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Abstract

DNR is a research-based framework which seeks to understand fundamental prob-
lems of mathematics learning and teaching. This paper discusses DNR with a
particular reference to a curricular unit on complex numbers. Originally designed
for college-bound high school students, the unit is structured to progress along
a path that roughly parallels the development of complex numbers in the history
of mathematics. We have tested the unit in three teaching experiments with in-
service and prospective secondary mathematics teachers. The results from these
experiments demonstrate the ways of thinking afforded and targeted by the unit.
The correspondence between these ways of thinking and the Standards Practices
outlined by the Common Core State Standards are also discussed.

This paper discusses a curricular unit on complex numbers' and its the-
oretical foundation. Originally designed for college-bound high school stu-
dents,? the unit was implemented in three teaching experiments with in-
service and prospective secondary mathematics teachers. Selected learning
outcomes from these experiments are also discussed in the paper, primar-
ily for two purposes: (a) to demonstrate the emergence of ways of thinking
afforded by the unit and (b) to illustrate the pedagogical approach to its
implementation.

!The unit is available at http://www.math.ucsd.edu/~harel/projects/dnr.html.

2This is the last in a 10-unit high school algebra curriculum, called High School Algebra
Essentials. I embarked on the development of this curriculum after the publication of two
independent reviews of four current high school mathematics curricula [25]. The reviews
reveal grave compromises of the mathematical integrity of the curricular content of these
programs.
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The theoretical underpinning of the unit is DNR-based instruction in
mathematics® (DNR, for short). DNR is a research-based framework which
seeks to understand fundamental problems of mathematics learning and
teaching (e.g., [14, 15, 16]). In earlier work we have used this understanding
to investigate existing products and develop new ones that would advance the
quality of mathematics education (see for instance [17, 20, 22, 23, 24, 25]).
In this respect, DNR is consistent with Stokes” model [40] for thinking about
scientific and technological research which blends two motives: the pursuit
for fundamental understanding and considerations of use.

The paper is organized around six sections:

e Section 1 outlines features of DNR-based curricula, focusing mainly on
those that are most relevant to the curricular unit under discussion.
This may be viewed as a brief introduction to DNR as well; for the
reader willing to look elsewhere for more, we provide references.

e Section 2 presents a brief account of the historical development of com-
plex numbers and relates it to specific curricular considerations.

e Section 3 describes the subjects and methodology of the three teaching
experiments where we tested the unit.

e Section 4 outlines the content and structure of the unit, and describes
students” mathematical behaviors during its implementation.

e Section 5 describes salient ways of thinking targeted and afforded by
the unit, as well as their correspondence to the mathematical practices
advocated by the Common Core State Standards [28]. In particular, we
offer a definition of structural reasoning, and classify its manifestations
in our teaching experiments into two styles of reasoning.

e Section 6 concludes with a summary and questions for further research.

3Here and in the rest of the paper, several words and phrases appear in italics. Often
I provide working definitions and brief descriptions for these that should make the paper
coherent and self-contained. At other times, the common meanings of the constituent
words will suffice to follow the arguments of the paper. However for the reader interested or
well-versed in mathematics education research, I should emphasize that these are technical
terms that have precise meaning in their context and I use them as such.
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1. DNR and DNR-based Curricula

DNR has been developed in a long series of teaching experiments, spread
over almost three decades, in elementary, secondary, and undergraduate
mathematics courses, as well as teaching experiments in professional develop-
ment courses for teachers in each of these levels [18]. The study reported here
is a recent project in this series. The development of DNR-based curricular
material is inextricably linked to the development of DNR itself. Essentially,
this is a cyclical approach which advocates development and simultaneous
implementation, with resultant feedback forming the impetus for further con-
sideration of the DNR assumptions and claims and for further development
and refinement of the curricular material.

Briefly, DNR can be thought of as a system consisting of three categories
of constructs: premises—explicit assumptions underlying the DNR concepts
and claims; concepts—constructs defined and oriented within these premises;
and claims—assertions formulated in terms of the DNR concepts, entailed
from the DNR premises, and supported by empirical studies. The system
states three foundational principles: the duality principle (§§1.1), the neces-
sity principle (§§1.2), and the repeated reasoning principle (§§1.3); hence, the
acronym DNR. The other principles in the system are largely derivable from
and organized around these three principles.

Elsewhere we have articulated eight premises for DNR, but we will ex-
plicitly refer to only four in this paper. One of these four, the subjectivity
premise, asserts, after Piaget:

subjectivity: Any observation humans claim to have made is
due to what their mental structure attributes to their environ-
ment.

This assertion plays an axiomatic role in stating definitions and support-
ing claims in DNR. We also need it to set the tone for how the narrative
of this report is to be interpreted. As Steffe and Thompson [39] argue, this
subjective perspective is essential in teaching, in general, and in teaching
experiment methodology, in particular:

In our teaching experiments, we have found it necessary to at-
tribute mathematical realities to students that are independent
of our own mathematical realities. By “independent of our own”
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we mean that we attribute mathematical concepts and opera-
tions to students that they have constructed as a result of their
interactions in their physical and sociocultural milieu [39, page
268|.

In other words, when we describe observations of students’ experiences
we merely offer a model recounting our conception of what we have observed.
Similarly, when we talk about concepts and skills, we mean an individual’s
(or community’s) conceptualization of concepts and skills.

0
|V

v A4

Having offered a lens through which to read this paper, I will now return
to the three DNR foundational principles.

1.1. Ways of Understanding and Ways of Thinking: The Duality Principle

The notions of way of understanding and way of thinking have technical
meanings in DNR (see [14]). For the purposes of this paper, it is sufficient
to think of them as two different categories of knowledge. Ways of under-
standing refer to products, such as definitions, conjectures, theorems, proofs,
problems, and solutions, whereas ways of thinking refer to the mathematical
practices used to create such products. Examples of ways of thinking include
empirical reasoning, deductive reasoning, structural reasoning, heuristics, and
beliefs about the nature of mathematical knowledge and the process of its ac-
quisition.

The content of mathematics is composed of both of these categories of
knowledge. Mathematicians practice mathematics by applying a range of
ways of thinking to reinterpret existing ways of understanding and create
new ones. We state this position as the first of the eight premises of DNR
[14], and call it the knowledge of mathematics premise:

knowledge of mathematics: Knowledge of mathematics con-
sists of all the ways of understanding and ways of thinking that
have been institutionalized throughout history.

Implied in this premise is that instructional objectives should be formu-
lated in terms of both ways of understanding and ways of thinking, not only
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in terms of the former, as is typically the case in traditional curricula.* In my
experience, historical analyses and interactions with research mathematicians
can be of great value in discerning and understanding the development of de-
sirable ways of thinking, particularly, those that brand certain mathematical
areas.

The first feature of DNR-based curricula is that they are designed on
the basis of conceptual analyses that look for connections between ways of
understanding (concepts and skills) and ways of thinking (practices, disposi-
tions, and beliefs). The duality principle—the first of the three principles—
expresses this feature in two dual statements:

DUALITY I: Students at any grade level come with a set of ways of think-
ing, some desirable and some undesirable, that inevitably affect the
ways of understanding we intend to teach them.

DUALITY II: Students develop desirable ways of thinking only through
proper ways of understanding.

The first part of the duality principle has several implications. First, it is
of critical importance to take into account students’ current ways of thinking
in designing a curriculum, because these determine the content which stu-
dents can and cannot learn and the quality of what they will learn. Second,
long term planning for targeted ways of thinking is essential. The absence
of such planning can have undesirable consequences, because, as is implied
from the subjectivity premise, the ways of thinking students acquire now will
affect the quality of the concepts and skills they will learn later. Third, the
formation of ways of thinking is extremely difficult and those that have been
established are hard to alter, (see for instance [7]). Hence, the development
of desirable ways of thinking should not wait until students take advanced
mathematics courses; rather, students must begin constructing them in ele-
mentary and secondary mathematics.

Implied in the second part of the duality principle is that verbally describ-
ing ways of thinking to students before they have developed them through

4 Appreciatively, this implication has been adopted in the Common Core State Stan-
dards: “Designers of curricula, assessments, and professional development should all attend
to the need to connect the mathematical practices [i.e., ways of thinking] to mathematical
content [i.e., ways of understanding] in mathematics instruction” [28].
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the acquisition of ways of understanding would likely have no effect. In par-
ticular, proceduralizing ways of thinking for students—as it is often done
with Pélya’s famous four steps (Read the problem, Write a plan for its solu-
tion, Execute the plan, and Test the solution, as in [31])—could just as likely
have a negative effect on student performance as a positive one.

1.2. Learning, Intellectual Need, and the Necessity Principle
Perhaps the most salient aspect of DNR is its description of learning:

Learning occurs in a continuum of disequilibrium-equilibrium phases,
and its content consists of (a) intellectual and affective needs
that instigate or result from these phases and (b) the ways of
understanding and ways of thinking that are utilized or newly
constructed during these phases.”

This definition rests on several DNR premises (see [15]), but the part
concerning disequilibrium-equilibrium is an outcome of the knowing premise,
which follows from the Piagetian theory of equilibration [44].

knowing: Knowing is a developmental process that proceeds
through a continual tension between assimilation and accommo-
dation, directed toward a (temporary) equilibrium.

With the above we intend to capture three central elements of learning:
(a) that learning occurs through perturbations, both intellectual and emo-
tional, (b) that these perturbations are an integral part of learning, and (c)
that the knowledge utilized, not only that which is newly constructed, is a
component of learning. The inclusion of the latter is justified by the fact that
through the process of learning, old knowledge is re-learned, for example, by
getting reorganized, further encapsulated, better internalized, etc.

One of the most critical pedagogical implications of this description of
learning is the necessity principle—the second foundational principle of DNR:

NECESSITY: For students to learn what we intend to teach
them, they must have a need for it, where ‘need’ refers to intel-
lectual need.

°This is slightly modified from what appeared in [16] and [21]. See an interesting debate
of this definition in [34].
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Perhaps we should clarify here what we mean by intellectual need. We use
the term intellectual need as a category distinct from affective need. Affective
need is a broad class of emotions, global as well as local. Global need includes
one’s desires, volitions, interests, self-determination, and the like [8], while
local need includes sensations of, for example, frustration, perseverance, and
gratification one goes through during the learning process. Intellectual need,
on the other hand, has to do with the disciplinary knowledge born out of
one’s current knowledge through engagement in problematic situations con-
ceived as such by the person.® The notion of intellectual need is inextricably
linked to another notion: epistemological justification. The latter refers to the
learner’s discernment of how and why a particular piece of knowledge came
to be. It involves the learner’s perceived cause for the birth of knowledge.

While both categories of needs are equally important in our theoretical
framework, as is evident from the description of learning provided above,
we have focused mainly on intellectual need in our work on DNR. We have
emphasized only indirectly local aspects of affective need; global aspects of
affective need have not been addressed at all. This is because we believe
that the latter are largely factors of social values, norms, and priorities, as
well as economic considerations, such as market supply and demand, none of
which is under the direct influence and jurisdiction of teachers or curriculum
developers. On the other hand, intellectual need—being the sole mechanism
for knowledge construction—falls under the responsibility of those to whom
the society mandates the devolution of knowledge to its youth. The local
aspects of affective needs are unavoidable as products of learning, and there-
fore are addressed in curriculum design and development, by, for example,
considerations of problem difficulty, length of curricular segments, style and
level of mathematical writing, etc.

For curriculum design, the necessity principle requires that new ways of
understanding and new ways of thinking should emerge from mathematical
problems understood and appreciated as such by the students. And through
the solution of such problems, students should realize the intellectual benefit
of the targeted knowledge.

SFor a technical definition of intellectual need, see [16]. For more discussion on intel-
lectual need and epistemological justification, see [19].
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DNR-based curricula, thus, do not appeal to gimmicks, entertainment, or
contingencies of reward and punishment, but focus primarily on the learner’s
intellectual need by fully utilizing humans’ remarkable capacity to be puz-
zled. Nor do DNR-based curricula compromise the mathematical integrity
of their contents. In DNR, a curriculum is mathematical only if it adheres to
and maintains the essential nature of the mathematics discipline. A “geom-
etry curriculum,” for example, is not geometry if deductive reasoning is not
among its eventual objectives. DNR, however, recognizes that teaching cor-
rect mathematics is not necessarily correct teaching. A teacher may maintain
the mathematical integrity of the content he or she is presenting but neglect
the intellectual need of the students or be mistaken as to what constitutes
such a need for them. In DNR-based instruction, the integrity of the content
taught and the intellectual need of the student are equally central.

The necessity principle manifests itself regularly in the mathematician’s
research practices, though often it does not show up consistently in her teach-
ing practices. The following quote from Poincaré hints at the presence of
considerations of intellectual need and epistemological justification in the
thought process of a great mathematician with deep pedagogical sensitivity.

What is a good definition? For the philosopher or the scientist,
it is a definition which applies to all objects to be defined, and
applies only to them; it is that which satisfies the rules of logic.
But in education it is not that; it is one that can be understood
by the pupils. [...]

[But] what is understanding? Has the word the same meaning for
everybody? Does understanding the demonstration of a theorem
consist in examining each syllogism of which it is composed in
succession and being convinced that it is correct and conforms
to the rules of the game? In the same way, does understanding
a definition consist simply in recognizing that the meaning of all
the terms employed is already known, and being convinced that
it involves no contradiction? ... Not for the majority [of people].
Almost all are more exacting; they want to know not only whether
all the syllogisms of a demonstration are correct, but why they
are linked together in one order rather than in another. As long
as they appear to them engendered by caprice, and not by an
intelligence constantly conscious of the end to be attained, they
do not think they have understood. [30, pages 117-118]
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The structural alignment of the unit we describe here with the historical
development of its subject (see the preamble to §4) may give the impression
that the only kind of necessity that could or should be presented to stu-
dents is the actual history of the mathematical development of the concept.
This is certainly not the case. In [19], I identify five categories of intellectual
need: need for certainty, need for causality, need for computation, need for
communication, and need for structure. Briefly, the need for certainty is the
need to prove, to remove doubts. One’s certainty is achieved when one de-
termines, by whatever means he or she deems appropriate, that an assertion
is true. Truth alone, however, may not be the only need of an individual; she
may also strive to explain why the assertion is true. The need for causality
is the need to explain—to determine a cause of a phenomenon, to under-
stand what makes a phenomenon the way it is. This need does not refer to
physical causality in some real-world situation being mathematically mod-
eled, but to logical explanation within the mathematics itself. The need for
computation includes the need to quantify and to calculate values of quanti-
ties and relations among them by means of symbolic algebra. The need for
communication consists of two reflexive needs: the need for formulation—the
need to transform strings of spoken language into algebraic expressions—
and the need for formalization—the need to externalize the exact meaning
of ideas and concepts and the logical justification for arguments. The need
for structure includes the need to reorganize knowledge learned into a logical
structure.

In modern mathematical practice, these five needs are inextricably linked
and often occur concurrently. The need for computation, in particular, is
strongly connected to other needs. For example, the need to compute the
roots of the cubic equations led to advances in exponential notation, which,
in turn, helped abolish the psychological barrier of dealing with the third de-
gree “by placing all the powers of the unknown on an equal footing” [43, page
38]. Collectively, these five needs are ingrained in all aspects of mathematical
practice—in forming hypotheses, proving and explaining proofs, establishing
common interpretations, definitions, notations, and conventions, describing
mathematical ideas unambiguously, etc. They have driven the historical de-
velopment of mathematics and characterize the organization and practice of
the subject today.
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DNR-based instruction is structured in such a way that these five needs
drive student learning of specific topics. Personally experiencing the differ-
ent needs that drive mathematical practice, students can construct a global
understanding of the epistemology of mathematics as a discipline.

1.3. Repeated Reasoning Principle

Even if concepts and skills are intellectually necessitated, there is still the
task of ensuring that students (a) internalize, (b) organize, and (c) retain this
knowledge. This concern is addressed by the third foundational principle of
DNR, called the repeated reasoning principle:

REPEATED REASONING: Students must practice reason-
ing in order to internalize, organize, and retain ways of under-
standing and ways of thinking.

Research has shown that repeated deliberate practice is a critical factor
in these cognitive processes [6, 9]. Repeated reasoning, not mere drill and
practice of routine problems, is essential to the process of internalization—a
conceptual state where one is able to apply knowledge autonomously and
spontaneously—and reorganization of knowledge. The sequence of problems
must continually call for reasoning through the situations and solutions, and
they must respond to the students’ changing intellectual needs.

0O
U

o

To recap, instructional objectives of DNR-based curricula are formulated
in terms of both ways of understanding and ways of thinking, not only in
terms of the former as is traditionally the case, taking into account (a) the
developmental interdependency between these two categories of knowledge
(the duality principle), (b) students’ intellectual needs (the necessity prin-
ciple) and developmentally appropriate epistemological justifications corre-
sponding to these needs, and (c) factors that facilitate internalization, or-
ganization, and retention of knowledge (the repeated reasoning principle).
These elements serve as the foundations for the design and implementation
of curricula, as we will see in the case of the unit on complex numbers.



12 DNR-Based Curricula: The Case of Complex Numbers

2. A Brief Historical Account

The history of the development of complex numbers can be divided into
three main stages: (1) the solution of the cubic equation, (2) the struggle to
make sense of this solution, (3) the emergence of complex numbers out of this
struggle (see, for example, [43]). In this section, I present a synopsis of this
account, focusing solely on those aspects that were didactically transposed
2, 5] into the curricular content of the unit under discussion.

2.1. Solution to the Cubic Equation

The history of the development of complex numbers begins with the 16"
century mathematicians’ discovery of a solution formula to cubic equations.
Already in 1515 the Italian mathematician del Ferro obtained an algebraic
solution to z* +ma = n. The solution was rediscovered by Tartaglia (1500
1557). Cardano (1501-1576), an Italian mathematician and scientist, re-
ceived the solution from Tartaglia without any justification. In modern
terms, Tartaglia’s solution can be described as follows:

To solve the cubic equation 2 + max = n, first obtain ¢ and u such that

t—u=mn;
tu = (m/3)3.
Now solve this system to obtain:

t=/(n/2)2+ (m/3)3 + (n/2),  u=+/(n/2)?+ (m/3)* = (n/2).

The solution to the cubic equation is then:

v = Vi 5 = N2+ (3 + (/2)— Y 2 + (mf3) — (n]2).

Justifying this solution by substituting x in the equation was far from
trivial in the 16'® century mathematics, for it requires the use of the identity

(u —v)* = u® — 3u®v + 3uv? —v°.
While this identity is easy to prove by means of algebraic rules, the math-
ematics of the 16" century was not equipped with such algebraic concep-
tualizations. Therefore any proof of the identity would have to involve a
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geometric interpretation, which would likely involve the dissection of a cube
in three-dimensional space [43]. Despite this, Cardano was able to justify
Tartaglia’s solution and further offer a solution to the general cubic equa-
tion. In modern notation, Cardano’s solution can be summarized as follows:

To solve the general cubic equation 2® + ax? + bz + ¢ = 0, carry out the
following steps:

A. With the change of variable y = x + ¢, reduce the given equation into
one without the second term:

2

3 a a a\ 2
y +py+q=0, Wherep:b—gandq:c—gb—kZ(g)

B. Set y = v/t + /u. With this substitution, the above equation becomes

(t+u+q) + (\3/%+ \VE) (3€/E+p) =0.
C. This new equation holds if

3
(t+u+¢)=0 and tu+<§> =0.

D. Solve this system to get:
R (GO R GO
E. Conclude:
e DR (TR CRON

F. Substitute p and ¢ from Step A in the above to obtain a solution x to
the given equation.

Given the rudimentary notational system of the 16"® century mathemat-
ics, the solution of the cubic equation was a remarkable achievement—in our
eyes today, as well as in the eyes of the mathematics community then.
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2.2. Intellectual Perturbations Associated with the Cubic Formula

Cardano’s contemporaries looking into this new result encountered three
baffling behaviors.

The first of these behaviors was that the cubic formula, unlike the quadratic
formula (which was known at the time), did not yield all the roots. The
mathematicians likely knew, by experience or intuition, that the number of
solutions can be three, but not knowing anything about the n** roots of unity,
they saw only one solution, and in some cases no solution, in the expression
yielded by the formula. Furthermore, even when a root is expected, it is not
always yielded by the formula. For example, z = 2 is a root to 2®+16 = 12z,
but the root obtained by the cubic formula is —4. Hence, Cardano’s solution
led to an important question: How many roots must a cubic equation have?

I surmise that this behavior was more unsatisfactory than baffling, be-
cause it can be explained by the fact that Cardano’s formula constitutes a
sufficient, not necessary, condition for the cubic equation. This can be seen
in Step C above. While the equation in Step B holds if (t + u + ¢) = 0 and
tu + (5)3 = 0, the converse is trivially not true—a fact which is unlikely to
have gone unnoticed by the mathematicians of the time. We can easily fix
this step by using the identity (u — v)? = u3 — 3u?v + 3uv? — v*, making the
cubic equation logically equivalent to Cardano’s formula (see §§4.1). But as
we indicated earlier, the proof of this identity may not have been accessible
to the mathematicians of the time.

The second baffling behavior is that often the formula yields complicated
expressions for simple roots. Consider, for example, the equation 2® 4+ = 2.
By substitution, we can see that = 1 is a root to this equation. In fact, this
is the only root, since f(z) = 2® + z, being the sum of two monotonically
increasing functions, is an increasing function. On the other hand, the cubic

formula yields
3 2 /7T 3 2 7
=14+ 24/= 1-2,/2
= +3\/;+\/ 3\/;

as a root of the equation. Hence,

N N N N
2 i gi-2 /L =1
+3\/;L 3\/; ’

a rather pleasantly surprising result.
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The third and most perplexing behavior of the cubic formula is that in
certain cases the formula yields meaningless expressions when “real” roots are
known. For example, for 2% = 15244, the formula yields z = /2 4+ v/—121+
V2 — v/—121, where we can easily see that z = 4 is a root. The puzzlement

about this behavior does not end here, as we will now see.

2.3. The Emergence of Complex Numbers

Among those who continued to investigate the cubic formula was Bombelli
(c. 1526-1573). His approach was to apply simplification procedures to ex-
pressions involving a + byv/—1, treating them as if they were meaningful ex-
pressions. In doing so, he showed, for example, that the two cubic-root
addends in the expression z = {’/2 ++/—121 + 3/2 — +/—121 yielded by the
cubic formula as a root of the equation 23 = 15244 are, respectively, 24++/—1
and 2 — v/—1; therefore, x = (2 + \/—_1) + (2 — \/—_1) = 4, as expected.

While Bombelli’s work provided some assurance about the validity of the
cubic formula, it led to further puzzlement: How is it possible that meaning-
less expressions turn under legitimate manipulations into meaningful results?

This question led to further investigations into the meaning and role of
the expressions a + by/—1, which—understandably—were dubbed “complex
numbers.” It was not until Gauss’ (1777-1855) near-complete proof of the
Fundamental Theorem of Algebra that complex numbers received a “legiti-
mate” status in mathematics. The theorem implies a remarkable result: that
the field of complex numbers, viewed as an extension of the field of real num-
bers, contains all the roots of any polynomial equation; hence, no additional
extensions are needed to solve polynomial equations.

2.4. Historical Selectivity and DNR

The history of complex numbers, from Cardano’s solution of the cubic
equation to Gauss’ proof of the Fundamental Theorem of Algebra a century
later, is by far richer and more intricate that the account provided here.
This history is filled with ingenious ideas. They include (mentioning only
those that appear in the unit under discussion): Cardano’s proof of the cu-

bic formula; the simplification of the expressions v/a + by/—1 into the more
manageable expressions ¢ + dv/—1; the audacity of treating the latter ex-
pressions as encapsulated meaningful entities; the observation that a real
number can be viewed as a complex number, and that, consequently, the
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field of complex numbers is an extension of the field of real numbers; the
geometric representation of complex numbers and its consequences to the
geometric meaning of the binary operations on them; De Moivre’s formula;
the roots of unity and their geometry; and, above all, the Fundamental The-
orem of Algebra. Clearly, the content trajectory chosen for our unit does not
capture the “true and complete” development of complex numbers. This tra-
jectory merely goes through carefully selected “landmarks” in the intricate
paths marking the historical development of complex numbers.

More generally, historical and philosophical developments are analyzed
in DNR with the sole purpose of better understanding the genesis of con-
cepts; we then use results of such analyses to further explore their potential
relevance to individuals’ cognitive processes and to curriculum development
and instruction [14]. For example, as I have discussed in [12], the philosoph-
ical debate during the Renaissance as to whether mathematics conforms to
the Aristotelian definition of science sheds light on certain difficulties able
students have with a particular kind of proof; in turn, the results of this inves-
tigation were implemented in developing a new approach to the teaching of
proof. Thus, when certain curricular conditions are satisfied, selected aspects
of the historical developments may be didactically transposed. However in
many cases—as in the case of the concept of logarithms, for example—the
actual historical development of a concept is no longer relevant enough to be
the best presentation for modern students.

2.5. Curricular Considerations

As T worked on the development of the unit, I sought to address several
critical questions:

1. Which aspects of this history should be adopted and translated into
curricular material?

2. How should these ideas be represented and sequenced as to anchor them
in students’ current knowledge, intellectually necessitate them, and pro-
vide opportunities for repeatedly reasoning with them and about them?

3. What desirable ways of thinking are afforded by this history?

4. Which of these ways of thinking can be made accessible to students for
whom the unit is intended?

The choices made in answering these questions involved various consid-
erations; they include, but are not limited to, the following:
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1. The typical background knowledge and cognitive ability of college-
bound high school students and beginning undergraduate students.

2. The time that can reasonably be allocated to the unit in the existing
high school or lower-level college programs.”

3. Compatibility between the content of the unit and the content of cur-
rent programs; in particular, relationship between ways of thinking
afforded by the unit and the mathematical practices highlighted by the
Common Core State Standards.

These questions and considerations served as my guide for the develop-
ment and implementation of the unit, as will be discussed in the next three
sections. The level of detail in what follows is necessary for two reasons: (a)
to demonstrate an actual implementation of DNR in the classroom; and (b)
to delineate the instructional objectives targeted and afforded by the unit.

3. Method of Implementation

In this section we describe the methodology we used in the three teach-
ing experiments where we tested our DNR-based unit on complex numbers.
The subjects are inservice secondary mathematics teachers and sophomore
mathematics education majors; throughout the paper, they are referred to
collectively and interchangeably as “students” or “participants.”

The first teaching experiment (hereafter, Experiment 1) was with thirty-
two inservice secondary mathematics teachers from a large Southwestern
metropolitan region. Experiment 1 lasted twelve consecutive days, six con-
tact hours per day, from 9:00 AM to 3:00 PM, with one hour lunch break.
The main focus of the experiment was teacher’s knowledge base, which in
DNR, after Shulman [37, 38], is defined in terms of three components of
knowledge: knowledge of mathematics (teachers’ ways of understanding and
ways of thinking), knowledge of student learning (teachers’ understanding
of fundamental principles of learning, such as how students learn and the
impact of their previous and existing knowledge on the acquisition of new

"I recognize that this unit takes vastly more time than an existing high school program
could spare, especially given that the solution of cubic equations is not part of the Common
Core State Standards. However, the unit can be offered as an enrichment course to those
who take Algebra II. The intersection between the content of this unit and Algebra II is
substantial.
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knowledge), and knowledge of pedagogy (teachers’ understanding of how to
teach in accordance with these principles). Classroom discussions of aspects
pertaining to student learning and pedagogy always emerged out of the par-
ticipants’ reflections on personal and collective experiences with the unit
content and problems in juxtaposition with their teaching experiences. Due
to this broader focus, the time allocated to Experiment 1 was not sufficient
to cover the unit in its entirety. In this paper, I limit the report of this ex-
periment to the participants’ mathematical behaviors, and only in relation
to the material leading up to the cubic formula.®

The second and third teaching experiments (hereafter Experiment 2 and
Experiment 3) were conducted at a major university, also located at a South-
western metropolitan region. The participants of these two experiments were
prospective secondary teachers in their sophomore year. Each experiment
was carried out in a two-unit quarter course made up of ten 100-minute
weekly lessons. Fifteen prospective teachers participated in Experiment 2,
and twelve in Experiment 3. The focus in both experiments was restricted
to mathematical aspects of the unit; student learning and pedagogy were not
addressed. The entire unit was covered in each of these experiments.

The instructional methods used in the three experiments included small
working groups, whole class discussions, and lectures by the instructor.? Typ-
ically, lessons began with participants working collaboratively in small groups
on problems from the unit. Composition of the groups varied in each lesson,
with no particular strategy. Participation in the small working group was en-
tirely voluntary. To foster meaningful participation of all group members in
the small groups, students were urged to first work individually on the prob-
lem assigned before the group discussion. After some time commensurate
with the difficulty of the problem and engagement level of the participants,
representatives of various groups presented their solutions and responded to
questions and comments from their classmates or teacher.

8The data collected in this experiment was rather extensive. It includes, a 90-minute
pretest, a 90-minute posttest, a daily 20-minute survey, a 90-minute extensive survey at
the end of the experiment, and an extensive field notes recording each of the classroom
discussions taken by another researcher, Dr. Osvaldo Soto. The analysis of this data is
under way, and will be reported in a separate publication.

9We do not see lecturing as a method that contradicts our problem-oriented learning
approach. See the discussion in §§4.5.
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At the start of the unit and during various times thereafter, the following
general information was conveyed to the participants:

“The unit consists of three parts, which mark three evolving
stages in the development of its content. Your work in this unit
revolves around four kinds of activities:

1. In-Class Problems (ICP)

2. Questions (Q) and Answers (A)
3. Probes (P)

4. Homework Problems (HP)

ICP: The ICPs serve two purposes. Some ICPs serve as a start-
ing point for a new idea introduced in a lesson; their goal is
to bridge new knowledge to be learned with the knowledge
you have already learned. Other ICPs aim at enhancing your
ability to read and understand mathematical text. In these
problems, you are asked to study a solution to a problem or
a proof of an assertion.

o To study a mathematical text means to understand the
underlying ideas in the text and the mathematical reason
for each claim made in the text.

o To test your understanding, reproduce from memory the
complete solution or the proof, and, in doing so, use
your own words and choose your own symbols (different
from those used in the text).

P: Often, as you read a mathematical text, you will be asked to
respond to Probes (marked by P). They appear in the form
of queries, such as “why,” “how,” and “explain.” It is nec-
essary that you respond to these queries before continuing
reading. This will help you better understand the text and,
for a long run, improve your ability to read mathematical
texts.

Q& A: The aim of the Questions is to motivate new concepts and
ideas, by helping you see that new knowledge always comes
about out of a need to solve a problem, resolve a puzzle,
explain a phenomenon, etc. Each Question is then followed
by an Answer, which often contain Probes.
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HP: Last, but not least, are the Homework Problems (HP) on
each of the lessons. To master a mathematical subject, one
must practice the reasoning particular to that subject. The
ultimate goal of these problems is to make you a better
mathematical reasoner, by gradually improving your ability
to prove assertions, solve problems, think in general terms,
and be fluent in computing with understanding. Some of the
HPs aim at extending your knowledge beyond what is pre-
sented in a particular lesson, to prepare you for subsequent
lessons.”

Printouts of segments of each lesson were distributed to the students.
However, we did this strategically, to avoid introduction of material prema-
turely before students had fully realized the need for an idea, for example.
To illustrate, Lesson 1 consists of four ICPs. The first three are listed below,
and the fourth is a solution to ICP 3b.

ICP 1: The sum of the volumes of two cubes is 16, and the product of the
side of one cube by the side of the other cube is 4. What are their
dimensions?

ICP 2: Repeat Problem 1, where the sum of the volumes is 27/4 and the
product of the sides is 9/4.

ICP 3: We can create as many problems like Problems 1 and 2 as we want
by varying the volumes of the cubes and the product of their sides.

a. Create two such new problems and solve them.

b. Is it possible that among such problems there are ones with no
solutions?

The three problems were not distributed at once. Students first worked on
ICPs 1 and 2. Following the discussion of their solutions to these problems,
they were handed ICP 3, which aims to necessitate the abstraction of ICPs 1
and 2. Following the discussion of ICP3, students were handed ICP 4, which
is a solution to ICP 3. Consistent with this strategy, the unit lessons are not
titled, so as to not reveal their instructional goals in advance; such revelation
might restrict student reasoning and actions.
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Due to the time intensity of Experiment 1 and the family obligations of
its participants (inservice secondary teachers), no homework was assigned
outside the classroom; instead, participants worked collaboratively in small
groups during class on the homework problems for each of the lessons cov-
ered. In Experiment 2 and Experiment 3, on the other hand, homework was
assigned in each lesson, collected, graded, and returned. Occasionally, upon
a participant’s request, some homework problems were revisited in class.

The observations of the participants’ mathematical behaviors I report in
this paper are based on various sources: retrospective notes taken immedi-
ately after each class, synopses of interactions within working groups, student
questions and responses during class discussions, works presented to the en-
tire class by the group representatives; homework assignments, and, in the
case of Experiment 2 and Experiment 3, a final examination.

Not surprisingly, no significant differences between Experiment 2 and
Experiment 3 were observed; one can expect this, given the similarities in
population of the two experiments, class size, and length and intensity of
intervention. There were major differences between Experiment 1 and these
experiments. Nonetheless, there were shared behaviors among the three ex-
periments in relation to the lessons covered. The discussion in the rest of the
paper focuses mainly on these behaviors.

Interlude: What do we mean by curriculum?

While it should be clear from the discussion thus far what the term “cur-
riculum” means in DNR, it is worth articulating it explicitly. For this we
refer to Thompson: “[Mathematics curriculum] is a selected sequence of ac-
tivities, situations, contexts, and so on, from which students will, it is hoped,
construct ... particular [mathematical] way[s] of [understanding and ways
of] thinking” [44, page 191]."% To this, I add—perhaps the obvious—the
classroom discourses over the curriculum material. The crucial implication
of this definition, as Thompson put it, is that (a) one “must make explicit
the nature of the knowledge that [one] hopels| is constructed and (b) make a
case that the chosen activities will promote its construction” [44, page 192].

10As T mentioned in §1, and discussed in length in [14, 15, 16], the term “way of thinking”
has a particular technical meaning in DNR. For the sake of accuracy, I should point out
that Thompson’s meaning of this term is different from, yet complementary to, the DNR
meaning. This, however, has no effect on what is being said here.
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In other words, instructional objectives are not inherent to curricular content
and its presentation; rather, both the curriculum developer and the teacher
must be cognizant of and explicit about these objectives and the teaching
actions needed to achieve them.

The following two sections, §4 and §5, demonstrate this characterization
of “curriculum.” Specifically, in §4 I outline the learning activities of the unit
explicitly. Then in §5 I lay out the salient ways of thinking targeted by these
activities, and further explain why the chosen activities are likely to promote
their construction.

4. Structure and Development

The unit studied here consists of twelve lessons'! organized around three
stages corresponding to the historical development of its subject (cf. §2):

Stage 1 (Lessons 1-5) delineates the ideas underlying the development
leading up to the cubic formula (cf. §§2.1).

Stage 2 (Lessons 6—8) deals with the puzzling behaviors of the cubic for-
mula (cf. §§2.2).

Stage 3 (Lessons 9—12) deals with resolutions of these puzzles by con-
structing new numbers (the complex numbers), investigating their al-
gebraic and geometric meanings, and articulating their remarkable role
in understanding polynomial equations (i.e., the Fundamental Theorem
of Algebra) and in solving various mathematical problems (cf. §§2.3).

Although we will organize the discussion of the unit around these stages,
they are not labeled as such in the unit. The unit is composed of an uninter-
rupted sequence of intellectual perturbations followed by their mathematical
resolutions, what we call perturbation-resolution pairs. The twelve lessons
merely correspond to twelve breaking points, determined primarily by con-
siderations of lesson flow and duration. Since it is neither necessary, nor

1 The division of the unit into lessons does not dictate a particular pace; it merely marks
the sequence of evolving segments that build up the entire unit. The pace of a lesson is
to be determined by the teacher, who knows best her or his students’ current knowledge
and abilities.



Guershon Harel 23

possible due to space limitation, to discuss the complete sequence in detail,
we condense it into nine perturbation-resolution pairs, which we use here as
the basis of our discussions of the unit and its implementation.

Readers interested in the specifics of the unit will benefit from having
access to it as a complementary reference for the rest of this section. Readers
who are not as interested in the particular details of the complex numbers
unit may skip to §§4.4 where we provide a bird’s eye view of the unit, and
continue from there with our discussion of DNR as it applies to the unit.

We have one final comment before proceeding to discuss the three stages.
The narrative reporting on student experiences in the rest of this paper is
about students’ past behaviors as they engaged in activities (still) present
in the unit. To capture both past and present, I chose to use a past tense
in connection to student behaviors and a present tense in connection to the
unit text.

4.1. Stage 1: Delineating the Ideas Underlying the Development Leading Up
to the Cubic Formula

As we noted in §§2.1, the solution formula in Cardano’s proof is only
a sufficient condition for the cubic equation. The proof developed in the
unit is a slight modification of Cardano’s proof, in that it uses the identity
(u+v)3 = u? + 3u?v + 3uv? + v3, thereby making Cardano’s solution formula
equivalent to the cubic equation, as shown below:

To solve the equation
2+ pr4+q=0,

where p,q # 0, let x+ = u + v. By cubing both sides of this equation,
expanding, and factoring uv, we get:

2 — 3uvy — (v + %) = 0.

These two equations are equivalent if and only if:

— p.
Uv = —3;
ud + v = —q.

And this system is equivalent to the system,

V==
33 (u)? + 33qu® — p* = 0.
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The quadratic equation in this latter system is equivalent to

Using the symmetry between the variables v and v in the former system, we
get that the latter system is equivalent to:

Hence x is a solution to our cubic equation if and only if:

This short proof is more intricate that it might seem. It rests on the
ingenious idea of conceiving of a solution x as a sum of two numbers u + v
for the purpose of reducing the cubic equation into a system of equations,
which, in turn, is reducible to a quadratic equation. The critical questions
from a DNR perspective are: How do we intellectually necessitate the various
elements of this proof to the students for whom the unit is intended? What
ways of thinking are afforded by the proof? How do we advance these ways
of thinking among students? We begin to answer these questions here, in the
rest of this subsection, as we further discuss Stage 1 (Lessons 1-5). Some of
our answers will be further delineated and will evolve as the paper unfolds.

0
v

0O 0O
v v

The essence of Lessons 1-5 can be captured in the following sequence of
four perturbation-resolution pairs:

Perturbation 1: How do we solve these new systems of equations?
The unit is launched in Lesson 1 with four ICPs (see §3 for the specific
statements of these problems). The first two are word problems involving
products and sums of cubes of unknowns. The third problem is formulated
so as to compel students to abstract the first two problems into a family of
problems represented by a system of equations of the form (1) below, and
investigate the conditions under which a solution exists.
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{uv = P; (1)

ud+ v =Q

The fourth problem provides a solution to this system, and asks the students
to study the solution and compare it to their own.

This content was chosen because it anchors the unit in students’ prior
knowledge and ushers them into the proof of the cubic formula. Students
come to the unit knowing how to translate word problems into systems of
equations and solve the latter by elimination or by substitution of variable.
Typically they are familiar with simple systems, such as 2 x 2 and 3 x 3 linear
systems. Thus the main difference here is the form of the system. As can
easily be seen, system (1) is of the same form as that of the first system in
the proof of the cubic formula presented above.

Resolution: Reduce the system down to a quadratic equation
(RQE). The students were first handed ICP 1 and ICP 2. As they worked
individually on these problems, we observed that most of them chose a trial-
and-error approach. There were a few students, however, who began by
translating ICP 1 into a system of equations of the form (1). As soon as
the class transitioned to small working groups, these students learned about
the trial-and-error approach and consequently abandoned the algebraic ap-
proach. Following a brief classroom discussion of the solution to ICP 1 and
2, the teacher handed ICP 3 to the students.

To solve ICP 3, one is compelled to generalize ICP 1 and ICP 2 into a
family of problems, and to reason about the latter in terms of parameters. It
took some negotiation for the students to understand this problem, especially
its second part, due—as some of them indicated—to its unusual formulation.
By and large, most students constructed a system of equations of the form
(1) and pursued to solve it by substitution of variable (e.g., v = £). However,
many students (around 40% in Experiment 1 and 30% in Experiment 2 and
Experiment 3) were unable to independently observe that the polynomial
equation resulting from the substitution is quadratic in u? (i.e., (u3)* — Qu3 +
P3 = 0). Surprising as it may be, this is an important observation, because
it indicates that this activity can potentially promote the way of thinking of
encapsulating an expression (u? in our case) into a single entity. As will be
discussed in §5, this way of thinking is one of the various aspects of structural
Teasoning.
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Once the students completed successfully their solution to ICP 3, they
were handed ICP 4. The latter presents a complete solution to ICP 3, with
one element not present in the students’ solutions. The new element is the
use of symmetry between the variables of system (1), in order to save com-
putation. Observing and utilizing symmetry is another aspect of structural
reasoning, to be discussed in §5.

The solution to ICP 3 was followed by a discussion comparing the trial-
and-error approach and the algebraic approach. The conclusion of this dis-
cussion was that while the trial-and-error approach is advantageous when the
relations among the problem quantities are simple, as in ICP 1 and ICP 2, it
is ineffective when these relations are complex. And, in addition, the trial-
and-error approach, in and of itself, does not resolve the question concerning
uniqueness of a solution, whereas the algebraic approach does.

Perturbation 2: What can we do if the system is not reducible
to a quadratic equation? As students practiced the RQE (reduction to
quadratic equation) technique on a family of systems involving products and
cubes of unknowns, they encountered one system for which the technique
leads to an irreducible 6-degree polynomial equation. This is system 1(f) in
the Homework Problems on Lesson 1, which is of the form:

{_ o ©)

w4+ 0P =Q

with P = —2 and ) = 32.

Students searched for ways to reduce the resulting 6-degree polynomial
equation into a quadratic equation. There were also a few of the students
(one in Experiment 1, none in Experiment 2, and 1 in Experiment 3) who
tried to reduce the equation into a cubic equation.

Resolution: Reduce the system down to a cubic equation (RCE).
After these failed attempts, students were asked (in Lesson 2) whether the
three expressions, uv, u + v, and u3 + v3, in system (2) reminded them of
a known identity. In each of the teaching experiments, there were only a
few students who made the connection between these expressions and the
identity (u+v)* = u®+3u?v+ 3uv?+ 03, but none of them was able to utilize
the identity to solve the system.'?

12As a group, students indicated that while they didn’t remember the identity—and
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The class was then shown how an appropriate use of this identity reduces
system (2) into a cubic equation (see Lesson 2). Following this, students were
asked (in the Homework Problems on Lesson 2) to solve a series of systems
of equations aimed at helping them practice the RCE (reduction to cubic
equation) technique. The systems are designed to be reducible to “easily
solvable” cubic equations, i.e., equations that can be solved by finding one
root of the equation through trial and error or by the Rational Root Theorem,
and then finding the rest of the roots by the Division Theorem.'?

Perturbation 3: What can we do if RCE (reduction to cubic equa-
tion) leads to a cubic equation that is not “easily solvable?” Among
the systems in the Homework Problems on Lesson 2, there is one which was
designed to be reducible to a cubic equation that is not “easily solvable.”
This is the system (3) which was included in the subsequent discussion in
the opening of Lesson 3:

{uv(u +v) =§; 3)

ud + v — 2u — 20 = —31.

Students successfully used the RCE (reduction to cubic equation) tech-
nique to reduce this system into the cubic equation 23 —2x +7 = 0, but since
the equation has no rational roots, they were not able to solve it by trial-
and-error or the Rational Root Theorem. This difficulty in turn led to the
question “How do we solve cubic equations in general?” That is, “Is there a
solution formula for cubic equations, as in the case of quadratic equations?”

It should be highlighted that the goal of the lessons up to this point goes
beyond this question. Through these lessons, students learn the RQE and
RCE techniques, a combination of which forms the underlying idea of the
proof of the cubic formula, as we will now see.

consequently did not see its connection to the expressions involved in the system—they
recognized it once it was shown to them. The inability to retrieve an object but merely
recognize it speaks against those who seek to deemphasize computational fluency in math-
ematics curricula—a point I will return to in §5.

13Most of the students were familiar with the Rational Root Theorem, though without
a proof. In each of the teaching experiments, the theorem was proved, though it does
not appear in the unit. The Division Theorem was familiar to all students, mainly as
a technique for division of polynomials. A generic proof (a proof in the context of a
particular example) was presented in the first experiment, and a general proof was given
in the other two experiments (see Homework Problems on Lesson 8).
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Resolution: Develop a formula for cubic equations; first focus
on those without the second term. Since the problem at hand is solving
the equation 23 — 2z 47 = 0, Lesson 3 focuses on equations of the same form:;
namely: 23+ Az+B = 0. In the first segment of the lesson, the teacher began
by reminding students of how the completing-the-square method transforms
the quadratic equation 22 + Ax + B = 0 to an equation of the form (z +
T)? + L = 0, which in turn leads to the quadratic formula. The question is
then raised as to whether an analogous approach can be used to transform
the general cubic equation z® + Ax + B = 0 into an equation of the form
(x+T)3+ L = 0—an easily solvable equation. Students pursued this approach
in their small working groups. Some of them concluded on their own, others
after reading the text of Lesson 3, that such a transformation is not possible
for all cases. However, a sizable number of students (eight in Experiment 1
and four in each of Experiment 2 and Experiment 3) needed additional help
to understand this conclusion.

The goal of this segment was for students to realize that the “reduction to
a simpler problem” strategy—another manifestation of structural reasoning,
to be discussed in §5—is merely a heuristic, a rule of thumb, not a law. In
this respect, the failure to analogize the development of the cubic formula to
that of the quadratic formula achieved its intended goal.

In the second segment of Lesson 3, the teacher followed this failed at-
tempt by returning to the equation 2® — 2z + 7 = 0, the initial focus of the
lesson. He began by asking the students to revisit the solutions to systems
(1) and (2) and try to use the RQE and RCE techniques to devise a way
to solve the equation. After some time, when none of the students came up
with the solution, he suggested that they use the substitution = u + v.
Even after this hint, only one student (in Experiment 1) was able to use
the teacher’s suggestions to successfully develop a solution to the equation,
and her solution required reorganization and bridging of several gaps. In all
cases, therefore, the teacher ended up presenting the complete solution to
the equation. The solution amounts to a generic proof of Cardano’s formula
along the ideas of the proof presented in the opening of this subsection.

In the Homework Problems on Lesson 3, students are asked to practice
this solution process on a relatively large number of cubic equations of the
same form. Through the repeated reasoning involved in solving these prob-
lems, students (with almost no exception) successfully arrived at the solution
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formula for cubic equations of the form 2® + Az + B = 0. Once they inter-
nalized the process leading up to this formula, they were given another set of
problems (Homework Problems on Lesson 4) to apply the formula directly.

Perturbation 4: What can we do with cubic equations with a second
term? As students proceeded with the Homework Problems on Lesson 4,
they encountered an obstacle in Problem 1(j). Neither the cubic formula
known this far, nor the re-application of the technique applied to develop it
(i.e., the combination of RQE and RCE techniques) are successful for solving
equations involving a second term. By now, students had gotten accustomed
to the way of thinking of reducing one unfamiliar form into a familiar one.
In each experiment, students independently asked “how can we transform
equations of the form 2% + Bx? + Cx + D = 0 into equations of the form
2% + Ax + B = 07" This is the topic of Lesson 5.

Resolution: Reduce equations with a second term into ones
without a second term. Lesson 5 begins by revisiting the quadratic equa-
tion 22 + Az + B = 0 and showing how the change of variable z = y + 7—2A
reduces the equation to one without the first term. Then students can see
how, similarly, the change of variable x = y + % in the cubic equation
23 + Ba? + Cx + D = 0 leads to a cubic equation without the second term,
resulting in a cubic equation of a desired form: 23 + Az + B = 0. (Later, in
Homework Problem 6 for Lesson 5, students are asked to generalize this ob-
servation and prove the result by using the Binomial Theorem.'*) With this
knowledge in hand, students derived the cubic formula for the most general
cubic equation in the Homework Problems on Lesson 5.

4.2. Stage 2: Realizing the Puzzling Behaviors of the Cubic Formula

The second stage in the development of complex number is realized in
three lessons (Lessons 6-8) which mainly lay the groundwork for two specific
perturbations that will finally be resolved in Stage 3. Lesson 6 discusses three
puzzling behaviors (labeled in the unit as Surprises) of the cubic formula:

1. Unlike the quadratic formula, the cubic formula does not (seem to) give
all the solutions to the equation,

14The Binomial Theorem was also shown in class, but without proof, since most of the
students did not know mathematical induction and only a few were exposed to combina-
torics.
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2. The cubic formula often produces complicated expressions for simple
roots, and

3. The cubic formula often produces meaningless expressions as roots
when it is known that (real) roots exist; and yet, when such expressions
are manipulated using “legitimate” algebraic rules, they often turn into
(meaningful) numbers.

Clearly, of these three surprises, the second can hardly be called a pertur-
bation, since students have experienced cases where complicated expressions
are manipulated into simple ones. Accordingly, we list only the first and
third surprises as perturbations. The second “surprise,” however, has an
important role, as we will see shortly.

Perturbation 5: Why does the cubic formula fail to yield all the
roots? From the vantage point of our students at this stage, the cubic for-
mula always yields at most one root—the same vantage point of the math-
ematicians of the 16" century. For our students, however, this behavior
should have been even more puzzling since the proof for the cubic formula
they learned establishes logical equivalency between the formula and the
equation. This is not what happened. For the sake of continuity, we post-
pone discussion of this observation to §§5.2 where it belongs.

A full resolution of this perturbation appears in §§4.3, following the Fun-
damental Theorem of Algebra and the geometric representation of complex
numbers.

Perturbation 6: Why does the cubic formula often yield meaning-
less expressions as roots even when it is known that (real) roots
exist, and how is it possible that when such expressions are ma-
nipulated using algebraic rules they often turn into meaningful
numbers? The cubic formula often produces meaningless roots involving
expressions of the form a + by/—1 (where a and b are real numbers), even
in cases where it is known in advance that all the roots are meaningful (i.e.,
real numbers). Here we take advantage of the second behavior of the cubic
formula; namely, that often under certain algebraic manipulations, compli-
cated expressions yielded by the formula are simplified into a single number.
For example, the root

26 26
3 _5 _|_ - 3 5 _I_ .
\/ 3v3 3v/3
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turns out to be 2 when simplified (Lesson 6). This suggests the follow-
ing thought experiment: Apply similar manipulations to such meaningless
roots by treating, at least temporarily, the expressions a + by/—1 as if they
were meaningful algebraic expressions. The result turns out to be pleasantly
surprising. The meaningless roots often turn into meaningful ones. But, re-
flecting on this result, a new perturbation arises: How is it possible that
logical algebraic operations turn meaningless roots into (meaning-
ful) numbers? Can it be that the expressions are meaningful after
all? If so, what are their meanings?

The resolution to this perturbation is the main focus of Stage 3 (§§4.3).
It is appropriate, however, to describe here a conversation that occurred
in both Experiment 2 and Experiment 3 (where Stages 2 and 3 were fully
covered) which demonstrates that the way complex numbers are traditionally
introduced in elementary algebra is abrupt and rather contrived.

Several students in these experiments were exposed to complex numbers
in their classes in high school, and so when the question about the meaning
of the expressions a +by/—1 first emerged, a conversation along the following
lines ensued:

Students: \/—1 is the complex number i.
Teacher: What does that mean?
Students: It means that i2 = —1.

Teacher: So we define i to be a number such that i> = —1. This
is fine, but for what purpose?

Students: To solve the equation 22 +1 = 0.

Teacher: That is true. But consider this: We create a new num-
ber ¢ to turn an equation with no solution into one with a solu-
tion. Why then don’t we do the same for other equations, such
as x+1 = x+2 or its equivalents? Why don’t we create numbers
for such equations to turn them into equations with a solution?

Students: That was what we were told in school. Really, why
don’t we?—Why do we treat 22 +1 = 0 differently from all other
equations that don’t have solutions?

Thus, students’ prior knowledge about complex numbers was not dis-
missed, but was confronted in a manner that created a need with the stu-
dents to better understand how complex numbers came about and the role
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they serve in mathematics. Understandably, these students did not have
the necessary mathematical knowledge to counter this argument. Nor could
they see that the two types of equations are fundamentally different. While
a proposed solution (in any nontrivial algebraic structure such as a field) to
r+ 1 =2+ 2 would lead to logical inconsistencies, the proposed solution ¢
to 22 + 1 = 0 does not.

4.8. Stage 3: An Investigation into the Meanings of Complex Numbers

In the previous stage, the class as a whole came to see the need to launch
an investigation into the possible meanings of the expressions a+by/—1. The
following investigations are prefaced by a statement along the following lines:

It took a long time in the history of mathematics to construct
meanings for these expressions and fully appreciate their contri-
bution to mathematics and science. Perhaps this is the reason
they were dubbed complex numbers.

The main questions comprising the forthcoming investigations
are: Are complex numbers “genuine?” That is to say, do they
fulfill our expectations about numbers? The numbers we know
represent quantities, such as length, width, area, weight, temper-
ature, speed, work, etc., and they can be located on the number
line. These numbers can be added, subtracted, multiplied, and
divided, and these operations obey certain rules, and they too
have quantitative and geometric meaning. And, most important,
with the use of real numbers we can solve problems of all kinds.
Do the complex numbers have these qualities?

This launches two investigations into these questions; the first is algebraic
(Lessons 8-10) and the second geometric (Lessons 11 and 12).

The goal of the algebraic investigation is two-fold. It begins (in Lesson 8)
with the idea that the field of complex numbers is an extension of the field of
real numbers. Without mentioning the term “field,” the notion of extension
is conveyed (through problems) as a relation where

(a) each real number is a complex number and

(b) each of the operations defined on complex numbers agrees with its
counterpart operation on the real numbers.
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The focus of Lesson 8 is to establish these properties, familiarize students
with complex numbers, and advance their computational fluency by solving
various types of problems (Homework Problems on Lesson 8). Of particular
importance are problems asking to show that a certain object is a complex
number (e.g., a solution to a given equation). To maintain the flow of our
presentation, we defer the discussion of other subtle issues involved to §§5.2
and §§5.3 where it belongs.

Lesson 8 is followed by an effort to bring students to appreciate (without
a proof) the essential claim of the Fundamental Theorem of Algebra; namely,
that no further extension of the complex number field is needed in order to
solve any polynomial equation. Two lessons (9 and 10) are devoted to this
effort, which is encapsulated into the following perturbation:

Perturbation 7: Is the extension of R into C enough? The lead to
this perturbation is formulated in a (seemingly) simple question: It is easy to
show that the roots of any quadratic equation with real number coefficients
are complex numbers, but what about a quadratic equation with complex
number coefficients? Must its roots also be complex numbers? We develop
the affirmative conclusion to this question by first showing that the roots of
the equation 22 —i = 0 are complex, and then using this result to answer the
question concerning the general case Az?+ Bz+C = 0 where A, B, and C are
complex numbers. The Homework Problems on Lesson 9 consist mostly of
quadratic equations with complex coefficients, but they also contain simple
cubic equations. The goal of these problems is to bring students closer to

understanding and appreciating the value of the Fundamental Theorem of
Algebra.

In the opening of Lesson 10, the teacher summarized the results obtained
in Lesson 9, and then asked the class, “What question would naturally follow
from these results?” In both Experiment 1 and Experiment 2, some students
promptly responded with “Are the roots of all cubic equations complex num-
bers?” And when the teacher pushed further, other students extended the
question to polynomial equations of higher degrees, and eventually to all
polynomial equations. The teacher then recapitulated this discussion as fol-
lows:

We want to know whether the roots of any cubic equation are
members of C. If the answer is negative, then our extension
of R into C is incomplete, because for cubic equations whose
roots are neither real nor complex, we would need to continue our
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investigation, and hope to be able to extend C further in order
to accommodate the new roots. We can ask the same question
about any polynomial equation: Are the roots of any polynomial
equation members of C? If not we will have to keep extending C
with every discovery of a new type of root.

Resolution: Remarkably, the answer to this question is yes and
so no further extension of C is needed. At this point, students were
presented with the remarkable result that the answer to this question is
affirmative; namely, there is no need to further extend C, as is implied by the
Fundamental Theorem of Algebra: Any polynomial equation c,x"+c,_ 12" 1+
<o 4 cx + ¢ =0, where ¢y, 1, -+, ¢, are complex numbers, has a solution
and all its solutions are members of C. The following was also conveyed to
the students:

We (the class) proved this theorem only for the case of quadratic
equations. As you have seen, the proof was not trivial, and nor
were the proofs you provided for some simple particular cubic
equations in the Homework Problems on Lesson 9. What if we
had to approach the problem in a similar manner for a general
polynomial equation of any degree? This is unlikely to succeed.
Indeed attempts to do so even for special cases, such as the gen-
eral fifth degree polynomial equation, failed. Not until the 19"
century did mathematicians provide a satisfactory proof. By now,
many proofs of the Fundamental Theorem of Algebra have been
found, but all use ideas outside the scope of high school mathe-
matics.

This theorem is remarkable because it frees us from the need to
further extend C in order to solve polynomial equations of dif-
ferent degrees. Historically, it was this theorem that gave the
complex numbers a credible status—they are the only roots that
any polynomial equation has! We can therefore understand why
mathematicians dubbed this theorem, The Fundamental Theo-
rem of Algebra.

Lesson 10 concludes with a resolution to Perturbation 5 (why does the
cubic formula fail to yield all the roots?). Using the Fundamental Theorem
of Algebra, we prove that any polynomial in C of degree n has at most n
distinct roots, and if we count all the roots of the polynomial, including those
that appear more than once, then the number is exactly n.
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But this naturally leads to the question:

Perturbation 8: How do we find all the roots of a cubic equation?
A resolution to this perturbation is one of the results of the geometric inves-
tigation encapsulated into the following perturbation.

Perturbation 9: Do complex numbers and the operations on them
have a geometric meaning? Lesson 11 begins by establishing that the
geometry of the real numbers is not suitable for complex numbers. The latter
can neither all be located on the number line, nor ordered, and so the question
is: What is the geometry of complex numbers?

Resolution: Some students suggested that we assign to each complex
number a + bi the ordered pair (a,b). Clearly some of the students knew
this representation from prior experience; others just came up with it on
their own. This idea is then followed by the question: Does this assignment
allow us to identify unambiguously complex numbers with points in the co-
ordinate plane, and points in the coordinate plane with complex numbers?
The question is answered affirmatively by articulating the phrase “to identify
unambiguously” to mean that the assignment

a+ bi — (a,b)
is a one-to-one and onto function, and then proving these claims.

This part of the lesson was rough for many of the students, as was evident
by their difficulty to recapitulate the meaning of “one-to-one” and “onto,”
and correctly explain why it is needed to show that the assignment a+ bi —
(a,b) possesses these properties. This, of course, is due to students’ weak
understanding of the concept of function, as has been widely documented
(see, for example, [1, 29]).

Once this geometric meaning of complex numbers has been established,
the next important question is: What does this meaning entail for the ge-
ometric meaning of the four operations on complex numbers? The word
“entail” is critical here, since we are now constrained by the correspondence
a + bi — (a,b) and the definitions of these operations. Through a probe
into this question, the polar representation of the complex numbers emerges
naturally, and the following meanings for addition and multiplication are cor-
respondingly established: For any complex numbers z; and z», (1) the points
21, 22, 21 + 22, and 0 form a parallelogram and (2) the radius vector of the
product w = 2125 is the product of the radius vectors of z; and z3, and the
angle of this product is the sum of the angles of z; and zs.
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Lesson 12 concludes the unit with a discussion of the n'* roots of unity
and their geometry, thereby resolving the remaining perturbation regarding
the number of roots the cubic formula yields (see Perturbation 5 of §§4.2).

4.4. A Bird’s Eye View of the Unit

Figure 1 below depicts the main junctions in the development that leads
up to the cubic formula. Asindicated, the unit starts with a family of systems
of equations, focusing on two types: (1) and (2). An arrow from one cell to
another cell, going through a third cell, indicates that “the content of the
first cell is reducible to the content of the second cell by using the content of

the third cell.”
Systems of equations involving
products and cubes of variables @

1
Cubstitution of VariD (u+vy- o’ 3uv Jqu
Quadratic equation Cubic equation without 2"
term

Figure 1: The development leading up to the cubic formula as described in Stage 1.

System (1)

The labels (1)-(4) for the arrows correspond to the order of development:

(1) Systems (1) are easily solvable by RQE (reduction to quadratic equa-
tion) through Substitution of Variable, but



(2) Systems (2) are more intricate, in that they are solvable by RCE
(reduction to cubic equation) through the identity (u + v)® = u® + 3uv +
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3uv? + v3.

(3) Cubic equations without the second term are reducible to system (1)
through the same identity, which, by (1), is reducible to a quadratic equation.

And finally,

(4) Any general cubic equation is reducible to a cubic equation without
the second term through Change of Variable, which, by (3), is reducible to a

cubic equation.

Figure 2 below provides a bird’s eye view of the development of complex
numbers as described in Stages 2 and 3. The cells and arrows are as described

for Figure 1.

Cubic formula’s puzzling behaviors

The formula yields meaningless
expressions of the form a+bi (called
complex numbers) even in cases where
real roots exist

The formula fails to
yield all the roots

The formula often yields
complicated expressions

Symbolic manipulations

1
Complicated expressions turn into
simple roots

Extension of the real
number field into the
complex number field

Meaningless expressions turn into
(meaningful) numbers

k]

Investigations into

complex numbers

Algebraic investigation

Geometric investigation

Fundamental Number of
Algebra

Figure 2: The development of complex numbers as described in Stages 2 and 3.
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4.5. To Tell or Not to Tell?

Two remarks on DNR-based interventions are in order:

The first remark addresses the question of whether instructors should tell
a mathematical idea directly or let students develop it on their own—a ques-
tion widely and heatedly discussed in the mathematics education research
community during the late 1980s and early 1990s.'® According to DNR, the
question to ask is not “to tell or not to tell?” but “when to tell and when not
to tell?” For example, in the state of development discussed in Perturbation-
Resolution 3 (§§4.1), students were judged to have had an intellectual need
to solve the cubic equation under consideration, and had already learned the
techniques needed to solve it, so they were deemed ready and capable to
comprehend the solution presented to them by the teacher.

A more technical term used in the mathematics education literature to
describe this state of readiness is zone of prozimal development (ZPD) (cf.
[45]). In DNR, the notion of ZPD is strongly connected with intellectual
need: One is judged to be in the ZPD relative to a particular concept if one
is judged (by her or his teacher) to have developed an intellectual need for
that concept. The teacher’s decision “to tell” and “what to tell” rests largely
on this judgment.

This position is based in part on one of the DNR premises, called the
teaching premise (see [16]):

teaching: Learning mathematics is not spontaneous. There will
always be a difference between what one can do under expert
guidance or in collaboration with more capable peers and what
he or she can do without guidance.

This premise stresses the indispensable role of the teacher in the class-
room. Most emphatically, the teacher is the sage on the stage, not the guide
on the side. The teaching premise is particularly needed in a framework
oriented within a constructivist perspective, like DNR, because one might
minimize the role of expert guidance in learning by (incorrectly) inferring
from such a perspective that individuals are responsible for their own learn-
ing or that learning can proceed naturally and without much intervention.

SEDITOR’S NOTE: This conversation is still ongoing among mathematics instructors.
For a different perspective, see Charles Coppin’s essay in this issue of the Journal.
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The teaching premise rejects this claim, and, in line with Vygotsky [45], in-
sists that expert guidance in acquiring scientific knowledge—mathematics,
in our case—is indispensable to facilitate learning.

This raises a question about the position of DNR about lecturing. To
put the question in more realistic terms, are there situations where a DNR
teacher would, for example, present a theorem and its proof without attend-
ing first to its epistemological justification? The DNR answer to this question
is in the affirmative. If the teacher judges her students to be accustomed to
probing into the epistemological justification of mathematical content pre-
sented to them, then lecturing is not only allowable but desirable. Indeed
lecturing compels such students to seek epistemological justification for the
mathematics they read or hear. The habit of seeking epistemological justi-
fication is a way of thinking which develops over time as students gradually
and repeatedly experience the intellectual need for the mathematical content
they are taught. I speculate that for most students this way of thinking
reaches a satisfactory level of maturity only in graduate-level courses. For
this reason, I believe lecturing must not be eliminated from the mathematics
classroom. But it should certainly be introduced gradually, as students come
to experience the various forms of intellectual needs discussed in §§1.2.

Our second remark concerns the question: When is it suitable to point
out a particular way of thinking to the students? Consonant with the duality
principle, as was discussed in §§1.1, throughout the teaching experiments a
way of thinking was identified for the students only after the teacher had
witnessed signs of its presence in student actions. For example, at the end of
each lesson in Stage 1, the teacher summarized the students’ effort by giving
it the general characterization of “attempting to reduce a difficult problem
into a familiar one.” The teacher’s goal in such summary statements was to
gradually institutionalize the way of thinking targeted by a specific lesson as
a desirable mathematical practice.

5. Ways of Thinking Afforded by the Unit and Targeted by the
Teaching Experiments

In this section I lay out the salient ways of thinking targeted by the learn-
ing activities described in §§4.1-4.3, and explain why the chosen activities
are likely to promote their construction. We focus on three ways of think-
ing, structural reasoning (§85.1), deductive reasoning (§85.2), and reflective
reasoning (§85.3).



40 DNR-Based Curricula: The Case of Complex Numbers

5.1. Structural Reasoning

To approach structural reasoning, we must first understand the term
structure. Among the different meanings the American Heritage dictionary
gives to this term, the following seems to be the most relevant to mathemat-
ics: “Structure [is] something made up of a number of parts that are held or
put together in a particular way.” The phrase “held or put together” must
not be restricted to special configuration; rather, it is to be thought of more
broadly, as the relation(s) one conceives among different parts or objects.
In this respect, the following examples convey the notion of “structure” as
defined here.

e An algebraic expression is of a particular structure when it is viewed
as a string of symbols put together in a particular way to convey a
particular meaning.

e One might observe that the words and phrases comprising various word
problems are put together in a “similar way,” conveying to the person
that the problems are of a common textual structure even though their
story lines are entirely different (what is known in the literature as
“problem isomorph” [10, 26, 32]).

e The algebraic representations (e.g., systems of equations) of a collection
of problems are viewed as having comparable expressions, thereby being
of the same structure.

e When two objects within a particular family (e.g., integers, real num-
bers, functions, etc.) are put together in a particular way (e.g., related
to each other by the standard multiplication operation or the standard
division operation) they form a structure.

e One might observe that relations among objects within various families
(e.g., the family of numbers, versus the family of functions, versus the
family of matrices, etc.) have common properties, thereby forming a
general, or representational structure.

Although the term “structural reasoning” is suggestive, it is not easy to
define due to its numerous manifestations in mathematical practice. The
notion of “structure” articulated here is needed for the following definition,
which I am offering as starting point for further discussion, refinement, and
perhaps revision:
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“Structural reasoning” is a combined ability to (a) observe struc-
tures, (b) act upon structures purposefully, and (c) reason in
terms of general structures, not only in terms of their instances.

The third among these three abilities marks a highly advanced stage in
the development of structural reasoning, and, as will be discussed in the next
subsection, it is not a target for our curricular unit. On the other hand, the
first two abilities are afforded and targeted by the unit. We do this through
activities aiming at six instances of structural reasoning:

1. Generalizing problems,

Reducing an unfamiliar structure into a familiar one,
Encapsulating expressions into single entities,

Recognizing symmetry,

Recognizing structures by carrying out operations in thought, and

IR

Reasoning in terms of abstract mathematical structures.

We now zero in on these individually.

5.1.1. Generalizing problems.

Elsewhere [13], I analyze the act of generalizing in terms of two of its
characteristics: result pattern generalization and process pattern generaliza-
tion. Observing that 2 is an upper bound for the sequence

V2,02 +V2,\/ 2+ /24 V2,

because the value checks for the first several terms is an instance of result
pattern generalization. Concluding this fact by attending to the underly-
ing structure of the sequence, thereby observing the invariant relationship
between two neighboring terms of the sequence, is process pattern general-
1zation. Thus, process pattern generalization is a way of thinking in which
one attends to regularity in the process, though of course it might be initiated
by regularity in the result. On the other hand, result pattern generalization
is a way of thinking in which one attends solely to regularity in the result—
obtained by substitution of numbers, for instance. In [13], T relate process
pattern generalization to the development of the principle of mathematical
induction. In what follows, I will discuss process pattern generalization in
relation to problem generalization.
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Consider ICPs 1, 2 and 3 (stated explicitly in §3). A typical formulation
of ICP 3 in traditional textbooks would be:

ICP 3-Traditional: The sum of the volumes of two cubes is ) and the
product of the side of one cube by the side of the other cube is P. Find
all the values of P and () for which such cubes exist.

Clearly, from the student’s perspective this formulation is likely to be a
mere replacement of numeric quantities by parameters, a conceptualization
akin to result pattern generalization, and the generalization from ICPs 1 and
2 to ICP 3-Traditional is done by the problem poser, not the problem solver.
In addition, the student is cued—essentially told—as to the direction to take:
to find the values of the given parameters for which a solution exists. The
formulation of ICP 3 in our unit, on the other hand, aims at promoting pro-
cess pattern generalization by intellectually compelling the students, without
dictating to them the direction to take, to generalize ICPs 1 and 2 into a
family of problems and express the structure of this family by a system of
equations with suitable parameters.

The difference between the traditional formulation of ICP 3 and that of
our original version can be captured by the notion of holistic problem:

A holistic problem is one where the solver must figure out from
its statement all the elements needed for its solution.

The worst form of non-holistic problem is one in which the problem is
broken down into small parts, each of which attends to one or two isolated

one-step tasks. Current high school textbooks are populated mainly with
this kind of problem (see [17]).

5.1.2. Reducing an unfamiliar structure into a familiar one.

The unit offers many opportunities for students to act purposefully on
structures, by reducing one structure into another structure. For example,
through the process that leads up to the development of the cubic formula,
students learn to

a. Solve systems of the form (1) by reducing them into quadratic equa-
tions;
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b. Solve systems of the form (2) by using a familiar structure (the identity
(u+v)? = u® + 3uv + 3uv? + v3) to reduce them into cubic equations
of the form 2 + Az + B = 0, and

c. Solve equations of the latter form by reducing them into systems of the
form (1).

d. Reduce cubic equations with a second term (23 + Bx? + Cx + D = 0)
into cubic equations without the second term (23 + Az + B = 0), for
which they have developed a solution formula.

e. Reduce any n-degree polynomial with an 2"~! term into an n-degree
polynomial without an 2"! term (Homework Problem 6 on Lesson 5)

f. Learn that reduction of one structure to a familiar one is not always
successful. Specifically, the attempt to reduce the cubic equation x2 +
Bz? + Cz + D = 0 into the familiar equation (x — A)> + L = 0 as is
successfully done with quadratic equations (i.e., a direct analogue of
the completing square method), fails.

It should be clear that here the terms “familiar” and “unfamiliar” refer to
capacity for action rather than mere recognition. For example, one might
recognize both equations 2% + Az + B = 0 and 23 + Az + B = 0, but know
to act on (i.e., solve) only the first.

5.1.8. Encapsulating expressions into single entities.

The use of substitution to solve systems of type (1) leads students to
recognize the equation (u%)? — Qu3 + P3 = 0 as a quadratic equation in
u®. For this, students had to encapsulate u® into a single entity. Similarly,
in reducing system (2) into a cubic equation (Lesson 2), students had to
conceive of u 4+ v as a single entity z, the unknown of the equation.

Note that this way of thinking is, in fact, a particular case of reducing an
unfamiliar structure into a familiar one. For example, the structure u?® as
w-u - u is reduced to a single entity (u*), acted upon purposefully with the

operation (-)2.

5.1.4. Recognizing symmetry.

Attention to the symmetry between the unknowns u and v in system (1)
leads to the conclusion that the solution set for u® and the solution set for
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v3 should be equal. Together with the constraint u® + v3 = @, this obser-
vation enables one to determine the values for v and v (Lesson 1, ICP 4).
This approach is very different from, and more economical than, the back-
substitution approach students are familiar with. Attention to symmetry, as
in this case, is akin to structural reasoning, because it involves an observa-
tion of a structure (the symmetry) and a purposeful action—to utilize the
symmetry to save computations.

In our experiments no student noticed the symmetry between u and v.
However, some students expressed pleasure upon learning the new approach.

5.1.5. Recognizing structures by carrying out operations in thought.

This refers to the ability to carry out in thought algebraic operations
without actually performing them. A simple example of this way of thinking
is in Lesson 5. Instead of dealing with the cubic equation az®+bx?+cz+d = 0,
students are told that one can save one parameter and deal instead with the
equation x® + Bx? + Cx + D = 0. Students are then expected to carry out
mentally the division by a and relabel the resulting parameters to obtain
the latter equation, without performing these actions. The unit is highly
populated with instances of this way of thinking. Here is another example,
from Lesson 1. Since P and () are positive and satisfy the condition

2
(@)-rao

the structure of the expressions

2 2
qu%—i- <%> — P3  and UZSQ— (9) — P38

dictates that they must be positive as well.

Carrying out operations in thought, without the need to actually per-
form them, is a characteristic of structural reasoning because, as these cases
illustrate, to do so one must observe a general structure, and furthermore,
act on it directly without attending to its referents. In the second case, for
example, one must use the general fact that for any non-negative number of
the form ¢ = a® — b, a must be greater than /c.
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5.1.6. Reasoning in Terms of Abstract Mathematical Structures

The third ability in the definition of structural reasoning is reasoning
in terms of general structures, not only in terms of their instances. One
significant aspect of this way of thinking is the ability to reason in terms
of abstract mathematical structures, such as “group,” “ring,” and “field.”
I believe that this way of thinking is beyond the natural scope of the unit
under study here. Nonetheless, I briefly discuss it here, for two reasons. The
first reason is that this way of thinking is needed for a complete picture of
the various styles of reasoning, the topic of the next subsubsection. The
second and more important reason is to offer the conjecture that the unit
may serve as an entry point to this highly advanced way of thinking, as I will
now explain.

What does it take to help students reason in terms of abstract mathemat-
ical structures? Two combined abilities seem to be cognitive prerequisites to
this way of thinking: reasoning in terms of conceptual entities and reasoning
in terms of operations on conceptual entities.

The work of Tall and Vinner implies that one’s conceptualization of a
general mathematical structure rests on the nature of the concept image [42]
he or she has of it. A mathematically mature concept image would include,
among other things, examples (and non-examples) of the general structure.
Initially, a general structure is abstracted by a person from realities concrete
to that person, whereby they become instance structures for her or him.!
Once this abstraction has taken place, other families of objects may become
instance structures of the general structure. Dubinsky’s APOS theory (as in
[3]) strongly supports the claim that a necessary condition for this to happen
is that these objects are conceived by the person as conceptual entities (in
the sense of [11])—just as an adult might conceive of whole numbers, for
instance. If, for example, a teacher illustrates the meaning of a general
theorem in linear algebra with its specific instance in the vector space of

16Two comments: 1. The term “reality” refers to the individual’s mental constructs,
which may or may not have any meaning in one’s physical or social environment. 2. The
use of the plural “realities” raises the question: Is it possible to abstract a general structure
from a single reality? Dubinsky (personal communication, 1992) suggests that the answer
to this question may be in the affirmative. He bases his conjecture on the history of the
concept of ring, which, according to him, was developed from a single reality, that of the
integers. If this is indeed so, it raises the question as to the intellectual need for reasoning
in terms of a general structure with a single instance structure.
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functions, and the students have not yet transitioned from thinking of a
function as a process to thinking of it as a conceptual entity, it is unlikely
that they will be able to gain insight into the teacher’s illustration.

A fundamental conceptual difference between a general mathematical
structure and its instance structure is that while the latter consists of objects
and relations, the former consists of representations of objects and relations.
One can represent objects and relations in numerous ways, but in this case
the representations are of a unique kind: they are derivatives of a small
number of representations called axioms, which capture the most essential
properties of the operations on, or relations among, the objects of each in-
stance structure. A critical consequence of this feature is that when working
within a general structure one is compelled to reason in terms of its axioms.
To appreciate the magnitude of the cognitive demand involved in reasoning
in terms of axiom representations, rather than in terms of “actual” objects
and relations, one only needs to compare one’s experience with Euclid’s Fl-
ements to that of Hilbert’s Foundations of Geometry. The axioms in the
Elements are merely a description of one (idealized) physical reality, whereas
the axioms in the Foundations of Geometry are representations of relations
in an endless number of realities [27].

The rationale for the above conjecture—that the unit serves as an en-
try point to reasoning in terms of abstract mathematical structure—is this.
First, we made a special effort in the unit to help students conceive of com-
plex numbers as numbers—as conceptual entities. Students in Experiment 2
and Experiment 3 witnessed firsthand how complex numbers are products of
human construction, not ready-made expressions endowed by a divine being.
The status of these objects as numbers grew gradually, from meaningless ex-
pressions to solutions to polynomial equations. In particular, they saw how
complex numbers indeed behave like the numbers with which they are famil-
iar. The complex numbers, they saw, can be added, subtracted, multiplied,
and divided. Furthermore, these four operations obey rules and have geo-
metric meanings, which enable one to derive important conclusions and solve
mathematical problems. Second, through all this, students came to experi-
ence the emergence of the structure of complex numbers as an extension of
the structure of the real numbers—the latter being an instance structure of
the former—and, furthermore, realize the remarkable value of this extension,
as is expressed in the Fundamental Theorem of Algebra.
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5.1.7. Styles of Reasoning

The six aspects of structural reasoning discussed above in §§5.1.1-5.1.6
can be classified into two not-mutually-exclusive categories (see Figure 3).

’ Styles of structural reasoning ‘

Theory building Non-computational

Generalizing Reasoning in terms of abstract Reducing an Encapsulating
problems mathematical structure unfamiliar structure expressions
into a familiar one
Recognizing Recognizing structures
symmetry by carrying out

operations in thought

Figure 3: The classification of structural reasoning.

The two ways of thinking, generalizing problems (§§5.1.1) and reasoning
in terms of abstract mathematical structures (§§5.1.6), form one category,
one we will call theory building style of reasoning.'” Such reasoning is typi-
cal of the work of a theoretician. This style of reasoning is characteristically
outward; it aims at generalizing and capturing common features among seem-
ingly different phenomena.

The other four ways of thinking, reducing a new structure into a famil-
iar one (885.1.2), encapsulating expressions into a single entity (8§§5.1.3),
recognizing symmetry (§85.1.4), and recognizing structures by carrying out
operations in thought (§85.1.5), form the second category. We will label this
category the non-computational style of reasoning. Such reasoning is typical
of mathematicians who seek to solve problems by fewer calculations and more
conceptualization. Their attention, in contrast to that of the theoreticians, is
inward; they aim to dig inside the structure of particular objects. The non-
computational style of reasoning is a propensity to minimize computations,
not eliminate them.

1"The notion of “theory building” discussed here was inspired by a conversation I had
with Hyman Bass in 2012 in Be’er Sheva, Israel.



48 DNR-Based Curricula: The Case of Complex Numbers

It is the repeated reasoning through computation that is likely to advance
these styles of reasoning, particularly, the non-computational style. The re-
peated demand for meaningful computation is throughout the unit, and we
have observed a change in students’ computational fluency: the dual abili-
ties of (a) decontextualizing—abstracting a given situation and representing
it symbolically and manipulating the representing symbols as if they have
a life of their own, without necessarily attending to their referents and (b)
contextualizing—pausing as needed during the manipulation process in order
to probe into the referential meanings for the symbols involved in the ma-
nipulation. Furthermore, the symbol manipulations involved in the solutions
promote the understanding that symbols are not manipulated haphazardly
but with purpose, to achieve a particular familiar form, thereby enhancing
structural reasoning, particularly through the habit of attempting to reduce
new structures into familiar ones.

5.2. Deductive Reasoning

Deductive reasoning is the most prevalent way of thinking throughout the
unit. With the exception of the Fundamental Theorem of Algebra, whose
proof is outside the background and expected mathematical ability of the in-
tended consumers of the unit, all assertions made are proved. The persistent
emphasis on proof throughout was a source of both intellectual challenge
and emotional satisfaction for the students. The kinds of and reasons for
challenges students typically have with proofs are many (see, for example,
[41]), and T will not recount them here. I will, however, discuss two of the
challenges our students encountered during the teaching experiments: defi-
nitional reasoning, and reasoning in terms of quantifiers, connectives, and
conditional statements.

Definitional reasoning. Definitional reasoning is the way of thinking by
which one characterizes objects and proves assertions in terms of mathemat-
ical definitions. In Van Hieles’ 1980 model of geometric reasoning, only at
the highest stage can secondary school students reason in terms of defini-
tions (see [4]). College students too experience difficulty reasoning in terms
of definitions. For example, asked to define “invertible matrix,” many linear
algebra students stated a series of equivalent properties (e.g., “a square ma-
trix with a non-zero determinant,” “a square matrix with full rank,” etc.)
rather than a definition. The fact that they provided more than one such
property is an indication they are not definitional reasoners [12].
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Lesson 8 demonstrated once again how difficult it is for students to reason
in terms of definitions. The lesson begins by reiterating the definition of com-
plex numbers as the set C of all the expressions of the form a+bi, where a and
b are real numbers; clearly this includes ¢, which is defined as the expression
0 + 1. Viewing a + bi merely as an algebraic expression, the definitions of
the four arithmetic operations on complex numbers seemed unproblematic
to the students. However, collectively the class had difficulty understand-
ing and appreciating leading questions concerning these operations. One of
these questions concerns the distinction between what is defined and what is
logically derived. Specifically, the unit raises the following question:

Each of the four new operations is defined only on a pair of com-
plex numbers, but we want to be able to add, multiply, subtract
and divide between real numbers and complex numbers. Can we
view real numbers as complex numbers?

This question is answered affirmatively, in that any real number can be
viewed as a complex number by agreeing that the expression u+0¢ is u; this is
what allows us then to view R (the set of real numbers) as a subset of C. We
had hoped that this would give rise to the distinction between agreeing (i.e.,
defining) and deriving logically. The instinctive reaction of most students
on the other hand was to derive the equalities 0 + 12 = ¢ and u + 07 = u,
since, according to them, 1¢ = ¢ and 0: = 0. Only a few students in each
of the teaching experiments seemed to have understood and appreciated the
nuances of this claim.

Other questions concern the properties of the operations defined:

With the view of the real numbers as complex numbers, do the
four operations defined on complex numbers agree with the real-
number operations?

And do the operations on complex numbers satisfy all the rules
of the operations on the real numbers?

Student responses seem to indicate that these questions were unproblem-
atic to them. One of the students put it as follows: “I don’t see how it can be
otherwise since we defined the operations on complex numbers in the correct
way.”

Overall, the pedagogical moral from this experience is that Lesson 8 is
the most subtle since it deals with questions requiring definitional reasoning.
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The unit, however, provides an opportunity to tackle these questions within
a concrete context. It is up to the teacher how to use Lesson 8—to delve into
these subtle questions or merely use the lesson to familiarize the students
with complex numbers and advance their computational fluency.

Reasoning in terms of quantifiers, connectives, and conditional
statements. As we observed in Perturbation 5 (§§4.2), from the view-
point of the students, the cubic formula always yields only one root even
in cases when three (real) roots are known. In discussing this observation,
the teacher saw an opportunity to bring up the notion of logical equivalence
and the difference between a necessary condition and a sufficient condition.
Accordingly, he suggested to the class to review carefully the proof of the
cubic formula. Perhaps, he pronounced to the students, some of the steps in
the process leading up to the cubic formula are not reversible (i.e., do not
constitute equivalent statements), and so, if it turns out that the formula
constitutes only a sufficient condition to the equation, then the fact that not
all the roots are yielded by the formula should not be a surprise. In doing so,
the teacher surmised that this review, if successful, can sever the perturba-
tion, because the proof presented does establish an equivalence between the
equation and the formula (see the discussion of the proof in §§4.1).

This teacher’s initiative revealed that students were having difficulty with
logical equivalence. To begin with, most students had difficulty understand-
ing the given task. Even after some discussion of the task, there were some
who viewed the verification process as superfluous. Examples to the contrary
provided by the teacher (as in the cases of squaring both sides of an equa-
tion) were largely unhelpful to the students, for they deemed them to be a
digression from the question at hand. Nevertheless, the questions as to why
the cubic formula does not provide three roots, even in cases when all the
roots are known, remained of interest to the class as a whole.

Students also had difficulties with quantifiers and logical connectives. De-
spite the fact that the proof to the cubic formula was first presented generi-
cally, through the solution to the equation z* — 2z +7 = 0 (see Perturbation-
Resolution 3 in §8§4.1), students initially had difficulty fully understanding
the long chain of inferences involved. In essence, the solution consists of
five steps. (As can be seen in the unit ICP 5, the steps are not articulated

in set-theoretical notation, and their narrative is not as terse as it appears
here.)
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1. For any uw and v, the sum = = u 4 v is a solution to the equation
2® — 3uvr — (u® +0*) = 0.

2. Therefore, for any u and v satisfying the conditions, uv = % and u® +
v3 = —7, the above cubic equation is equivalent to 2® — 2z + 7 = 0.

3. Implied from steps 1 and 2 is that the solution to the equation x — 2z +
7 = 0 is the intersection of two sets: {u + v|z® — 3uve — (u® +v*) = 0}
and {u + vjuv = % and v? +v® = T}

4. Since for * = u+ v, 23 — 3uvr — (u® 4+ v3) = 0 is an identity, the second
set in step 3 is a subset of the first.

5. This implies that the solution to 2® — 2x + 7 = 0 is the second set.

In all, the students seemed to have difficulties following a protracted chain
of inferences. Their questions and responses reflected a limited understand-
ing of quantifiers and logical connectives. In addition, they had difficulty
with the meaning and conditions for two polynomials to be equal. How-
ever, this activity, in particular, and the many similar activities throughout
the unit, in general, provided invaluable opportunities to advance students’
understanding of the elementary concepts of logic.

5.3. Reflective Reasoning

Reflecting on the meaning and consequences of a particular result is un-
doubtedly a routine practice by mathematicians, and it is among the ways
of thinking targeted by the unit. The following are examples of this effort:

1. In Lesson 2, the failure to solve system (2) is handled by revisiting the
structure of the system with the hope of uncovering cues;

2. In Lesson 3, the failure to solve the equation z* — 2z +7 = 0 by known
means invokes the question of whether a solution formula for cubic
equations exists; also in the same lesson, when the attempt to develop
a cubic formula by analogizing the development of the quadratic for-
mula fails, students are encouraged to reflect on the RQE and RCE
techniques, which helps them to see their utility in developing a for-
mula for the cubic equation.

3. In Lesson 8, students are asked to reflect on the process they apply
to divide one polynomial by another, as they read the proof of the
Division Theorem.



52 DNR-Based Curricula: The Case of Complex Numbers

These are examples of retrospective reflection. But the unit also includes
forward reflection, or expectations of future actions. For example:

4. In Lesson 8 students are encouraged to articulate what it takes for
the expressions a + bi to be conceived of as numbers before the formal
introduction of complex numbers. This requires them to ponder the
facts that these expressions and the operations on them must represent
something meaningful to us and they are useful in solving mathematical
or physical problems.

5.4. Relation to the Common Core State Standards (CCSS)

[To] promote a better understanding of the Practice Standards
[one must give| them mathematical substance rather than adding
to the verbal descriptions of what mathematics is about. Seeing
mathematics in action is a far better way of coming to grips with
these Standards but, unfortunately, in an era of Textbook School
Mathematics one does not get to see mathematics in action too
often. [46, page 2]

This statement is consistent with one of the implications of the duality
principle we discussed in §§1.1. Describing ways of thinking verbally to stu-
dents before they have developed them through the acquisition of ways of
understanding would likely have no or negative effect. On the other hand,
the definition of curriculum discussed in the interlude before §4 implies that
curriculum developers and teachers must be cognizant of and explicit about
these objectives and the actions needed to achieve them. An important con-
tribution of this paper is that it does exactly that.

The Common Core State Standards (CCSS) lists eight mathematical
practices, called Standards for Mathematical Practices, but makes no con-
nection between them and the mathematical content that is supposed to
promote them. The term “standard for mathematical practice” corresponds
roughly to the DNR term “way of thinking” we have been using here. Table
1 on the next page depicts some of these practices and their corresponding
DNR ways of thinking, along with samples of the unit lessons that afford
them.
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Table 1: Correspondence between DNR Ways of Thinking and CCSS Standards for Math-
ematical Practices.

Ways of Thinking

Standards for Mathematical Practices

Lesson Samples

Structural Reasoning

Generalizing problems

Abstract a given situation and represent it
symbolically

Lessons 1, 5

Reducing an unfamiliar
structure into a familiar
one

Try special cases and simpler forms of the
original problem in order to gain insight into
its solution

Look closely to discern a pattern or structure

Consider analogous problems

Lessons 5, 9, 10, 12

Lessons 2, 11, 12
Lessons 1, 3, 5

Encapsulating an expres-
sion into a single entity

See complicated things, such as some alge-
braic expressions, as single objects or as be-
ing composed of several objects.

Lessons 1, 2, 3, 4

Recognizing symmetry

Look closely to discern a pattern or structure

Lessons 2, 11, 12

Recognizing structures by
carrying out operations in
thought

Lessons 1, 5

Reasoning in terms of
abstract mathematical
structures

Precursors in Les-
son 8

Deductive Reasoning

Definitional reasoning

Use clear definitions

Understand and use stated assumptions, def-
initions, and previously established results in
constructing arguments.

Lessons 8, 11

Lesson 8

Reasoning in terms of
logical connectives, con-
ditional statements, and
logical equivalencies

Build a logical progression of statements

Justify conclusions

Lesson 8, 9, 10

Lessons 3, 10

Protracted chain of infer-
ences

Lessons 3, 4

Reflective Reasoning

Retrospective reflection

Notice if calculations are repeated, and look
both for general methods and for shortcuts
Maintain oversight of the process, while at-
tending to the details.

Monitor and evaluate one’s progress and
change course if necessary.

Lessons 1, 5
Lesson 2, 7

Lesson 2, 3

Forward reflection

Lesson 8
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6. Closing Words on Designing DNR-Based Curricula

The goal of this article was three-fold: (1) to introduce the DNR frame-
work as a theoretical foundation for curriculum development; (2) to give a
specific instance of a DNR-based unit on complex numbers; and finally (3)
to argue that the DNR framework provides a means for developing desirable
ways of thinking that correspond to the Standards for Mathematical Practice
outlined by the Common Core State Standards.

The design of the curricular unit on complex numbers was inspired by and
roughly follows the development of its subject in the history of mathemat-
ics. Consonant with DNR, instructional objectives of the unit are formulated
in terms of both ways of understanding and ways of thinking, not only in
terms of the former as traditionally is the case. The design of the unit fac-
tors in three major considerations: (a) the developmental interdependency
between ways of understanding and ways of thinking, as dictated by the
duality principle, (b) the intellectual needs of the students and the episte-
mological justifications suitable to their background knowledge and current
mathematical abilities, as implied by the necessity principle, and (c¢) ways to
facilitate internalization, organization, and retention of knowledge, as it is
called by the repeated reasoning principle.

In accordance with the DNR definition of learning and the instructional
principle of intellectual need, i.e., the necessity principle, we designed the
unit around alternating sequences of intellectual perturbations and their cor-
responding resolutions. The development leading up to the complex numbers
and the investigation into their meaning provide students with repeated op-
portunities for applying familiar ways of understanding and ways of thinking
and for acquiring new ones. Consistent with the repeated reasoning princi-
ple, the reoccurrence of these opportunities was by design—to help students
organize, internalize, and retain the knowledge they learn. To this end, each
lesson concludes with a set of practice-of-reasoning problems aimed at helping
students internalize and organize the accumulated ways of understanding and
ways of thinking they have learned in and up to that lesson. Some of these
problems are rather demanding, as readers may witness for themselves. The
duality principle too manifests itself throughout the unit. Students’ prior
ways of thinking are taken into account, and those that are targeted are
developed through the solution of problems understood and appreciated as
such by the students.
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The unit is divided into three stages, corresponding to the historical de-
velopment of complex numbers: (1) the solution of the cubic equation, (2)
the struggle to make sense of this solution, and (3) the emergence of complex
numbers out of this struggle, and the recognition of their utility and power
in solving mathematical problems. Accordingly, the twelve lessons of the
unit are organized around three stages (called Parts in the unit). Stage 1 is
composed of Lessons 1-5; its aim is to delineate the ideas underlying the de-
velopment of the cubic formula. Stage 2 is composed of Lessons 6-8; its aim
is to draw attention to the puzzling behaviors of the cubic formula. Stage 3
is composed of Lessons 9-11; its aim is to resolve these puzzles by construct-
ing a new set of numbers (the field of complex numbers), investigating their
algebraic and geometric meanings, and articulating their remarkable value
to understanding polynomial equations (i.e., the Fundamental Theorem of
Algebra).

The questions I faced in the process of translating the history of devel-
opment of complex numbers into a curriculum are generalizable and relevant
to the development of any curriculum. Specifically, the questions are:

1. How should ideas underlying the historical development of a subject be
represented and sequenced in a curricular unit so as to anchor them in
students’ current knowledge, intellectually necessitate them, and pro-
vide opportunities for reasoning about them and with them repeatedly?

2. What desirable ways of thinking are potentially afforded by this his-
tory?

3. What is the typical background knowledge and cognitive ability of the
student populations for whom the unit is intended (from high school
seniors to college freshmen and sophomores)?

4. How much time can reasonably be allocated to this unit in the existing
high school or college programs?

5. How compatible is the content of the unit with the content of current
programs and national reforms?

Ways of thinking afforded by the unit include: (1) structural reasoning,
with its various instantiations, manifested in two styles of reasoning: theory
building and non-computational; (2) deductive reasoning, focusing on defi-
nitional reasoning and reasoning in terms of quantifiers, connectives, and
conditional statements; and (3) reflective reasoning, with its two instantia-
tions, retrospective reflection and forward reflection.
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I conclude with questions for further research:

1. What are the learning trajectories [33] of the ways of thinking we claim

are advanced by the unit through the DNR-based interventions em-
ployed in the three teaching experiments described above? We agree
with Martin Simon that understanding this process is crucial to cur-
riculum development (see [35, 36]).

. What is the extent and depth of students’ acquisition of these ways

of thinking and the various ways of understanding introduced in the
unit? Except for the fact that the students were largely successful
in solving all the problems in the unit, I have no evidence of their
ability to transfer the knowledge they acquired through the unit to
other mathematical settings.

. What is the impact of the instructional interventions reported here on

retention of these ways of understanding and ways of thinking?

An investigation into these questions may lead to a refinement or possibly a
revision of the unit on complex numbers discussed in this paper.
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