

 //System.out.println(averagedList);

 }

 /*

 * @param outoutFilename, the file where the averaged values will be

 * printed

 * prints the averagedList out into the specified file line by line

 */

 public void output(String outputFilename){

 //lets the user know the file is printing

 System.out.println("Printing file...");

 //used in file output

 FileWriter file;

 PrintWriter writer;

 //the number of lines that have been printed out

 int writingCount = 0;

 22

 try {

 //creates the objects used during file output

 file = new FileWriter(outputFilename);

 writer= new PrintWriter(file);

 //the program keeps printing lines as long as there are still

 // values in averagedList that have not been printed yet

 while(writingCount < averagedListCount){

 //prints the value in averagedList at the specified count,

 // then updates the count

 writer.println(averagedList.get(writingCount));

 writingCount++;

 }

 //closes the file output objects

 file.close();

 writer.close();

 } catch (IOException e) {

 System.out.println("Error: I/O Exception");

 }

 //lets the user know that the program has finished

 System.out.println("Done!");

 System.out.println();

 }

}

Row1Left.java

/*

 * runs AverageThree for all the row 1, left seat data

 */

public class Row1Left {

 public static void main(String[] args) {

 //Row 1, Left seat

 //trial 1

 /*

 * "row1LT1time.txt"

 * "row1LT1X.txt"

 * "row1LT1Y.txt"

 * "row1LT1Z.txt"

 *

 * "row1LT1timeAverage.txt"

 * "row1LT1XAverage.txt"

 * "row1LT1YAverage.txt"

 * "row1LT1ZAverage.txt"

 */

 AverageThree av3 = new AverageThree("row1LT1time.txt");

 av3.average();

 av3.output("row1LT1timeAverage.txt");

 av3 = new AverageThree("row1LT1X.txt");

 av3.average();

 av3.output("row1LT1XAverage.txt");

 av3 = new AverageThree("row1LT1Y.txt");

 av3.average();

 av3.output("row1LT1YAverage.txt");

 av3 = new AverageThree("row1LT1Z.txt");

 av3.average();

 av3.output("row1LT1ZAverage.txt");

 //trial 2

 /*

 23

 * "row1LT2time.txt"

 * "row1LT2X.txt"

 * "row1LT2Y.txt"

 * "row1LT2Z.txt"

 *

 * "row1LT2timeAverage.txt"

 * "row1LT2XAverage.txt"

 * "row1LT2YAverage.txt"

 * "row1LT2ZAverage.txt"

 */

 av3 = new AverageThree("row1LT2time.txt");

 av3.average();

 av3.output("row1LT2timeAverage.txt");

 av3 = new AverageThree("row1LT2X.txt");

 av3.average();

 av3.output("row1LT2XAverage.txt");

 av3 = new AverageThree("row1LT2Y.txt");

 av3.average();

 av3.output("row1LT2YAverage.txt");

 av3 = new AverageThree("row1LT2Z.txt");

 av3.average();

 av3.output("row1LT2ZAverage.txt");

 //trial 3

 /*

 * "row1LT3time.txt"

 * "row1LT3X.txt"

 * "row1LT3Y.txt"

 * "row1LT3Z.txt"

 *

 * "row1LT3timeAverage.txt"

 * "row1LT3XAverage.txt"

 * "row1LT3YAverage.txt"

 * "row1LT3ZAverage.txt"

 */

 av3 = new AverageThree("row1LT3time.txt");

 av3.average();

 av3.output("row1LT3timeAverage.txt");

 av3 = new AverageThree("row1LT3X.txt");

 av3.average();

 av3.output("row1LT3XAverage.txt");

 av3 = new AverageThree("row1LT3Y.txt");

 av3.average();

 av3.output("row1LT3YAverage.txt");

 av3 = new AverageThree("row1LT3Z.txt");

 av3.average();

 av3.output("row1LT3ZAverage.txt");

 //trial 4

 /*

 * "row1LT4time.txt"

 * "row1LT4X.txt"

 * "row1LT4Y.txt"

 * "row1LT4Z.txt"

 *

 * "row1LT4timeAverage.txt"

 * "row1LT4XAverage.txt"

 * "row1LT4YAverage.txt"

 * "row1LT4ZAverage.txt"

 */

 av3 = new AverageThree("row1LT4time.txt");

 av3.average();

 av3.output("row1LT4timeAverage.txt");

 av3 = new AverageThree("row1LT4X.txt");

 24

 av3.average();

 av3.output("row1LT4XAverage.txt");

 av3 = new AverageThree("row1LT4Y.txt");

 av3.average();

 av3.output("row1LT4YAverage.txt");

 av3 = new AverageThree("row1LT4Z.txt");

 av3.average();

 av3.output("row1LT4ZAverage.txt");

 //trial 5

 /*

 * "row1LT5time.txt"

 * "row1LT5X.txt"

 * "row1LT5Y.txt"

 * "row1LT5Z.txt"

 *

 * "row1LT5timeAverage.txt"

 * "row1LT5XAverage.txt"

 * "row1LT5YAverage.txt"

 * "row1LT5ZAverage.txt"

 */

 av3 = new AverageThree("row1LT5time.txt");

 av3.average();

 av3.output("row1LT5timeAverage.txt");

 av3 = new AverageThree("row1LT5X.txt");

 av3.average();

 av3.output("row1LT5XAverage.txt");

 av3 = new AverageThree("row1LT5Y.txt");

 av3.average();

 av3.output("row1LT5YAverage.txt");

 av3 = new AverageThree("row1LT5Z.txt");

 av3.average();

 av3.output("row1LT5ZAverage.txt");

 //trial 6

 /*

 * "row1LT6time.txt"

 * "row1LT6X.txt"

 * "row1LT6Y.txt"

 * "row1LT6Z.txt"

 *

 * "row1LT6timeAverage.txt"

 * "row1LT6XAverage.txt"

 * "row1LT6YAverage.txt"

 * "row1LT6ZAverage.txt"

 */

 av3 = new AverageThree("row1LT6time.txt");

 av3.average();

 av3.output("row1LT6timeAverage.txt");

 av3 = new AverageThree("row1LT6X.txt");

 av3.average();

 av3.output("row1LT6XAverage.txt");

 av3 = new AverageThree("row1LT6Y.txt");

 av3.average();

 av3.output("row1LT6YAverage.txt");

 av3 = new AverageThree("row1LT6Z.txt");

 av3.average();

 av3.output("row1LT6ZAverage.txt");

 }

}

 25

Row1Right.java

/*

 * runs AverageThree for all the row 1, right seat data

 */

public class Row1Right {

 public static void main(String[] args) {

 //Row 1, Right seat

 //trial 1

 /*

 * "row1RT1time.txt"

 * "row1RT1X.txt"

 * "row1RT1Y.txt"

 * "row1RT1Z.txt"

 *

 * "row1RT1timeAverage.txt"

 * "row1RT1XAverage.txt"

 * "row1RT1YAverage.txt"

 * "row1RT1ZAverage.txt"

 */

 AverageThree av3 = new AverageThree("row1RT1time.txt");

 av3.average();

 av3.output("row1RT1timeAverage.txt");

 av3 = new AverageThree("row1RT1X.txt");

 av3.average();

 av3.output("row1RT1XAverage.txt");

 av3 = new AverageThree("row1RT1Y.txt");

 av3.average();

 av3.output("row1RT1YAverage.txt");

 av3 = new AverageThree("row1RT1Z.txt");

 av3.average();

 av3.output("row1RT1ZAverage.txt");

 //trial 2

 /*

 * "row1RT2time.txt"

 * "row1RT2X.txt"

 * "row1RT2Y.txt"

 * "row1RT2Z.txt"

 *

 * "row1RT2timeAverage.txt"

 * "row1RT2XAverage.txt"

 * "row1RT2YAverage.txt"

 * "row1RT2ZAverage.txt"

 */

 av3 = new AverageThree("row1RT2time.txt");

 av3.average();

 av3.output("row1RT2timeAverage.txt");

 av3 = new AverageThree("row1RT2X.txt");

 av3.average();

 av3.output("row1RT2XAverage.txt");

 av3 = new AverageThree("row1RT2Y.txt");

 av3.average();

 av3.output("row1RT2YAverage.txt");

 av3 = new AverageThree("row1RT2Z.txt");

 av3.average();

 av3.output("row1RT2ZAverage.txt");

 //trial 3

 /*

 * "row1RT3time.txt"

 26

 * "row1RT3X.txt"

 * "row1RT3Y.txt"

 * "row1RT3Z.txt"

 *

 * "row1RT3timeAverage.txt"

 * "row1RT3XAverage.txt"

 * "row1RT3YAverage.txt"

 * "row1RT3ZAverage.txt"

 */

 av3 = new AverageThree("row1RT3time.txt");

 av3.average();

 av3.output("row1RT3timeAverage.txt");

 av3 = new AverageThree("row1RT3X.txt");

 av3.average();

 av3.output("row1RT3XAverage.txt");

 av3 = new AverageThree("row1RT3Y.txt");

 av3.average();

 av3.output("row1RT3YAverage.txt");

 av3 = new AverageThree("row1RT3Z.txt");

 av3.average();

 av3.output("row1RT3ZAverage.txt");

 //trial 4

 /*

 * "row1RT4time.txt"

 * "row1RT4X.txt"

 * "row1RT4Y.txt"

 * "row1RT4Z.txt"

 *

 * "row1RT4timeAverage.txt"

 * "row1RT4XAverage.txt"

 * "row1RT4YAverage.txt"

 * "row1RT4ZAverage.txt"

 */

 av3 = new AverageThree("row1RT4time.txt");

 av3.average();

 av3.output("row1RT4timeAverage.txt");

 av3 = new AverageThree("row1RT4X.txt");

 av3.average();

 av3.output("row1RT4XAverage.txt");

 av3 = new AverageThree("row1RT4Y.txt");

 av3.average();

 av3.output("row1RT4YAverage.txt");

 av3 = new AverageThree("row1RT4Z.txt");

 av3.average();

 av3.output("row1RT4ZAverage.txt");

 //trial 5

 /*

 * "row1RT5time.txt"

 * "row1RT5X.txt"

 * "row1RT5Y.txt"

 * "row1RT5Z.txt"

 *

 * "row1RT5timeAverage.txt"

 * "row1RT5XAverage.txt"

 * "row1RT5YAverage.txt"

 * "row1RT5ZAverage.txt"

 */

 av3 = new AverageThree("row1RT5time.txt");

 av3.average();

 av3.output("row1RT5timeAverage.txt");

 av3 = new AverageThree("row1RT5X.txt");

 27

 av3.average();

 av3.output("row1RT5XAverage.txt");

 av3 = new AverageThree("row1RT5Y.txt");

 av3.average();

 av3.output("row1RT5YAverage.txt");

 av3 = new AverageThree("row1RT5Z.txt");

 av3.average();

 av3.output("row1RT5ZAverage.txt");

 //trial 6

 /*

 * "row1RT6time.txt"

 * "row1RT6X.txt"

 * "row1RT6Y.txt"

 * "row1RT6Z.txt"

 *

 * "row1RT6timeAverage.txt"

 * "row1RT6XAverage.txt"

 * "row1RT6YAverage.txt"

 * "row1RT6ZAverage.txt"

 */

 av3 = new AverageThree("row1RT6time.txt");

 av3.average();

 av3.output("row1RT6timeAverage.txt");

 av3 = new AverageThree("row1RT6X.txt");

 av3.average();

 av3.output("row1RT6XAverage.txt");

 av3 = new AverageThree("row1RT6Y.txt");

 av3.average();

 av3.output("row1RT6YAverage.txt");

 av3 = new AverageThree("row1RT6Z.txt");

 av3.average();

 av3.output("row1RT6ZAverage.txt");

 }

}

Row12Left.java

/*

 * runs AverageThree for all the row 12, left seat data

 */

public class Row12Left {

 public static void main(String[] args) {

 //Row 12, Left seat

 //trial 1

 /*

 * "row12LT1time.txt"

 * "row12LT1X.txt"

 * "row12LT1Y.txt"

 * "row12LT1Z.txt"

 *

 * "row12LT1timeAverage.txt"

 * "row12LT1XAverage.txt"

 * "row12LT1YAverage.txt"

 * "row12LT1ZAverage.txt"

 */

 AverageThree av3 = new AverageThree("row12LT1time.txt");

 av3.average();

 av3.output("row12LT1timeAverage.txt");

 28

 av3 = new AverageThree("row12LT1X.txt");

 av3.average();

 av3.output("row12LT1XAverage.txt");

 av3 = new AverageThree("row12LT1Y.txt");

 av3.average();

 av3.output("row12LT1YAverage.txt");

 av3 = new AverageThree("row12LT1Z.txt");

 av3.average();

 av3.output("row12LT1ZAverage.txt");

 //trial 2

 /*

 * "row12LT2time.txt"

 * "row12LT2X.txt"

 * "row12LT2Y.txt"

 * "row12LT2Z.txt"

 *

 * "row12LT2timeAverage.txt"

 * "row12LT2XAverage.txt"

 * "row12LT2YAverage.txt"

 * "row12LT2ZAverage.txt"

 */

 av3 = new AverageThree("row12LT2time.txt");

 av3.average();

 av3.output("row12LT2timeAverage.txt");

 av3 = new AverageThree("row12LT2X.txt");

 av3.average();

 av3.output("row12LT2XAverage.txt");

 av3 = new AverageThree("row12LT2Y.txt");

 av3.average();

 av3.output("row12LT2YAverage.txt");

 av3 = new AverageThree("row12LT2Z.txt");

 av3.average();

 av3.output("row12LT2ZAverage.txt");

 //trial 3

 /*

 * "row12LT3time.txt"

 * "row12LT3X.txt"

 * "row12LT3Y.txt"

 * "row12LT3Z.txt"

 *

 * "row12LT3timeAverage.txt"

 * "row12LT3XAverage.txt"

 * "row12LT3YAverage.txt"

 * "row12LT3ZAverage.txt"

 */

 av3 = new AverageThree("row12LT3time.txt");

 av3.average();

 av3.output("row12LT3timeAverage.txt");

 av3 = new AverageThree("row12LT3X.txt");

 av3.average();

 av3.output("row12LT3XAverage.txt");

 av3 = new AverageThree("row12LT3Y.txt");

 av3.average();

 av3.output("row12LT3YAverage.txt");

 av3 = new AverageThree("row12LT3Z.txt");

 av3.average();

 av3.output("row12LT3ZAverage.txt");

 //trial 4

 /*

 * "row12LT4time.txt"

 29

 * "row12LT4X.txt"

 * "row12LT4Y.txt"

 * "row12LT4Z.txt"

 *

 * "row12LT4timeAverage.txt"

 * "row12LT4XAverage.txt"

 * "row12LT4YAverage.txt"

 * "row12LT4ZAverage.txt"

 */

 av3 = new AverageThree("row12LT4time.txt");

 av3.average();

 av3.output("row12LT4timeAverage.txt");

 av3 = new AverageThree("row12LT4X.txt");

 av3.average();

 av3.output("row12LT4XAverage.txt");

 av3 = new AverageThree("row12LT4Y.txt");

 av3.average();

 av3.output("row12LT4YAverage.txt");

 av3 = new AverageThree("row12LT4Z.txt");

 av3.average();

 av3.output("row12LT4ZAverage.txt");

 //trial 5

 /*

 * "row12LT5time.txt"

 * "row12LT5X.txt"

 * "row12LT5Y.txt"

 * "row12LT5Z.txt"

 *

 * "row12LT5timeAverage.txt"

 * "row12LT5XAverage.txt"

 * "row12LT5YAverage.txt"

 * "row12LT5ZAverage.txt"

 */

 av3 = new AverageThree("row12LT5time.txt");

 av3.average();

 av3.output("row12LT5timeAverage.txt");

 av3 = new AverageThree("row12LT5X.txt");

 av3.average();

 av3.output("row12LT5XAverage.txt");

 av3 = new AverageThree("row12LT5Y.txt");

 av3.average();

 av3.output("row12LT5YAverage.txt");

 av3 = new AverageThree("row12LT5Z.txt");

 av3.average();

 av3.output("row12LT5ZAverage.txt");

 //trial 6

 /*

 * "row12LT6time.txt"

 * "row12LT6X.txt"

 * "row12LT6Y.txt"

 * "row12LT6Z.txt"

 *

 * "row12LT6timeAverage.txt"

 * "row12LT6XAverage.txt"

 * "row12LT6YAverage.txt"

 * "row12LT6ZAverage.txt"

 */

 av3 = new AverageThree("row12LT6time.txt");

 av3.average();

 av3.output("row12LT6timeAverage.txt");

 av3 = new AverageThree("row12LT6X.txt");

 av3.average();

 30

 av3.output("row12LT6XAverage.txt");

 av3 = new AverageThree("row12LT6Y.txt");

 av3.average();

 av3.output("row12LT6YAverage.txt");

 av3 = new AverageThree("row12LT6Z.txt");

 av3.average();

 av3.output("row12LT6ZAverage.txt");

 }

}

Row12Right.java

/*

 * runs AverageThree for all the row 12, right seat data

 */

public class Row12Right {

 public static void main(String[] args) {

 //Row 12, Right seat

 //trial 1

 /*

 * "row12RT1time.txt"

 * "row12RT1X.txt"

 * "row12RT1Y.txt"

 * "row12RT1Z.txt"

 *

 * "row12RT1timeAverage.txt"

 * "row12RT1XAverage.txt"

 * "row12RT1YAverage.txt"

 * "row12RT1ZAverage.txt"

 */

 AverageThree av3 = new AverageThree("row12RT1time.txt");

 av3.average();

 av3.output("row12RT1timeAverage.txt");

 av3 = new AverageThree("row12RT1X.txt");

 av3.average();

 av3.output("row12RT1XAverage.txt");

 av3 = new AverageThree("row12RT1Y.txt");

 av3.average();

 av3.output("row12RT1YAverage.txt");

 av3 = new AverageThree("row12RT1Z.txt");

 av3.average();

 av3.output("row12RT1ZAverage.txt");

 //trial 2

 /*

 * "row12RT2time.txt"

 * "row12RT2X.txt"

 * "row12RT2Y.txt"

 * "row12RT2Z.txt"

 *

 * "row12RT2timeAverage.txt"

 * "row12RT2XAverage.txt"

 * "row12RT2YAverage.txt"

 * "row12RT2ZAverage.txt"

 */

 av3 = new AverageThree("row12RT2time.txt");

 av3.average();

 av3.output("row12RT2timeAverage.txt");

 av3 = new AverageThree("row12RT2X.txt");

 31

 av3.average();

 av3.output("row12RT2XAverage.txt");

 av3 = new AverageThree("row12RT2Y.txt");

 av3.average();

 av3.output("row12RT2YAverage.txt");

 av3 = new AverageThree("row12RT2Z.txt");

 av3.average();

 av3.output("row12RT2ZAverage.txt");

 //trial 3

 /*

 * "row12RT3time.txt"

 * "row12RT3X.txt"

 * "row12RT3Y.txt"

 * "row12RT3Z.txt"

 *

 * "row12RT3timeAverage.txt"

 * "row12RT3XAverage.txt"

 * "row12RT3YAverage.txt"

 * "row12RT3ZAverage.txt"

 */

 av3 = new AverageThree("row12RT3time.txt");

 av3.average();

 av3.output("row12RT3timeAverage.txt");

 av3 = new AverageThree("row12RT3X.txt");

 av3.average();

 av3.output("row12RT3XAverage.txt");

 av3 = new AverageThree("row12RT3Y.txt");

 av3.average();

 av3.output("row12RT3YAverage.txt");

 av3 = new AverageThree("row12RT3Z.txt");

 av3.average();

 av3.output("row12RT3ZAverage.txt");

 //trial 4

 /*

 * "row12RT4time.txt"

 * "row12RT4X.txt"

 * "row12RT4Y.txt"

 * "row12RT4Z.txt"

 *

 * "row12RT4timeAverage.txt"

 * "row12RT4XAverage.txt"

 * "row12RT4YAverage.txt"

 * "row12RT4ZAverage.txt"

 */

 av3 = new AverageThree("row12RT4time.txt");

 av3.average();

 av3.output("row12RT4timeAverage.txt");

 av3 = new AverageThree("row12RT4X.txt");

 av3.average();

 av3.output("row12RT4XAverage.txt");

 av3 = new AverageThree("row12RT4Y.txt");

 av3.average();

 av3.output("row12RT4YAverage.txt");

 av3 = new AverageThree("row12RT4Z.txt");

 av3.average();

 av3.output("row12RT4ZAverage.txt");

 //trial 5

 /*

 * "row12RT5time.txt"

 * "row12RT5X.txt"

 32

 * "row12RT5Y.txt"

 * "row12RT5Z.txt"

 *

 * "row12RT5timeAverage.txt"

 * "row12RT5XAverage.txt"

 * "row12RT5YAverage.txt"

 * "row12RT5ZAverage.txt"

 */

 av3 = new AverageThree("row12RT5time.txt");

 av3.average();

 av3.output("row12RT5timeAverage.txt");

 av3 = new AverageThree("row12RT5X.txt");

 av3.average();

 av3.output("row12RT5XAverage.txt");

 av3 = new AverageThree("row12RT5Y.txt");

 av3.average();

 av3.output("row12RT5YAverage.txt");

 av3 = new AverageThree("row12RT5Z.txt");

 av3.average();

 av3.output("row12RT5ZAverage.txt");

 //trial 6

 /*

 * "row12RT6time.txt"

 * "row12RT6X.txt"

 * "row12RT6Y.txt"

 * "row12RT6Z.txt"

 *

 * "row12RT6timeAverage.txt"

 * "row12RT6XAverage.txt"

 * "row12RT6YAverage.txt"

 * "row12RT6ZAverage.txt"

 */

 av3 = new AverageThree("row12RT6time.txt");

 av3.average();

 av3.output("row12RT6timeAverage.txt");

 av3 = new AverageThree("row12RT6X.txt");

 av3.average();

 av3.output("row12RT6XAverage.txt");

 av3 = new AverageThree("row12RT6Y.txt");

 av3.average();

 av3.output("row12RT6YAverage.txt");

 av3 = new AverageThree("row12RT6Z.txt");

 av3.average();

 av3.output("row12RT6ZAverage.txt");

 }

}

3
3

 A
p

p
en

d
ix

 3
: A

ccelera
tio

n
 G

ra
p

h
s

 Graph of the X Acceleration for all four seats.

3
4

 Graph of the Y Acceleration for all four seats.

3
5

 Graph of the Z Acceleration for all four seats.

 36

Appendix 4: Z Acceleration Bunny Hills Data Table

This data table is an excerpt from the Z acceleration data. It shows the values of the

Z Acceleration for all four seats over the bunny hills. The highest negative values for Z

acceleration have been highlighted. The top of the first hill is highlighted in yellow, the top

of the second is green, and the top of the third hill is pink. Acceleration values that qualify as

being in free fall, that is, are less than -0.75g, are shown in red text.

Time 1L Z 1R Z 12L Z 12R Z

77.0 0.19578 -0.00988 -0.27982 -0.32698

77.1 0.06565 0.18306 -0.34695 -0.35990

77.2 -0.01999 0.18455 -0.38096 -0.33607

77.3 0.02977 0.15628 -0.40129 -0.26481

77.4 0.05503 -0.06472 -0.33452 -0.44279

77.5 0.12697 -0.09790 -0.21607 -0.46305

77.6 0.01548 -0.27891 -0.15940 -0.33404

77.7 -0.14536 -0.39048 -0.02638 -0.20855

77.8 -0.35519 -0.55032 -0.04842 -0.14512

77.9 -0.49369 -0.55106 0.00565 -0.25586

78.0 -0.60896 -0.59751 -0.03206 -0.20785

78.1 -0.56546 -0.60418 0.08660 -0.30255

78.2 -0.48990 -0.63121 0.14591 -0.34110

78.3 -0.49269 -0.53277 0.18411 -0.24159

78.4 -0.45235 -0.37194 0.11529 -0.20913

78.5 -0.43968 -0.23092 0.08115 -0.05160

78.6 -0.32769 -0.10618 0.01020 -0.09793

78.7 -0.25523 0.01509 0.02815 0.02298

78.8 -0.03851 0.25261 0.08842 0.02441

78.9 0.24368 0.37178 0.16498 0.03878

79.0 0.38492 0.40754 0.15909 0.07005

79.1 0.50682 0.48094 0.11083 -0.00094

79.2 0.63812 0.50747 -0.00114 -0.08546

79.3 0.62731 0.60075 0.00984 -0.24352

79.4 0.62684 0.70342 -0.00962 -0.14322

79.5 0.61032 0.69913 0.01192 -0.03484

79.6 0.65548 0.76162 0.00300 0.02525

79.7 0.36072 0.65563 -0.03933 -0.05582

79.8 0.28163 0.53461 -0.20501 -0.13251

79.9 0.25983 0.41580 -0.35043 -0.21136

80.0 0.38210 0.18424 -0.45573 -0.36755

80.1 0.22170 0.14749 -0.54598 -0.52612

80.2 -0.02302 -0.22278 -0.70895 -0.67660

80.3 -0.43880 -0.39463 -0.83670 -0.76660

80.4 -0.56853 -0.38649 -0.80006 -0.73057

80.5 -0.69945 -0.44287 -0.74073 -0.69849

80.6 -0.64477 -0.63941 -0.53402 -0.61134

80.7 -0.88342 -1.02188 -0.25987 -0.46153

80.8 -0.99666 -1.02482 0.03046 -0.22340

80.9 -0.93610 -0.93056 0.18657 0.14819

81.0 -0.83590 -0.81109 0.34948 0.38076

81.1 -0.69429 -0.81376 0.53038 0.57173

81.2 -0.69167 -0.70648 0.64623 0.66695

81.3 -0.61188 -0.55730 0.73564 0.80747

81.4 -0.40047 -0.34910 0.74257 0.96348

81.5 -0.04237 -0.10156 0.81370 1.02541

81.6 0.19124 0.11775 0.82611 1.03965

81.7 0.47701 0.42832 0.88452 1.02966

81.8 0.57716 0.56935 0.88270 0.94958

81.9 0.76488 0.68631 0.71651 0.72296

82.0 0.73798 0.75578 0.45930 0.46691

82.1 0.80106 0.77500 0.16107 0.16670

82.2 0.79745 0.73906 -0.03911 0.03039

82.3 0.73832 0.49346 -0.20185 -0.15539

82.4 0.49316 0.18925 -0.31578 -0.21520

82.5 0.14457 -0.21180 -0.44880 -0.42736

82.6 -0.16294 -0.51911 -0.59640 -0.64805

82.7 -0.51875 -0.70799 -0.69264 -0.86622

82.8 -0.75469 -0.87146 -0.77036 -0.87575

82.9 -0.98391 -0.96012 -0.81948 -0.85292

 37

83.0 -0.97947 -1.07949 -0.89938 -0.83779

83.1 -0.97746 -1.01346 -0.83905 -0.95076

83.2 -0.93966 -0.99525 -0.76451 -0.83892

83.3 -0.91956 -0.88544 -0.64587 -0.69892

83.4 -0.79909 -0.78743 -0.48170 -0.45139

83.5 -0.65004 -0.61671 -0.26800 -0.32422

83.6 -0.47829 -0.44622 0.00394 -0.07164

83.7 -0.27341 -0.34012 0.26475 0.20043

83.8 -0.05786 -0.20520 0.57454 0.52904

83.9 0.19437 0.01559 0.73327 0.70084

84.0 0.37665 0.35406 0.77855 0.83304

84.1 0.46134 0.62928 0.75972 0.83259

84.2 0.54342 0.48820 0.87020 0.79378

84.3 0.64003 0.33507 0.75510 0.84917

84.4 0.79495 0.10470 0.68883 0.73657

84.5 0.75324 0.23285 0.50702 0.58726

84.6 0.65464 0.50259 0.31683 0.25880

84.7 0.54080 0.61208 0.03412 0.09160

84.8 0.44517 0.63392 -0.29333 -0.05523

84.9 0.33565 0.24206 -0.49002 -0.27243

85.0 0.17507 0.16116 -0.66603 -0.50004

85.1 0.01224 -0.10166 -0.72957 -0.66187

85.2 -0.24518 -0.30970 -0.78616 -0.78115

85.3 -0.46378 -0.67989 -0.83561 -0.84097

85.4 -0.59129 -0.81992 -0.87305 -0.86473

85.5 -0.62317 -0.89294 -0.81671 -0.81905

85.6 -0.71558 -0.79636 -0.73394 -0.79545

85.7 -0.72246 -0.74075 -0.63961 -0.77282

85.8 -0.66413 -0.43764 -0.42537 -0.62339

85.9 -0.42570 -0.33734 -0.29620 -0.46956

86.0 -0.25402 -0.18031 -0.04608 -0.27056

86.1 -0.04162 -0.29703 0.09667 -0.03096

86.2 0.03814 -0.22395 0.38572 0.23682

86.3 0.07791 -0.21481 0.55196 0.46932

86.4 -0.02837 -0.09901 0.68251 0.52718

86.5 -0.08444 -0.05939 0.77956 0.62469

86.6 -0.09716 -0.02477 0.79228 0.67340

86.7 -0.04422 -0.04479 0.76262 0.65861

86.8 0.00087 -0.12722 0.66310 0.59333

86.9 -0.03082 -0.13261 0.63390 0.40399

87.0 -0.08979 -0.05638 0.59831 0.29845

87.1 -0.08375 0.05750 0.44962 0.25618

87.2 -0.08968 -0.03153 0.21754 0.22289

87.3 -0.00085 0.02320 0.07009 0.13902

87.4 -0.08033 -0.05981 -0.02641 -0.05419

87.5 -0.01770 0.08097 -0.13164 -0.12638

87.6 -0.10093 0.13565 -0.34080 -0.24405

87.7 -0.07160 0.19186 -0.40854 -0.31524

87.8 -0.11239 0.13838 -0.44930 -0.43440

87.9 -0.01867 0.10090 -0.49525 -0.48335

88.0 0.02501 0.08318 -0.57801 -0.55713

88.1 0.04809 0.03142 -0.56969 -0.56740

88.2 0.00300 -0.00749 -0.51777 -0.56579

88.3 -0.00303 -0.07774 -0.38831 -0.49899

88.4 0.03370 -0.00260 -0.28172 -0.38101

88.5 0.08429 -0.06732 -0.17401 -0.25705

88.6 0.13831 0.08984 -0.15693 -0.19901

88.7 0.12417 0.11511 -0.12302 -0.17890

88.8 0.09764 0.11082 -0.09669 -0.17392

88.9 0.04991 0.06227 -0.01878 -0.06438

89.0 0.03528 0.04164 -0.01527 -0.03476

Appendix 5: Bunny Hills Graphs

 Row 1 and row 12 have been split into two different graphs so it is easier to see at

what time the rows go over the tops of the bunny hills. The three bunny hills have been

labeled on the graphs.

	Claremont Colleges
	Scholarship @ Claremont
	2012

	Where Is the Best Place to Sit on a Roller Coaster? Forces, Physics, and Fun at Disneyland
	Kelsey Lubetich
	Recommended Citation

	Microsoft Word - 294925-text.native.1335840172.doc

