
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1986

Alphabetic Minimax Trees of Degree at Most t*
D. Coppersmith
IBM Thomas J. Watson Research Center

Maria M. Klawe
Harvey Mudd College

Nicholas Pippenger
Harvey Mudd College

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Coppersmith, D., M. M. Klawe, and N. J. Pippenger. “Alphabetic Minimax Trees of Degree at Most t*.” SIAM Journal on Computing
15, no. 1 (February 1986): 189-192.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

SIAM J. COMPUT.
Vol. 15, No. February 1986

1986 Society for Industrial and Applied Mathematics

013

ALPHABETIC MINIMAX TREES OF DEGREE AT MOST t*

D. COPPERSMITHf, M. M. KLAWE AND N. J. PIPPENGER;

Abstract. Problems in circuit fan-out reduction motivate the study of constructing various types of
weighted trees that are optimal with respect to maximum weighted path length. An upper bound on the
maximum weighted path length and an efficient construction algorithm will be presented for trees of degree
at most t, along with their implications for circuit fan-out reduction.

Key words, optimal weighted tree, minimax tree, t-ary tree, fanout reduction, logical circuits

In this paper we consider the problem of constructing, for any list w1,. W of
integers, a tree T with maximum degree at most (where _-> 2 is a fixed integer) and
leaves vl, , vn in left to right order such that fT(wl,’", w,) maxl=<i=<, (li+ w) is
minimized, where l denotes the length of the path in T from the root to the leaf v.
We will call the minimum value f(w,..., w,)=minTfr(w,..., w,) the minimax
weighted path length.

This work was motivated by the results of Kirkpatrick and Klawe [2] dealing with
the analogous problem of constructing t-ary trees, that is, trees in which the degree
of every internal vertex is exactly t. As in [2], we obtain a linear algorithm for the case
of integer weights and prove a tight upper bound on f(wl,’", w,) in terms of
w,. ., w,. Like those in [2], these results can be applied to obtain a circuit fan-out
reduction algorithm that preserves size and depth to within constant multiplicative
factors without increasing the number ofedge crossings. Our relaxation ofthe constraint
on the degrees of internal vertices in the tree results in a smaller multiplicative factor
for depth, but a larger multiplicative factor for size. This relaxation also causes some
of the proofs to be easier than those in [2]; indeed the ideas in this paper inspired
simplifications of both the algorithm and the proof of the upper bound in [2].
Kirkpatrick and Klawe show that an O(n log n) algorithm for real weights can be
obtained from their linear integral weight algorithm, and that the upper bound also
applies to the case of real weights. The same methods could be applied to our results
to yield analogous results for the case of real weights.

If the leaves of a tree are weighted, we can extend the weighting to the internal
vertices of the tree by defining the weight of an internal vertex to be one plus the
maximum of the weights of its sons. With this extension, if the leaves Vl," , v, have
weights Wl," ", w,, then the weight of the root is exactly fr(w,..., w,). This yields
an equivalent formulation of our problem as that of constructing a tree with maximum
degree at most with leaf weights Wl, , w, in left to right order such that the.weight
of the root is minimized. The next lemma gives three modifications which can be made
to a list of weights without increasing the minimax weighted path length.

LEMMA 1. IfWl," ", Wn is a list of weights, then none ofthefollowing modifications
increase the minimax weighted path length. Define Wo w,+l

(a) If n> 1 and w_-<min (Wi_l, W+l) for some with l <- <- n, then replace w by
min (W,_l, W,+l).

(b) If min (wi, wi++l)_-> 1 +max (wi+l, , wi+) for some s <- and with 0 <- <-

n-s, then replace the s weights W+l," , w+ by the single weight 1
max (wi+, ", wi+).

* Received by the editors May 2, 1983, and in revised form May 21, 1984.
t IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
$ IBM Research Laboratory, San Jose, California 95193.

189

190 D. COPPERSMITH, M. M. KLAWE AND N. J. PIPPENGER

(C) Ifw Wi/ Wi+t_ < Wi+ 1 for some with 1 <= <-_ n + 1, then replace
the weights wi, , w i+t-1 by the single weight 1 + w i+t-1.

Proof. In each case the proof consists of indicating how an optimal tree for the
original list of weights can be altered to obtain a tree for the modified list in such a
way that the weight of the root is not increased. Let T be a tree that is optimal for
w,..., wn. In case (a), vi must have /Ji--1, Vi-t-1 or one of their ancestors as a brother,
so that increasing the weight of v cannot increase the weight of its father, and hence
cannot increase the weight of the root. In case (b), choose a vertex x in T such that
all the leaves in the subtree rooted at x are in the set {v+,. ., v+s} and such that
the distance from x to the root is minimal. Note that x must have v, v+s+ or one of
their ancestors as a brother. Thus replacing the subtree rooted at x by a single vertex
with weight 1 + max (w+, , wi+) and removing any leaves in {/)i+1, Vi+s} that
are outside the subtree rooted at x cannot increase the weight of the root. Finally, in
case (c), there are two possibilities. The first is that the brothers of v+,_ are precisely
{v+j, .., vi/,_2} for some j with 0_<j_< t-2. In this case the change corresponds to
replacing the weights of vi+j, , vi+t- by the weight of their father which has weight
1 + w+t_, and removing the other leaves v, , vi+-l. In the second possibility v/,_l

has as a brother v+,, an ancestor of vi+,, or an ancestor of vi+ for some j with
0_<-j<= t-2. Thus removing the leaves vi+ for 0=<j=< t-2 and increasing wi+,_ by 1
does not increase the weight of the root. [3

We now sketch an algorithm that, given a list w,..., w, of integer weights,
constructs an optimal tree. First add dummy weights w0 w,+ to each end of the
list. At any stage of execution there will be a list of weights of vertices that have not
yet been assigned fathers and a pointer dividing the list into two parts, the left sublist
and the right sublist. The algorithm will operate so that the left sublist always forms
a nonincreasing sequence from left to right. We call a weight K in the left sublist a
step weight if K is strictly larger than the weight on its right or if K is the rightmost
weight in the left sublist. Initially the pointer is placed so that it points between Wo
and w. We now describe the main procedure of the algorithm. Suppose the weights
lying immediately to the left and right of the pointer are L and R respectively. If
L-> R, then the algorithm simply moves the pointer past R. Otherwise, let K be the
rightmost step weight such that either K => R or there are at least weights lying strictly
between K and R in the list.

First suppose that ,there are at least weights between K and R. If at least two
of these weights are step weights, find the leftmost such step weight, say K’, remove
all weights lying between K’ and R and insert a new weight equal to K’ between K’
and the pointer. (We rely here on (b) followed by (a) in Lemma 1 and on the fact ,that
all weights are integers.) If L is the only step weight, remove the rightmost weights
to the left of the pointer and insert a new weight equal to L+ 1 to the right of the
pointer. (We rely here on (c) in Lemma 1.) Now suppose that there are less than
weights between K and R, and hence that K => R. Remove all weights between K and
R and insert a new weight equal to R to the left of the pointer. (We rely again on (b)
followed by (a) in Lemma 1.) Note that after applying this procedure the weights to
the left of the pointer still form a nonincreasing sequence.

The algorithm operates by repeating this procedure until exactly three weights are
left in the list. As the a0 weights are never removed, the final list is of the form o, w,. Interpreting modifications of types (b) and (c) in the obvious manner of making
the new weight the weight of the father of the vertices whose weights were removed
from the list, it is clear that this algorithm constructs an optimal tree and that the
minimax weighted path length is w.

ALPHABETIC MINIMAX TREES OF DEGREE AT MOST 191

To implement the algorithm efficiently, it is only necessary to maintain the position
of the pointer and (in a doubly-linked list) the step weights and their positions in the
left sublist. In any execution of the main procedure, all but the leftmost of the step
weights examined will no longer be step weights at the end of the procedure. From
this and by examining the other operations in the procedure it is easy to see that the
running time of the algorithm is at most linear in the total number of vertices in the
tree (which is at most 2n- 1), with a coefficient that is indep.endent of t.

We now prove an upper bound on the minimax weighted path length for the case
of integer weights.

LEMMA 2. If Wl, Wn are integers, then

f(wl, w) < l + logt 2 + logt (l<__.<=, t(wi))
Proofi For W the list of weights wl,..., w,, define g(W)= l<=i<__n_l max(w’’w’+).

Then it is easy to verify that if W’ is any list obtained by modifying W according to
(a), (b) or (c) of Lemma 1, then g(W’)_-< g(W). Suppose w is the weight of the root
of the tree constructed by our algorithm and suppose the weights of the sons of the
root are Xl,’’ ", xs. Let X be the list Xl,’’ ", xs. By iterating the observation above,
g(X) <= g(W). Combining this with the obvious inequalities <-_ tg(X) and g(W) <
2 Yl<=i<= t(w’) and taking logarithms completes the proof. D

Remark 3. The corresponding upper bound in [2] for t-ary trees is 2+
logt (l<=i<=n t(w)).

We now describe the application to circuit fan-out reduction in more detail, in
order to compare the effect of using various tree constructions. Suppose G is an ayli
directed graph with fan-in bounded by s. In 1], an algorithm is given that constructs
a new graph G’ with fan-out at most t, by replacing each vertex of O that has fan-out
greater than with a tree connecting that vertex to its sons. By choosing trees that
minimize the increase in depth while having degrees bounded by t, it can be proved
that Size (G’) _-< (1 + (s 1)/(t 1)) Size (G) + (q 1)/(t 1) and Depth (G’) <_-

(1 + logt s) Depth (G) +log, q, where q is the number of outputs of G. Unfortunately,
however, using trees that minimize the increase in depth will generally increase the
number of edge crossings.

In [2] it is observed that using alphabetic minimax trees avoids the increase in
edge crossings in exchange for a poorer bound on the depth of the new graph. Thus,
although the size bound remains the same, the depth bound becomes Depth (G’)<
(2 + log, s) Depth (G) + logt q. Finally, using the trees described in this paper also avoids
the increase in edge crossings with a better depth bound than that of [2] but a poorer
size bound. More precisely, if our algorithm is used, the bounds become Depth (G’) _-<

(l+log,(2s))Depth(G)+logtq and Size(G’)<-sSize(G)+q-1. We will see,
however, that the size bound can be improved to Size (G’) -<_ (1 + (s 1)/(t 1) +
(s+l)(t-2)/3(t-1))Size(G)+(q+l)/(t-1)+(q+l)(t-2)/3(t-1), by adding an

extra phase to our algorithm to reduce the size of the optimal tree.
Although our algorithm constructs an optimal tree, it does not necessarily construct

the optimal tree with the smallest number of vertices. In the worst case, which occurs
for sequences of the form 2j- 1, 2j- 3,. , 3, 1, 2, 4,. , 2j- 2, 2j, our tree has n- 1
internal vertices, although there is an optimal tree with [(n 1)/(1) internal vertices.
Although we have been unable to find a linear algorithm which produces the smallest
optimal tree, by applying a simple linear "compaction" algorithm to our optimal tree
we obtain a tree in which the number of internal vertices is at most L(n- 1)/(t- 1)+

192 D. COPPERSMITH, M. M. KLAWE AND N. J. PIPPENGER

(t-2)(n + 1)/3(t-1)J. We will also give an example showing that there are sequences
for which the smallest optimal tree has this many internal vertices.

A leaflet is defined to be an internal vertex that has only leaves as sons and has
degree less than t. The object of the compaction algorithm is to produce a tree satisfying
the following three conditions.

(1) Each internal vertex either has degree or is a leaflet.
(2) No two adjacent leaves are the sons of different leaflets.
(3) Each leaflet has degree at least 2.

It is not hard to design a linear algorithm that accomplishes this. Condition (1) can
be met by a phase that processes the vertices in preorder (or any other order that visits
each vertex before its sons) and raises the degree of nonleaflet internal vertices by
making grandsons into sons. Condition (2) can be met by a phase that, whenever two
"offending" adjacent leaves are located, moves sons from the leaflet with smaller weight
to the leaflet with larger weight until either the first leaflet has degree 1 and can be
collapsed (i.e. replaced by its son), or the second has degree and is no longer a
leaflet. Finally, condition (3) can be met by collapsing leaflets with only one son.

We shall show that any tree satisfying the three conditions above has at most
[(n- 1)/(t- 1)+(t-2)(n+ 1)/3(t- 1) internal vertices.

LEMMA 4. If T is tree with n leaves satisfying conditions (1), (2) and (3), then
has at most [(n- 1)/(t- 1)+(t-2)(n+ 1)/3(t- 1)J internal vertices.

Proof. Let k be the number of leaflets and let p be the number of leaves that a
sons of leaflets. Obviously, p>-2k, by condition (3). Thus the number of internal
vertices is at most k + (n- k-1)/(t- 1), since if we remove all leaves that are sons of
leaflets from T, the remaining tree is a t-ary tree with n -p + k leaves and so its number
of internal vertices is exactly (n-p+k-1)/(t-1). Finally, it is easy to see that
k<-(n+ 1)/3, by conditions (2) and (3), which yields the stated bound.

We conclude our paper with examples which show that even after compaction
our optimal tree is not necessarily the smallest optimal tree, and also that there are
lists of weights for which the number of internal vertices in the smallest optimal tree
attains the bound in the preceding lemma. Let W(n) be the list wl,’’ ", wn, where
wi 1 for 0 mod 3 and wi 0 otherwise. For n 9 and 3, the balanced ternary
tree is optimal and has only four internal vertices. Our algorithm, however, begins by
pairing the three pairs of 0 weights, and it can easily be checked that no matter how
the compaction algorithm is implemented, the resulting compacted tree will have five
internal vertices. On the other hand, if n [3tk/2] for some k 1 and 3, then there
is only one optimal tree for W(n), and it has (n-1)/(t-1)/(t-2)(n+ 1)/3(t-l)J
internal vertices.

REFERENCES

[1] H. J. HOOVER, M. M. KLAWE AND N. J. PIPPENGER, Bounding fan-out in logical networks, J. Assoc.
Comput. Mach., 31 (1984), pp. 13-18.

[2] D. G. KIRKPATRICK AND M. M. KLAWE, Alphabetic minimax trees, this Journal, 14 (1985), pp.
514-526.

	Claremont Colleges
	Scholarship @ Claremont
	1-1-1986

	Alphabetic Minimax Trees of Degree at Most t*
	D. Coppersmith
	Maria M. Klawe
	Nicholas Pippenger
	Recommended Citation

	tmp.1309467769.pdf.dd5X6

