
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2001

Fractional Analogues in Graph Theory Fractional Analogues in Graph Theory

Ari Nieh
Harvey Mudd College

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

Recommended Citation Recommended Citation
Nieh, Ari, "Fractional Analogues in Graph Theory" (2001). HMC Senior Theses. 131.
https://scholarship.claremont.edu/hmc_theses/131

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/131?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu

In Search of the Fractional Four Color Theorem

by
Ari Nieh

Gregory Levin, Advisor

Advisor:

Second Reader:

(Arthur Benjamin)

May 2001

Department of Mathematics

Abstract

In Search of the Fractional Four Color Theorem

by Ari Nieh

May 2001

Tait showed in 1878 that the Four Color Theorem is equivalent to being able to

three-color the edges of any planar, three-regular, two-edge-connected graph. Not

surprisingly, this equivalent problem proved to be equally difficult. We consider

the problem of fractional colorings, which resemble ordinary colorings but allow

for some degree of cheating. Happily, it is known that every planar three-regular,

two-edge-connected graph is fractionally three-edge-colorable. Is there an analogue

to Tait’s Theorem which would allow us to derive the Fractional Four Color Theo-

rem from this edge-coloring result?

Table of Contents

List of Figures iii

Chapter 1: Introduction 1

Chapter 2: Background and Definitions 4

2.1 Graph Theory Essentials . 4

2.2 Proof of Tait’s Theorem . 5

2.3 Fractional Graph Theory . 6

Chapter 3: Edge Cuts and Primitive Graphs 9

3.1 Color Parity in Edge Cuts . 9

3.2 Examples of Primitive Graphs . 11

Chapter 4: Tait’s Theorem Revisited 14

4.1 Another Interpretation of Tait’s Theorem 14

4.2 Generalization to b = 2 . 17

Chapter 5: Conclusion 21

Appendix A: Appendix 22

A.1 The Subadditivity Lemma . 22

A.2 Linear Programming . 22

A.3 Matlab Code . 23

Bibliography 33

ii

List of Figures

2.1 Proof of Tait’s Theorem . 6

2.2 A 2-fold Coloring of the 5-cycle . 7

3.1 Our Graph Before and After Cutting and Rejoining Edges 10

3.2 Primitive Coloring of Petersen’s Graph 12

3.3 Primitive Coloring of a Dodecahedron 13

4.1 Tait’s Theorem . 14

4.2 Another View of Tait’s Theorem . 15

4.3 Conditions for Consistency of f . 16

4.4 Continuous Deformations of a Path in the Plane 17

iii

Acknowledgments

I would like to thank my advisor, Professor Greg Levin, for his invaluable guid-

ance in writing this thesis. I would also like to thank Professor Lesley Ward and

Professor Art Benjamin for their feedback.

iv

Chapter 1

Introduction

The Four Color Theorem, which confounded graph theorists for more than a

century, also implies the result of interest herein, namely, the Fractional Four Color

Theorem. However, the only known proofs of the Four Color Theorem are ex-

tremely complex and require heavy use of computers. Does a “simple” proof of the

Fractional Four Color Theorem exist? We investigate this possibility by searching

for a fractional analogue to Tait’s Theorem. In Chapter 2, we will give background

and definitions. Chapter 3 will consist of progress and results regarding edge cuts

in relevant planar graphs, and Chapter 4 will focus on our characterization of prim-

itive graphs. Finally, Chapter 5 will discuss our attempted generalization of Tait’s

Theorem.

The Four Color Problem

In 1852, while coloring a map of the counties of England, Francis Guthrie found

that four colors were sufficient to ensure that adjacent counties were assigned dif-

ferent colors. Naturally, he wondered if it was necessarily true for all maps. In

graph theory terms, this corresponds to coloring the faces of a planar graph such

that no two faces that share an edge have the same color. Because the vertices of

the planar dual of a graph correspond to the faces of the original graph, this prob-

lem is equivalent to showing that the chromatic number of a planar graph never

exceeds four.

2

Graph theorists puzzled over this problem for years. Several, including Kempe

and Tait, came up with faulty proofs. (In fact, the problem has remained a favorite

of cranks to this day.) It was finally proven by Appel and Haken in 1976 through

extensive use of computers. Unfortunately, many found the method of proof some-

what unsatisfying. Even today, although their approach has been simplified, no

simple proof is known to exist.

Tait’s Theorem

In 1873, Tait proved that coloring the edges of any 3-regular, 2-edge-connected

planar graph with three colors such that incident edges did not share the same

color was equivalent to properly four-coloring its faces. This implied that the Four

Color Problem could be solved by finding a way to properly three-color the edges

of all such graphs. Unfortunately, this problem proved no more tractable than the

original.

Fractional Graph Theory

Fractional graph theory is a field of graph theory that defines rational-valued

equivalents of normally integer-valued graph theory concepts. For example, the

chromatic number of a graph, typically denoted χ(G), which represents the fewest

number of colors necessary to color the vertices of a graph such that no two adja-

cent vertices are the same color, is necessarily an integer. The fractional chromatic

number χf (G) denotes a similar concept, but can take on rational values. Our goal

in this paper is a proof of the Fractional Four Color Theorem, namely, that every

planar graph has χf (G) ≤ 4. Because it is always the case that χf ≤ χ, the Frac-

tional Four Color Theorem is implied by the normal Four Color Theorem.

However, to find an alternate way of getting at the Fractional Four Color The-

orem, we might try to appeal to the fact that the fractional edge chromatic number

3

of any 3-regular, 2-edge-connected planar graph is known to be three. If there ex-

isted a fractional analogue of Tait’s Theorem, which would (in an ideal world) take

a 3-edge-coloring to a 4-face-coloring in some pleasantly fractional way, then the

truth of the Fractional Four Color Theorem could be verified without appealing to

the original, non-fractional problem.

Chapter 2

Background and Definitions

This chapter contains the mathematical background and terminology necessary

for the remainder of the paper.

In Section 2.1 we review the basics of graph theory. In Section 2.2 we prove the

relevant direction of Tait’s Theorem. Section 2.3 introduces fractional graph theory

and defines the specific notation and terms used in our research.

2.1 Graph Theory Essentials

A graph G consists of two sets- a vertex set V and an edge set E consisting of size

2 subsets of V .1 Graphs are commonly represented visually, with vertices drawn

as points, and edges as lines or curves between their two vertices. A subgraph G′ of

G is a graph with vertex set V ′ and edge set E ′ such that V ′ ⊆ V and E ′ ⊆ E.

A path is a sequence of distinct adjacent vertices. A graph is connected if there

exists a path between any two vertices. A component of G is a maximal connected

subgraph. We denote the set of edges between two disjoint sets of vertices S and

T by [S, T]. Such a set is an edge cut if S and T are nonempty and S ∪ T = V . Note

that deleting an edge cut necessarily disconnects a connected graph. An edge cut

of size one is called a cut-edge. A graph is k-edge-connected if there does not exist an

edge cut of size less than k.

A graph is called planar if it can be drawn in the plane without edge-crossings.

1This definition, which suffices for this paper, is actually the definition of a simple graph. A
simple graph does not contain loops (edges from a vertex to itself) or multiple edges between
two vertices.

5

Such a drawing is called a crossing-free planar embedding. A graph thus embedded

is a plane graph. A planar embedding determines faces of a graph, which are the

regions bounded by its edges.

Assigning a color to each vertex of a graph is called a vertex coloring. A col-

oring is called proper if no two adjacent vertices receive the same color. We will

frequently denote colors with numbers for the sake of clarity. The chromatic number

χ(G) of a graph is the smallest number of colors with which the vertices of G may

be properly colored. Edge colorings, proper edge colorings and edge chromatic number

are defined analogously. Because only proper colorings are of interest in this paper,

we will henceforth abuse our terminology by omission of the qualifier “proper”.

The number of edges incident to a vertex is the degree of the vertex. A graph

is called k-regular if every vertex has degree k. A 1-regular graph (or subgraph) is

called a perfect matching.

A cycle is a connected graph (or subgraph) in which each vertex has degree two.

It is simplest to think of a cycle as a closed, non-intersecting loop of vertices and

edges.

By definition, it is clear that that any 2-regular graph is the union of disjoint

cycles.

2.2 Proof of Tait’s Theorem

Theorem 1 (Tait 1878) A 2-edge-connected 3-regular plane graph embedding is 4-face-

colorable if and only if it is 3-edge-colorable.

We will show only the backward direction, as the other direction is irrelevant

to our research.

Proof:

We are given a 3-regular 2-edge-connected plane graph G. Assume that the

edges have been properly colored with colors a, b, and c. Let Ea, Eb, and Ec be

6

the subgraphs formed by edges of their respective colors. Let H0 = Ea ∪ Eb and

H1 = Ea ∪ Ec. Both H0 and H1 are 2-regular, because they are the original graph

with one color deleted, which removes one edge from each vertex. Therefore, both

H0 and H1 are unions of disjoint cycles. As such, each can be used to assign binary

strings of length two to the faces of G as shown.

HHG G0 1

a

b

c

c

b

b

a

a ac c

c a

bb

b b b

a c

c

ca

b

a

c a1_

0_

_0

_1

11 00

00

10

01
a

a

a

Figure 2.1: Proof of Tait’s Theorem

To determine the first bit of each face string, examine H0. Assign the first bit

value one if it is contained in an odd number of cycles, and zero otherwise. (In our

example, there are no nested cycles- so the number of cycles a region is contained

in is always zero or one.) Similarly, using the subgraph H1, let the second bit be

one if it is contained in an odd number of cycles, and zero otherwise. Then, use the

two bits assigned to each face to construct a 4-face-coloring with colors 00, 01, 10,

and 11. This coloring is proper because each edge appears in at least one of H0 and

H1, so adjacent faces must differ in at least one of the two bits. �

2.3 Fractional Graph Theory

In this section, we will define terms specific to fractional graph theory.

A b-fold vertex coloring of a graph G assigns to each vertex a set of b distinct

colors. Such a coloring is proper if adjacent vertices receive disjoint color sets.

7

The b-fold chromatic number χb(G) of a graph is the minimum number of colors

necessary to properly b-fold color the vertices of a graph.

12

34

15

45

23

Figure 2.2: A 2-fold Coloring of the 5-cycle

Notice that χb(G) ≤ b·χ(G) for all b ∈ Z, because simply replicating an ordinary

coloring will yield a b-fold coloring of b · χ(G) colors.

The fractional chromatic number is defined by

χf (G) = lim
b→∞

χb(G)

b
(2.1)

This limit is guaranteed to exist by the subadditivity lemma, and is guaranteed

to be achieved for some value of b due to results from linear programming2. It is

also necessarily achieved for every integer multiple of the smallest such b.

The fractional quantities for edge and face colorings are defined in an analogous

manner.

In trying to prove the Fractional Four Color Theorem, our goal is to find some

way of transforming a b-fold 3b-edge-coloring into a t-fold 4t-face-coloring. Be-

cause Tait’s theorem guarantees this for b = 1, we wish to consider b-fold 3b-edge-

colorings that do not directly “contain” ordinary (non-fractional) 3-edge-colorings.

For this reason, it is necessary to define a class of b-fold colorings which are funda-

mentally many-fold, and not merely extensions of ordinary colorings.

2See appendix for more details

8

We call a b-fold 3b-edge-coloring of a 3-regular graph primitive if every possible

pair of colors appears on at least one edge. (Note that in such a coloring, each of the

3b colors appears on the edges around any given vertex exactly once; that is, all the

edges containing any particular color are a perfect matching.) Any non-primitive

b-fold 3b-edge-coloring must contain an ordinary 3-edge-coloring in the following

sense– given two colors a and b which never appear on the same edge, color the

remaining edges with c. Because both a and b are incident to each vertex exactly

once and on different edges, the remaining edges must form a perfect matching.

Therefore, the graph is properly 3-edge-colored with a, b, and c, and our fractional

coloring “contains” an ordinary coloring.

This definition characterizes the colorings which will be useful for our ana-

logue. When we examine a non-primitive coloring, Tait’s Theorem yields an obvi-

ous and somewhat unavoidable ordinary 4-face-coloring, preventing us from de-

termining what kind of t-fold 4t-face-coloring should be implied by our hypothet-

ical analogue.

Call a 3-regular, 2-edge-connected planar graph strongly primitive if it has no

non-primitive b-fold 3b-edge-coloring for any positive integer b and hence no ordi-

nary 3-edge-coloring (such a graph would be a counterexample to the Four Color

Theorem, but it is convenient to define it nevertheless).

Chapter 3

Edge Cuts and Primitive Graphs

We were interested in examples to guide construction of smallest counterexam-

ples of the Fractional Four Color Theorem. This motivated our study of properties

of primitive graphs. To investigate these properties, we derived results regarding

edge cuts in b-fold 3b-edge-colored graphs. Define a 3b-graph as a b-fold 3b-edge-

colored, 2-edge-connected, 3-regular graph.

The results in this chapter are not directly related to our conclusions, and are

included for completeness.

3.1 Color Parity in Edge Cuts

Theorem 2 In any edge cut of a 3b-graph, each color appears an equal number of times

modulo 2.

Proof: Let S ⊆ V (G) define an edge cut M = [S, Sc], and begin with S = V (G)

and Sc = {φ}. Notice that initially, the parities of all colors appearing in M are

vacuously equal. One at a time, move vertices from S to Sc until M is the edge cut

in question. Because each of the 3b colors is incident to any vertex exactly once,

each move either adds or subtracts one from the number of appearances of each

color in M , which leaves their relative parities unchanged. Therefore, the edge cut

must use every color with the same parity. �

Corollary: In any edge cut of size two in such a graph, both edges must be

identically colored.

Proof: Each edge only uses b colors. Therefore, not every one of the 3b colors

10

can be used by two edges. Since at least one color is used zero times, all colors

must be used an even number of times. Therefore, no color can appear in one

edge’s color set and not in the other’s, and the two color sets must be identical.

We can now prove that the smallest counterexample to the Four Color Theorem

is 3-edge-connected. (Unfortunately, Tait had gotten to this a century before we did

using relatively simple methods of normal graph theory.)

Corollary: The smallest strongly primitive 3-regular 2-edge-connected planar

graph must be 3-edge-connected.

Proof: Assume that there exists an edge cut of size two. Then the two edges are

identically colored, and two smaller graphs may be formed by cutting both edges

and joining them internally.

Figure 3.1: Our Graph Before and After Cutting and Rejoining Edges

Since the two smaller graphs formed cannot be strongly primitive, 3-color their

edges. Then, after “synchronizing” the two colorings by appropriate permutations,

cut and rejoin the edges to form the original graph, colored in a non-primitive way.

This is a contradiction, so no such edge cut can exist. �

There are several nearly identical corollaries using similar arguments.

11

Corollary: The smallest strongly primitive 3-regular 2-edge-connected graph

must be 3-edge-connected. �

Corollary: The smallest primitive 3-regular 2-edge-connected planar graph must

be 3-edge-connected. �

Corollary: The smallest primitive 3-regular 2-edge-connected graph must be

3-edge-connected. �

Finally, since we have eliminated the possibility of size two edge cuts, we ex-

amine the next case.

Corollary: Given any edge cut of size three in such a graph, either each color is

represented once, or half of the colors are represented twice and each edge shares

a distinct half of its color set with each of the other two edges. �

If b = 2, then only the former case is possible. The proof is similar to that of

Theorem 3.1, beginning with M as the given edge cut, and showing invariance of

the parities of certain color combinations to eliminate the latter case.

3.2 Examples of Primitive Graphs

In an effort to find any example of a primitive 3b-graph, planar or not, we set b = 2

and looked for graphs that used every possible pair of colors on an edge. To find

the smallest possible example, we looked at the 15 possible pairs of two colors.

Theorem 3 Petersen’s graph is the smallest primitive 3b-graph for b = 2.

Proof: By our definition of primitivity, each possible color pair must appear

together on some edge. Since there are
(
6
2

)
= 15 such pairs, any primitive graph

for b = 2 must have at least 15 edges. Because 3b-graphs are 3-regular, this is

equivalent to having at least 10 vertices. Petersen’s graph satisfies these lower

limits and is therefore minimum. Uniqueness follows by considering cases. �

12

46 12

35
25

16

45
3613

24

2614

23 34
56 15

Figure 3.2: Primitive Coloring of Petersen’s Graph

Unfortunately, Petersen’s graph is not planar, so it is not a useful example for

examining the relationship between the b-fold edge-coloring and any correspond-

ing t-fold face-coloring.

After some mutation of Petersen’s graph, we found that the dodecahedron is a

planar 3b-graph with a primitive 2-fold 6-edge-coloring.

13

12

46 35 26

56

25

36

13

16

15

12

46

34

36 45

35

14

56

26 25

24 23

45

23 24

16 15

13 14
34

Figure 3.3: Primitive Coloring of a Dodecahedron

Chapter 4

Tait’s Theorem Revisited

This chapter examines a more general interpretation of Tait’s Theorem. In Sec-

tion 4.1 we derive the alternate interpretation of Tait’s Theorem. In Section 4.2 we

generalize the logic behind the theorem. We then attempt to apply it to the case

b = 2.

All graphs in this chapter are assumed to be planar unless otherwise specified.

4.1 Another Interpretation of Tait’s Theorem

In our proof of Tait’s Theorem, note that color a always appears on edges between

faces whose binary strings differ in both bits. This is because the a edges appear in

both H0 and H1. Similarly, edges with color b always appear between faces whose

strings differ in only the first bit, because b is only in H0. Lastly, edges with color c

must appear between faces whose strings differ in only the second bit, because c is

only in H1.

HHG G0 1

a

b

c

c

b

b

a

a ac c

c a

bb

b b b

a c

c

ca

b

a

c a1_

0_

_0

_1

11 00

00

10

01
a

a

a

Figure 4.1: Tait’s Theorem

15

In other words, the face strings generated by Tait’s Theorem determine a unique

function f from the edge color sets to binary edge strings. In this case, f(a) = 11,

f(b) = 10, and f(c) = 11.

In fact, this function determines the binary face strings generated by Tait’s The-

orem in the following manner: use f to assign a binary string to each edge. Assign

the unbounded face the zero string. Then, use the operation of binary XOR to fill in

face strings. In other words, when “stepping over” an edge between faces F1 and

F2 separated by edge color set C, give the string on F1 value equal to the string on

F2 added bitwise modulo 2 to f(C).

a

b

c

c

c

b

b

a

a

00

11

11
11

10

10

10

01
01

01

00

11

11
11

10

10

10

01
01

01 10

11 01

00

11

11
11

10

10

10

01
01

01 10

11 01
00

Figure 4.2: Another View of Tait’s Theorem

While it is clear that a valid f results from the 4-face-coloring generated by

Tait’s theorem, we can make a more general claim about when a function f from

all possible edge color sets into all binary strings of a certain length can be used

to generate a t-fold 4t-face-coloring. (Naturally, because we are attempting to find

an analogue to Tait’s Theorem, we would rather start with a 3b-edge-coloring and

devise an f which will generate face strings in this manner.) We call an assignment

of binary face strings proper if adjacent faces receive different strings. We denote

this assignment hf (F), a function mapping faces to binary strings as defined by

the binary XORs generated by f . It is clear the hf is proper if and only if it maps

adjacent faces to different strings.

Theorem 4 Given a function f that maps size b subsets of our 3b edge colors to binary

16

strings of length l, hf is proper on any planar 3b-graph if and only if the following two

conditions hold:

(I) The zero string is not in the range of f .

(II) If A, B, and C are disjoint edge color sets each of size b, then the binary sum (or

XOR) of f(A), f(B), and f(C) is the zero string.

Note that in the second condition, A∪B∪C is the set of all possible face colors,

and A, B, and C are sets that could appear on the three edges incident to a single

vertex.

Proof:It is fairly clear that these conditions are necessary. If there existed a color

set C such that f(C) was the zero string, then any graph with the color set C on

an edge would have two adjacent faces F1 and F2 with identical binary strings.

Similarly, if the second condition did not hold for some disjoint size b color sets A,

B, and, C, any graph with a vertex v around which A, B, and C appeared could

not have consistent face strings. If we were to start at D, one of the three faces

adjacent to v and follow a closed loop around it passing through the three edges,

we would end at D, and the binary difference between hf (D) and itself would be

nonzero. This is impossible.

F1

F 2 D

C

A

B

00...

Figure 4.3: hf (F1) = hf (F2), hf (D) = hf (D) + f(A) + f(B) + f(C)

Showing that these conditions are sufficient is slightly more involved. We must

show that hf is well-defined. That is, given a face F of a 3b-graph, suppose we

17

consider multiple paths in the plane between the unbounded face and F . How do

we know that the sum of the binary strings on the edges through which a path

passes is a constant for all paths? To prove this, we use condition (II). Because

the plane is simply connected, all such paths can be continuously deformed into

each other. Therefore, we can discuss what happens when a path is deformed

through a vertex. Because the sum of the strings on the edges surrounding any

vertex is the zero string, the binary sum of the edges through which a path passes

is invariant under continuous deformations of that path, as shown. Therefore, hf

is well-defined. Finally, the first condition clearly suffices to ensure that adjacent

face strings are different. �

A

B C
Sum(t) = f(B) + f(C) = f(A)

Sum(s) = f(A)

t

s

Figure 4.4: f(A) + f(B) + f(C) = 00...

4.2 Generalization to b = 2

Now that we know precisely what conditions on f generate consistent, proper face

strings on any planar 3b-graph, we can attempt to apply this to the case b = 2 and

find an analogue of Tait’s Theorem. If one does exist, proving it for b = 2 will likely

shed some light on the general case. If one does not exist, then b = 2 might very

well be the easiest counterexample.

Our plan of attack, then, is to find some f satisfying our properties, and then

another function g mapping face strings to face color sets of size t chosen from 4t

18

colors. Note that in our original proof of Tait’s Theorem, g was somewhat trivial,

as t = 1. Clearly, the necessary and sufficient condition on g for it to complete

the analogue are that it maps potentially adjacent face strings (that is, face strings

whose binary difference is in the range of f) to disjoint face color sets.

To find a possible f , we considered all 1-bit binary functions which satisfied

condition (II) on f . (Clearly, only f = 1 could satisfy condition (I) for strings

of length 1.) This set is an abelian group under binary XOR (because the XOR

operation preserves condition (II)), and each of its 32 elements has order 2, so it is

isomorphic to Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2. This set is easiest viewed as a matrix whose

rows are the fifteen color pairs and whose columns are the functions. (Matlab code

for generating this matrix is included in the appendix.)



0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1

1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1

1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1

1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1 0

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1

0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1

1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1

0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0

1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1

1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0

1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0

1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0

0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1


It is not hard to see that all possible functions f fulfilling the desired conditions

can be made by “smashing together” these 1-bit functions. In order to choose an f

which will put sufficient structure on the face strings of our graph to enable us to

find a valid g, we must pick some number of columns from our matrix. Linearly

independent sets of columns are the only ones of interest, because linearly depen-

dent columns will not provide additional structure on the face strings. Clearly,

19

fewer than three will result in violation of condition (I).

Picking three columns will not suffice, either. If we choose a submatrix of three

columns with no row of zeroes (which is equivalent to the first condition), all pos-

sible nonzero binary strings of length three appear in the range of f . Clearly, there

is no way to choose g such that face strings whose difference is in the range of f

receive disjoint color sets, because the range of f is all of {0, 1}3.

Because our group is isomorphic to Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, the column space

of any subset cannot have dimension greater than five. Therefore, if we seek an f

that leads to a working analogue, we must pick strings of length four or five.

We have shown by computer that all sets of four linearly independent columns

have at least eleven different rows. That is, the range of f has size eleven. We

know that all possible face strings in {0, 1}4 could occur in some graph, because

our submatrix has rank four. Therefore, given a face color string a, g(a) must be

disjoint from g(b) for at least eleven strings b ∈ {0, 1}4. It follows that for any face

color string a, g(a) can overlap at most four other color sets.1

If g is one-to-one, we can model g as a hypergraph problem. A hypergraph is a

vertex set V and a hyperedge set E composed of non-empty subsets of V . If g exists

in this case, then there must exist a hypergraph with 4t vertices (representing the

colors) and 16 t-hyperedges (that is, color sets of size t). It must also be the case

that none of these 16 hyperedges is adjacent to more than four others. Such a

hypergraph is a combinatorial impossibility.

Theorem 4.2.1 There does not exist a hypergraph with 4t vertices and 16 t-hyperedges

such that no hyperedge is adjacent to more than four others.

Proof:Assume that such a hypergraph G exists. Choose a hyperedge a, and

consider the subgraph G1 induced by removing all vertices contained in a. G1

has 3t vertices and at least 11 hyperedges, because a was adjacent to at most four

111 + 4 + 1 = 16

20

others. Now pick a hyperedge b in G1, and consider the subgraph G2 induced by

removing all vertices contained in b. By similar reasoning, G2 has 2t vertices and

at least six hyperedges.

I claim that G2 is its own component in G. Consider a hyperedge e in G2. Be-

cause e contains t vertices, only one of the other hyperedges in G2 (namely, the one

containing the other t vertices) can be disjoint from e. Therefore, e is adjacent to

four other hyperedges in G2, so none of the vertices in e can be in hyperedges from

outside of G2. Because e was selected without loss of generality, it follows that no

vertex in G2 can be part of an outside edge, so G2 is its own component. It is also

clear that G2 must have exactly six hyperedges. If it had more, then e would have

to be adjacent to more than four others.

This implies that the hypergraph G−G2, which is well defined because no edges

connect G2 to the rest of G, has 2t vertices and ten hyperedges. This is clearly im-

possible, as we have just shown that a 2t vertex hypergraph with these conditions

can have no more than six hyperedges. By contradiction, G does not exist. �

However, we do not know that g must be one-to-one. In fact, if our edge-

coloring is not primitive, a g that is not one-to-one will properly four-color the

faces of our graph! This leaves us with the question- if we have a primitive 3b-

edge-coloring, must g be one-to-one? Because non-primitive colorings yield ob-

vious solutions via Tait’s Theorem, this would eliminate the case of length four

binary strings for b = 2 and allow us to focus on length five strings.

Chapter 5

Conclusion

Our research raises several unanswered questions worthy of further investiga-

tion.

-Is Petersen’s graph the unique minimum primitive graph, independent of b?

-Does primitivity of a 3b-edge-coloring imply that g must be one-to-one?

-Can an analogue of Tait’s Theorem actually be found for b = 2, using {0, 1}5 as

our range of f and domain of g?

-If so, how can it be extended to all values of b?

-Is there a different way to generalize Tait’s Theorem to the fractional case?

Appendix A

Appendix

A.1 The Subadditivity Lemma

A function f mapping the positive integers to R is subadditive if f(a) + f(b) ≥

f(a + b) for all a, b.

The lemma itself states that if f is non-negative and subadditive, the limit as

n →∞ of f(n)
n

exists and is equal to the infimum of f(n)
n

for all n.

A.2 Linear Programming

An alternate way to define the chromatic number of a graph is through linear pro-

gramming. An independent set is a set of vertices, none of which have any edges

between them. χ(G) is equal to the solution of the problem:

Minimize cTx subject to Ax ≥ b where c and b are appropriately sized vectors

of all ones, A is the vertex-independence set adjacency matrix, and x is a vector

of zeroes and ones. We can view the vector x as picking a set of independent sets

such that every vertex is contained in at least one. A minimal such cover of the

vertices is a minimal coloring, where one color is assigned to the vertices of each

independent set. Therefore, the solution to this problem is the minimum number

of colors needed to properly color the vertices of a graph- the chromatic number.

However, if we relax the requirement that entries of x are from {0, 1}, and in-

stead allow them to be chosen from [0, 1], the solution to our linear program is

instead χf (G), the fractional chromatic number.

23

A.3 Matlab Code

The following matlab code, written by Professor Greg Levin, was instrumental in

dealing with examples in our research.

% CHOOSE(n,k) returns "n choose k"

function m = choose(n,k)

%"out of range" input

if k>n

m = 0;

return;

end

%negative input

if (k<0) | (n<0)

m = 0;

return;

end

%non-integral input

if (k ˜= floor(k)) | (n ˜= floor(n))

m = 0;

return;

end

24

if k > (n/2)

k = n-k;

end

m = prod((n-k+1):n)/prod(1:k);

% CHOOSE4 Iterates through all 21 C 4 col sets of G

% This routine runs thru all size four sets of columns of the

% matrix (group) G generated by MAKEG.M, and in each corresponding

% 15x4 submatrix, counts the number of *distinct* rows

counter = zeros(1,15);

foo = [0 0 0 0];

% Check each size four subset of G’s columns, designated M

subset = [ones(4,1);zeros(27,1)];

while (subset ˜= Inf)

M = G(:,find(subset));

count = distrows(M);

% check for zero rows

if ˜all(sum(M,2))

counter(1) = counter(1)+1;

% report new row count

else

if counter(count) == 0

count

end

25

counter(count) = counter(count)+1;

if count == 7

foo = [foo ; find(subset)’];

% yeah = M;

% return

end

end

% report every 1000th subset

if mod(sum(counter),1000)==0

total = sum(counter)

end

subset = nextsub(subset);

end

% CHOOSE4 Iterates through all 21 C 4 col sets of G

% This routine runs thru all size four sets of columns of the

% matrix (group) G generated by MAKEG.M, and in each corresponding

% 15x4 submatrix, counts the number of *distinct* rows

counter = zeros(1,15);

% Generate the indicator strings for 31 C 4 (time consuming)

C31_4 = makecomb(31,4);

% Check each size four subset of G’s columns, designated M

26

for subset=C31_4

M = G(:,find(subset));

count = distrows(M);

% report new row count

if counter(count) == 0

count

end

counter(count) = counter(count)+1;

% report every 1000th subset

if mod(sum(counter),1000)==0

total = sum(counter)

end

if count == 9

yeah = M;

return

end

end

% DISTROWS(M) Counts the distinct rows of the matrix M

function count = distrows(M)

rows = size(M,1);

count = rows;

i=1;

while (i<rows)

27

for j=(i+1):rows

if isequal(M(i,:) , M(j,:))

count = count-1;

break

end

end

i = i+1;

end

% MAKECOLD(N,K) Returns an array representing N choose K

% MAKECOLD(N,K) returns an N-by-(N choose K) array containing

% every possible length N binary string with K ones.

% Note that MAKECOMB is a faster, non-recursive routine

% with the same functionality.

function C = makecold(n,k)

% We run recursively by putting 1s above makecomb(n-1,k-1)

% and 0s above makecomb(n-1,k).

% First check consistency

C = Inf;

if (fix(n) ˜= n) | (fix(k) ˜= k)

return

end

if (n < 0 | k < 0 | n < k)

28

return

end

% Next handle base cases

if (n==1)

C = k;

return

elseif (k==0)

C = zeros(n,1);

return

elseif (k==n)

C = ones(n,1);

return

end

% Now handle recursion

C1 = [ones(1,choose(n-1,k-1)) ; makecomb(n-1,k-1)];

C2 = [zeros(1,choose(n-1,k)) ; makecomb(n-1,k)];

C = [C1 , C2];

% MAKECOMB(N,K) Returns an array representing N choose K

% MAKECOMB(N,K) returns an N-by-(N choose K) array containing

% every possible length N binary string with K ones.

% Unlike the recursive MAKECOLD, MAKECOMB uses the

% NEXTSUB subroutine.

29

function C = makecomb(n,k)

% We run recursively by putting 1s above makecomb(n-1,k-1)

% and 0s above makecomb(n-1,k).

% First check consistency

C = Inf;

if (fix(n) ˜= n) | (fix(k) ˜= k)

return

end

if (n < 0 | k < 0 | n < k)

return

end

% initialize

nCk = choose(n,k);

C = zeros(n,nCk);

X = [ones(k,1);zeros(n-k,1)];

i = 0;

% fill in C

while X ˜= Inf

i = i+1;

C(:,i) = X;

30

X = nextsub(X);

end

% MAKEG Generates the funky edge-color group ˜ Z_2ˆ5

% This argumentless function returns the 15x31 matrix whose

% columns are the binary vectors in the group of permissible

% bit assignments to a 2-fold six coloring of a 3-regular graph.

% It also creates G1, G2 and G3, the submatrices corresponding

% to size 1, 2 and 3 color sets.

%function G = makeg()

G = zeros(15,31);

C62 = makecomb(6,2);

% Generate the 6 elements (columns) corresponding to the six colors

G1 = ones(15,6) - C62’;

% Generate the 6 C 2 elements corresponding to color pairs

G2 = mod(G1*C62,2);

% Generate the (6 C 3)/2 elements corresponding to color triples

C63 = [ones(1,choose(5,2)) ; makecomb(5,2)];

G3 = mod(G1*C63,2);

31

G = [G1,G2,G3];

% NEXTSUB(X) Returns the next equally sized subset

% If X is a binary column vector with k ones (representing

% a size k subset of an n set), the "next" size k subset

% of an n set is returned, or Inf if X is the "last" subset

function Y = nextsub(X)

% check for column vector

if (size(X,2) > 1)

Y = ’thats not a col vector, you dolt’

return

end

% initialize values

n = size(X,1);

elts = find(X);

k = size(elts,1);

if k==0

Y = Inf;

return

end

32

% find which bit is free to move

move = k;

while elts(move)==(n-(k-move))

move = move-1;

if move==0

Y = Inf;

return;

end

end

% move bit forward one, and put all following bits right after

next = elts(move)+1;

for i=move:k

elts(i) = next+(i-move);

end

% fill in Y

Y = zeros(n,1);

Y(elts,:) = ones(k,1);

Bibliography

[1] Edward R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory. John

Wiley & Sons, Inc., 1997.

[2] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 1996.

	Fractional Analogues in Graph Theory
	Recommended Citation

	tmp.1553032813.pdf.HdiG4

