
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

5-1-2002

Nonlinear Dynamics of Mode-locking Optical
Fiber Ring Lasers
Kristin M. Spaulding
University of Washington - Seattle Campus

Darryl H. Yong
Harvey Mudd College

Arnold D. Kim
Stanford University

J Nathan Kutz
University of Washington - Seattle Campus

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Spaulding, KM, Yong, DH, Kim, AD, Kutz, JN. Nonlinear dynamics of mode-locking optical fiber ring lasers. J Opt Soc Am B.
2002;19(5): 1045–1054.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


Nonlinear dynamics of mode-locking optical fiber
ring lasers

Kristin M. Spaulding

Department of Applied Mathematics, University of Washington, Seattle, Washington 98195-2420

Darryl H. Yong

Applied and Computational Mathematics, California Institute of Technology, Pasadena, California 91125

Arnold D. Kim

Department of Mathematics, Stanford University, Stanford, California 94305-2125

J. Nathan Kutz

Department of Applied Mathematics, University of Washington, Seattle, Washington 98195-2420

Received April 20, 2001; revised manuscript received November 5, 2001

We consider a model of a mode-locked fiber ring laser for which the evolution of a propagating pulse in a bi-
refringent optical fiber is periodically perturbed by rotation of the polarization state owing to the presence of a
passive polarizer. The stable modes of operation of this laser that correspond to pulse trains with uniform
amplitudes are fully classified. Four parameters, i.e., polarization, phase, amplitude, and chirp, are essential
for an understanding of the resultant pulse-train uniformity. A reduced set of four coupled nonlinear differ-
ential equations that describe the leading-order pulse dynamics is found by use of the variational nature of the
governing equations. Pulse-train uniformity is achieved in three parameter regimes in which the amplitude
and the chirp decouple from the polarization and the phase. Alignment of the polarizer either near the slow
or the fast axis of the fiber is sufficient to establish this stable mode locking. © 2002 Optical Society of
America

OCIS codes: 140.0140, 140.3560, 140.3570, 060.5530, 060.4370, 060.0060.

1. INTRODUCTION
The nonlinear Schrödinger equation (NLS) governs the
underlying wave behavior of an optical fiber that exhibits
a weak Kerr nonlinearity.1,2 The NLS has been investi-
gated extensively in this context, with particular empha-
sis given to the robust and stable soliton solutions that re-
sult from a fundamental balance between linear
dispersion and cubic nonlinearity. Thus soliton pulses
are ideal carriers for transmitting optical data. For ap-
plications for which polarization effects are important,
one must consider a system of coupled NLSs that is gen-
erally not integrable.3 Despite the loss of integrability,
solitonlike solutions are still found to persist.4

In addition to being ideal for long-haul communications
applications,5 solitons have also led to the development of
the optical fiber ring laser.6–9 For the ring laser configu-
ration in Fig. 1 the Kerr nonlinearity of the birefringent
optical fiber generates a nonlinear rotation of the polar-
ization state that depends on the pulse intensity. The in-
sertion of a passive polarizer then provides an effective
intensity filter that stabilizes, or mode locks, a propagat-
ing pulse by periodically attenuating all components of
the pulse that are not aligned with the polarizer. Simple
devices such as these have been shown experimentally to

generate stable and robust solitonlike pulse trains that
can be used for a wide variety of telecommunications
purposes.6–10

The two key modeling elements that describe the mode-
locking dynamics are the inclusion of nonlinear polariza-
tion rotation induced by cross-phase modulation, and po-
larization control through the passive polarizer. In
particular, we model optical pulses with coupled NLSs
subject to periodic perturbations by the passive polarizer.
This model allows us to examine the underlying mode-
locking mechanism of the fiber ring lasers. As with pre-
vious studies,11 our primary objective is to determine the
performance characteristics of the laser, i.e., the unifor-
mity of the resultant pulse train. To do so we utilize a
reduced model for the pulse dynamics based on the ro-
bustness of soliton solutions and the variational character
of the governing equations. In deriving this reduced
model we neglect contributions from continuum radia-
tion. One of the primary functions of the passive polar-
izer in the mode-locking process is to filter out this con-
tinuum radiation. Although a residual amount of
radiation is expected from the periodicity of the cavity, it
remains negligible in comparison with the energy in the
localized mode-locked pulse. Hence we neglect radiation
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perturbations that emanate from the pulse reshaping pro-
cess and from amplified spontaneous emission noise.
This assumption leads to a reduction that isolates the
fundamental interplay between the nonlinear polariza-
tion rotation and the polarization control element. This
interplay and its resultant behavior are the focus of the
present study.

In evaluating the uniformity of pulse trains generated
by the laser we are interested primarily in reducing am-
plitude fluctuations. Quantities such as phase and polar-
ization state are generally not relevant in experiments.
Therefore we define stable mode locking here as the gen-
eration of a pulse train that has a nearly uniform ampli-
tude. Although slight deviations from this uniform train
are tolerated, the magnitude of the deviations is what de-
termines the performance characteristics of the laser.
Thus, for large amplitude fluctuations, the laser is opera-
tionally unstable, whereas small fluctuations lead to
stable mode locking.

Amplitude fluctuations arise from a variety of physical
effects, which include additive noise, physical instabilities
in the cavity (i.e., mechanical or temperature), and fluc-
tuations in the pump. However, we consider here the ad-
ditional source of amplitude fluctuations that arises from
the interplay between nonlinearity and polarization con-
trol. Our analysis describes the systematic and predict-
able amplitude fluctuations that result from this interac-
tion. We note that these fluctuations are different from
the chaotic instabilities generated in the laser as a result
of nonlinearity.12

It was previously shown that alignment of the polarizer
with the slow axis of the fiber results in a nearly perfect
pulse stream.11 However, that previous study considered
only a small subset of possible solutions and focused on
verifying the validity of the reduced model. Here we per-
form a more thorough investigation of the laser’s modes of
operation. Specifically, we have found analytically and

numerically an additional region of operation for which
the fiber laser generates a highly uniform pulse stream.
In this paper we classify and explore the stability of each
region of operation and show that the stable regions are
phase locked, polarization locked, or both. This investi-
gation represents what is to our knowledge the first com-
prehensive numerical and analytical study of the modes
of operation of a fiber ring laser that is mode locked by a
passive polarizer that accounts explicitly for the polariza-
tion dynamics.

The paper is organized as follows: In Section 2 we in-
troduce a model for the mode-locking fiber laser. This
model consists of the coupled NLSs with periodic pertur-
bations that are due to the polarizer. In Section 3 we
consider polarization-locked solutions that yield stable
and uniform pulse trains when the polarizer is locked
along the fast or the slow axis of the fiber. In Section 4
we continue by considering two possible phase-locked so-
lutions that generate unstable pulse trains. In Section 5
we consider a final set of mode-locked solutions for which
the polarization is assumed to remain fixed at the polar-
izer angle setting. The paper is concluded in Section 6
with a summary and highlights of significant results.

2. FORMULATION AND GOVERNING
EQUATIONS
A. Pulse Propagation in Birefringent Fibers
The evolution of the slowly varying envelope of the elec-
tric field in an optical fiber subject to chromatic disper-
sion, Kerr nonlinearity, and polarization effects is given
by the system of coupled nonlinear Schrödinger equations
(CNLSs):

i
]U

]z
1

1

2

]2U

]t2 2 KU 1 ~ uUu2 1 AuVu2!U 1 BV2U* 5 0,

(1a)

i
]V

]z
1

1

2

]2V

]t2 1 KV 1 ~AuUu2 1 uVu2!V 1 BU2V* 5 0.

(1b)

This system models linearly polarized light propagating
in a birefringent optical fiber. Here we present Eqs. (1)
in nondimensionalized form in which the U and V fields
are orthogonally polarized components of the electric
field. The birefringence strength parameter, K, deter-
mines the relative phase velocity difference between the
U and V fields. The material properties of the optical fi-
ber determine the values of nonlinear coupling param-
eters A and B. These parameters satisfy A 1 B 5 1 by
axisymmetry and, for the physical system considered
here, take on the specific values A 5 2/3 and B 5 1/3.
We have scaled complex orthogonal fields U and V on the
peak field power uE0u2 that corresponds to the one-soliton
solution of U when V 5 0 and K 5 0. The variable t rep-
resents the physical time normalized by T0/1.76, where
T0 is the FWHM of a hyperbolic secant pulse and the
variable z is the physical distance divided by dispersion
length Z0 5 (2pc)/(l0

2D̄) 3 (T0/1.76)2. This gives a
peak field power of uE0u2 5 (l0Aeff)/(2pn2Z0). Here n2
5 2.6 3 10216 cm2/W is the nonlinear index coefficient of
the fiber, Aeff 5 55 mm2 is the effective cross-sectional

Fig. 1. Schematic of the ring cavity laser that includes a polar-
izer and polarization controllers in a birefringent optical fiber.
A small portion of the fiber is erbium-doped fiber, which is
pumped via a wavelength-division multiplexed (WDM) coupler at
980 nm and provides gain to the cavity. The mode-locked soliton
pulse stream is coupled out through a 90/10 coupler; i.e., 10% of
the pulse energy is coupled out. The two primary experimental
parameters that can easily be adjusted are the polarizer angle
relative to the fast and slow axes of the birefringent fiber and the
birefringence strength, which is determined by the polarization
controllers.
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area, D̄ is the average cavity dispersion (in picoseconds
per kilometer nanometer), l0 5 1.55 mm is the free-space
wavelength, and c is the speed of light.

We can recast the CNLS as a variational principle by
defining its Lagrangian13 and constructing an appropri-
ate ansatz.11 We assume, based on physical observa-
tions, that these pulses are approximately described by
an amplitude and width fluctuation h, a polarization
angle P, a relative phase c, a total phase f, and a qua-
dratic chirp b, which are related to the U and V fields as

U 5 AIh sech~ht !cos P exp~2ic/2 1 ibt2 1 if/2!,
(2a)

V 5 AIh sech~ht !sin P exp~1ic/2 1 ibt2 1 if/2!.
(2b)

Here we denote by I the initial energy contained within
the pulse. In addition, we assume that these pulse pa-
rameters depend solely on z. Following Kim et al.,11 we
impose the condition that the variational derivatives of
the Lagrangian with respect to P, c, h, and b be zero, and
we obtain

dP

dz
5 1/3BIh sin~2P !sin~2c!, (3a)

dc

dz
5 24/3BIh cos~2P !sin2~ c! 1 2K, (3b)

dh

dz
5 22bh, (3c)

p

2

db

dz
5 h4 2 p2b2 2 Ih3@1 2 B sin2~2P !sin2~ c!#.

(3d)

This system of coupled ordinary differential equations
(ODEs) models the leading-order pulse characteristics
governed by the CNLS as long as the pulse remains close
to the ansatz given in Eqs. (2). Extensive numerical
simulations have been done to verify that the evolution of
the pulse’s characteristics governed by Eqs. (1) are well
approximated by Eqs. (3).11,13 This reduction from Eqs.
(1)–(3) is a significant simplification of the mathematical
model of the fiber laser, and we focus our attention on so-
lutions of Eqs. (3). In this fiber cavity the variational
analysis is expected to be in good agreement with the full
model, provided that the loop length is of the order of the
dispersion length or less. In this limit we also observed
from full simulations that the continuum generation is
negligible and thus can be neglected in the following
analysis. Regardless, it is important to perform full nu-
merical simulations to validate the assumptions in the
ansatz.11

B. Periodic Passive Polarization Control
We model the optical fiber loop laser shown in Fig. 1 by
using Eqs. (3) in a periodic domain that corresponds to
loop length L. After a pulse propagates once around the
fiber loop, it interacts with the polarizer. This polarizer
attenuates the components of the pulse that are not
aligned with polarizer angle Q, resulting in a net rotation
of the pulse’s polarization state and a reduction of the

pulse’s amplitude, h. Afterward, erbium-doped fiber am-
plifiers boost the pulse’s power back to the original cavity
energy. Thus the polarizer–amplifier combination acts
as a periodic perturbation on the pulse dynamics de-
scribed by Eqs. (3). To simplify the modeling we consider
this combination of polarizer and amplifier to be one op-
eration that acts instantaneously after each round trip.
This assumption is valid when the losses during each
round trip are small.11 Furthermore, we assume that the
original input power is conserved throughout the laser
such that this operation preserves power and is simply a
rotation of the polarization state.

We define the polarizer angle, Q, to be the angle be-
tween the alignment of the passive polarizer and the fast
U axis. This convention is consistent with the definition
of P and leads to the jump condition at the polarizer:

P1 5 tan21@a tan~P2 2 Q!# 1 Q, (4)

where P6 are the polarization angles before (2) and after
(1) the polarizer. The polarizer strength parameter, a,
indicates the efficiency of the polarizer in attenuating
components not aligned with polarizer angle Q. To be
consistent with physical values, we consider a 5 0.01
such that the polarizer attenuates 99% of the pulse that is
not aligned with the polarization angle.

The complete mode-locking model for the ring fiber la-
ser thus consists of the system of CNLSs (3) and the po-
larization jump condition [Eq. (4)] that acts on the polar-
ization angle after each round trip (z 5 nL for n
5 1, 2, 3 ... ). The two parameters of interest in this
study are birefringence K and polarizer angle Q.

A typical example of the mode-locking behavior is given
in Fig. 2, which shows that arbitrarily chosen Gaussian-
shaped initial conditions quickly settle to an amplitude-
locked solution. For this computation, Q 5 0.45p and
K 5 0.1. The formation of these locked pulses is the fo-
cus of this study.

C. Stable Mode Locking through Pulse-Train
Uniformity
The dynamics that result from the interaction between a
pulse propagating in a birefringent fiber and the discrete
action of the polarizer provide the foundation for under-
standing the mode-locking behavior. For operating these
lasers the main concern is generating a train of pulses
that have uniform amplitude and zero chirp. Thus we
seek solutions of Eqs. (3) in which h(z) 5 constant and
b(z) 5 0. This situation occurs when the amplitude and
the chirp (h, b) dynamics decouple from the polarization
and the phase (P, c) dynamics. From Eq. (3d) we see
that this decoupling occurs when

C~P, c! 5 sin2@2P~z !#sin2@ c ~z !# 5 constant. (5)

In this case the amplitude–chirp dynamics result in a
simple phase-plane picture that has a center.14,15 These
center dynamics indicate that the laser can yield a uni-
form pulse train that gives rise to stable mode locking.
So, although the phase and the polarization state are not
relevant experimental quantities, these two parameters
determine whether stable mode locking operation is pos-
sible.
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In as much as we can control the polarization state by
aligning it with the passive polarizer (P ' Q), Eq. (5)
suggests that setting the polarizer angle to be Q 5 0 or
Q 5 p/2 results in C(P, c) 5 0 because sin2 2P
' sin2 2Q 5 0. We show in the analysis that follows this
section that these settings yield uniform pulse trains.
Additionally, we can find a polarizer setting in which
sin2 2P Þ 0 but for which the phase is constant and thus
sin2 2c 5 constant. This setting once again yields a
stable mode-locked pulse stream whose phase and polar-
ization state are both locked. We illustrate the impor-
tance of Eq. (5) to the operation of the mode-locked laser
in the following sections. We note here that Eq. (5) fur-
ther suggests that, if one is able to control the phase (i.e.,
if we can enforce c ' 0 or c ' p/2), then it is possible to
generate mode-locked pulses by a phase-locking mecha-
nism. By using phase-sensitive amplifiers16–18 one may
be able to incorporate an effective phase-locking mecha-
nism to realize this situation.

3. POLARIZATION-LOCKED SOLUTIONS
In Subsection 2.C we showed that stable mode locking is
possible when the polarization state is fixed at P 5 0 or
P 5 p/2 because in these cases C(P, c) is a constant. In
this section we examine these two situations in detail.

A. PÄ0
For P 5 0, Eqs. (3) allow for a fixed point solution. The
location of the fixed point and its stability can then be

found by linearization, P 5 P0 1 P̃, c 5 c0 1 c̃, h

5 h0 1 h̃, and b 5 b0 1 b̃, where P0 , c0 , h0 , and b0

are the leading-order solutions and P̃, c̃, h̃, and b̃ are
small perturbations. At leading order it is clear from Eq.
(3c) that we must take b0 5 0 in order for h0 Þ 0. Note
that requiring h0 . 0 arises from physical considerations
of the pulse and the ansatz chosen in Eqs. (2). The re-
maining three equations require, to leading order, that

sin 2P0 sin 2c0 5 0, (6a)

cos 2P0 sin2 c0 5
3K

2BIh0
, (6b)

h0 5 I~1 2 B sin2 2P0 sin2 c0!. (6c)

The last of Eqs. (6) determines the value of pulse ampli-
tude h0 . Thus it only remains to determine the values of
P0 and c0 that satisfy Eqs. (6a) and (6b).

The fixed point for P0 5 0 is given by P0 5 b0 5 0,
h0 5 I, and c0 5 sin21(3K/2BI2)1/2. Linearizing the 4
3 4 ODE system about this fixed point yields the four
eigenvalues l 5 $62iI2/p, 2g, 24g%, where g
5 @K(2BI2 2 3K)/3#1/2. The purely imaginary eigen-
values lead solely to oscillations, and the real eigenvalues
(positive and negative) result in a saddle structure. We
note that 2BI2 2 3K . 0 is automatically satisfied for
the fixed point because (3K/2BI2)1/2 < 1. For the typical
values considered in this paper, B 5 1/3 and I 5 1, so K
, 2/9. This restriction is consistent with physically re-
alizable values of K, which generally tend to be one tenth
or less for the fibers considered experimentally.

Although the underlying fiber evolution is unstable, the
action of the polarizer stabilizes the dynamics by continu-
ally forcing the polarization state to be near P 5 0. Pro-
vided that the polarizer acts on a sufficiently fast scale in
comparison with the soliton evolution length, nearly uni-
form pulse trains can be realized. We illustrate this
pulse propagation behavior in Fig. 3, where we demon-
strate the evolution of the quantities of interest (h, b, P,
and c) without a polarizer and with a polarizer. Here we
have set B 5 1/3 and I 5 1. Note that, without a polar-
izer, the solution destabilizes and moves quickly away
from the uniform amplitude- and polarization-locked so-
lution. This destabilization is caused by the single
growth mode near P 5 0. In contrast, we note that the
insertion of a polarizer forces the polarization state to re-
main near P 5 0, so a nearly uniform pulse train can be
generated and sustained for all time. Again, we point to
the fact that Q 5 0 forces P ' 0 such that C(P, c) ' 0
and an almost complete decoupling occurs between the
amplitude–chirp dynamics and the phase and polariza-
tion evolution. This decoupling allows the amplitude–
chirp dynamics to remain near the center. If the polar-
izer is detuned from Q 5 0, large, quasi-periodic
fluctuations result in the dynamics. This instability oc-
curs despite the fact that the polarization state is locked
on a value near P 5 0. The degradation of the pulse
trains uniformity is illustrated in Fig. 4 and shows the
sensitivity of the mode locking to changes in the polariza-
tion state.

Fig. 2. Stable mode-locking evolution of the governing CNLSs
with a polarizer. In this case we consider the parameters Q
5 0.45p and K 5 0.1. Although the amplitude appears to lock
to a constant value, a detailed look after each round trip of the
cavity shows amplitude fluctuations on the order of 4% (see Fig.
7 below).
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B. PÄpÕ2
Setting the passive polarizer to Q 5 p/2 also gives
C(P, c) 5 0. In contrast to the P 5 0 case, no fixed
point solution is found near P 5 p/2. However, this does
not preclude the possibility of a stable mode-locked re-
gion. In particular, we find the z-dependent solution:

P~z ! 5 p/2, (7a)

c ~z ! 5 tan21FA3K

s
tanS 2zA3Ks

3
D G , (7b)

h~z ! 5 I, (7c)

b~z ! 5 0, (7d)

which satisfies the system of ODEs (3) with c (0) 5 0 and
s 5 3K 1 2BI2. This solution has a phase that grows
monotonically with distance z. Moreover, we have as-
sumed without loss of generality that c (0) 5 0 to sim-
plify the expressions presented in Eqs. (7). However, the

solution is locked at P 5 p/2, so a uniform pulse train is
possible. It remains, however, to determine the stability
of such a solution.

We use a perturbation analysis to show that small per-
turbations about this known solution result in trajectories
that remain close to it. In fact, the solution of Eqs. (7)
has a centerlike behavior if we restrict our attention to
the dynamics of P, h, and b. The perturbation analysis
begins by expanding about the exact solution, P(z)
5 P0(z) 1 eP1(z) 1 ..., c (z) 5 c0(z) 1 ec1(z) 1 ...,
h(z) 5 h0(z) 1 eh1(z) 1 ..., and b(z) 5 b0(z)
1 eb1(z) 1 ..., where the zero subscript indicates the
leading-order solution given by Eqs. (7). We insert this
solution into Eqs. (3) and solve the ODE that results at
each order of e, which is a small, positive parameter asso-
ciated with the magnitude of the P perturbation. Using
this perturbation expansion, we calculated a uniformly
valid asymptotic solution to O(e2).

At O(e), the perturbation analysis gives the almost pe-
riodic solution

h1~z ! 5 h1~0 !cosS 2I2z

p
D 2

p

I
b1~0 !sinS 2I2z

p
D , (8a)

b1~z ! 5 b1~0 !cosS 2I2z

p
D 1

I

p
h1~0 !sinS 2I2z

p
D ,

(8b)

P1~z ! 5 P1~0 !ucos LzuS 3K

s
tan2 Lz 1 1 D 1/2

, (8c)

c1~z ! 5 BKpH I sinS 2I2z

p
D @h1~0 !~4Kp2s 2 3I4

1 3I4 cos 2Lz ! 1 2p2IAKsb1~0 !sin 2Lz#

1 p cosS 2I2z

p
D @b1~0 !~4Kp2s 2 3I4

1 3I4 cos 2Lz ! 2 2I3AKsh1~0 !sin 2Lz#

2 4Kp3sb1~0 !J Y $I2~4Kp2s 2 3I4!

3 ~ s 2 2BI2 sin2 Lz !% , (8d)

where L 5 A4Ks/3 and we recall that s 5 3K 1 2BI2.
Thus the perturbation analysis confirms that the solu-
tion, Eqs. (7), has a centerlike behavior. This implies
that, even without a polarizer, pulses can be highly uni-
form. Inclusion of the polarizer further ensures that the
polarization state of the pulse does not wander away from
p/2, so this perturbation solution is valid. This analysis
further shows that, under perturbation, or for polarizer
angles near Q 5 p/2, the amplitude–chirp dynamics de-
couple from the polarization–phase dynamics. The re-
sultant amplitude–chirp dynamics exhibits periodic
fluctuations.14,15 A comparison of the exact numerical so-
lution to Eqs. (3) with the calculated perturbation is
shown in Fig. 5. In this figure the polarization and the
phase are calculated to the first correction, whereas the
amplitude and the chirp are plotted with two correction
terms. It can be seen that excellent agreement is

Fig. 3. Amplitude, chirp, polarization, and phase evolution over
100 round trips of the fiber cavity near the polarization-locked
solution P 5 0. K 5 0.10, and the evolution without the polar-
izer has a single unstable eigenvalue leading to growth. This
solution blows up just after z 5 150. The addition of polarizer
ensures that P remains near zero, so a uniform pulse train re-
sults.

Fig. 4. Pulse-train uniformity (h fluctuations) over 200 round
trips of the fiber cavity with K 5 0.10 and near the polarization-
locked solution P 5 0. As the polarizer is detuned from Q
5 0, the amplitude fluctuations increase and the pulse-train
uniformity is destroyed.
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achieved with the exact numerical results. Extending
the perturbation theory beyond the first correction is dif-
ficult because of the form of the phase and polarization
terms. Thus only the first correction is considered for
these two parameters. The full behavior of the solution
with and without the polarizer is depicted in Fig. 6. We
see that, even without the polarizer, the pulse train’s uni-
formity is nearly preserved. The action of the polarizer
further ensures that the pulse train is kept in control over
all distances. The assumptions made in this model ne-

glect perturbations that, for example, arise from additive
noise, continuum generation, and pump fluctuations.
The inclusion of such terms would destabilize the system
in the absence of a polarizer. Within the context of the
model, the results with and without the polarizer are es-
sentially the same. Thus the fact that near P 5 p/2 the
solution is stable allows for more-robust dynamics and
stability. Figure 7 shows the resultant amplitude fluc-
tuations as the polarizer is detuned from the ideal value
of Q 5 p/2. Just as for detuning from Q 5 0, the fluc-
tuations grow and the laser is no longer thought of as op-
erationally stable. This result is further addressed in
Section 6 below.

4. PHASE-LOCKED SOLUTIONS
In addition to the polarization-locked solutions of Section
3, we can also consider phase-locked solutions and their
associated stability. Of particular interest are the phase-
locked solutions for which c 5 0, p/2 because in these
cases C(P, c) 5 0, as in Section 3. These phase-locked
solutions are easily found as fixed points of Eqs. (3).
Note that Eqs. (6) give the conditions under which a fixed
point can be found. Stability of these solutions can then
be found by linearization.

A. c0Ä0
When c0 5 0, both Eqs. (6a) and (6b) are satisfied, pro-
vided that the birefringence is small, i.e., that K 5 0
1 K̃. This leaves the value of P0 undetermined at lead-
ing order and gives h0 5 I from Eq. (6c). We use these
values to produce the linearized equations

dP̃

dz
5 2/3BI2 sin 2P0c̃, (9a)

dc̃

dz
5 0, (9b)

dh̃

dz
5 22Ib̃, (9c)

Fig. 5. Comparison of the exact numerical solution for P
' p/2 with the perturbation expansion results for e 5 0.1.
Analytic data generated for phase ( c) and polarization (P) in-
clude the leading-order solution and the first correction. The
analytic curve of amplitude (h) and chirp (b) contains the
leading-order solution and two correction terms. As the phase
grows monotonically, it is more enlightening to examine sin2 c
than c itself. Note that the perturbation results are in excellent
agreement with the numerical results, except for a small phase
slip observed in all quantities. In practice, this phase slip is un-
important, as we are concerned only with the size of the param-
eter fluctuations.

Fig. 6. Amplitude, chirp, polarization, and phase evolution over
100 round trips of the fiber cavity near the polarization-locked
solution P 5 p/2. K 5 0.10 and the evolution without the po-
larizer is a stable center. The addition of polarizer ensures that
P remains near p/2, so the uniform pulse train is maintained.

Fig. 7. Pulse-train uniformity (h fluctuations) over 200 round
trips of the fiber cavity with K 5 0.10 and near the polarization-
locked solution P 5 p/2. As the polarizer is detuned from Q
5 p/2, the amplitude fluctuations increase and the pulse train’s
uniformity is destroyed. However, the uniformity here is not so
severely affected as is detuning from Q 5 0. (See Fig. 12 be-
low).
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p2

2

db̃

dz
5 I3h̃. (9d)

Equations (9c) and (9d) decouple from Eqs. (9a) and (9b),
and the resultant dynamics for the amplitude and the
chirp are oscillations given by

~ h̃,b̃ ! 5 Fa1 cosS 2I2

p
z 1 a2D , a3 cosS 2I2

p
z 1 a4D G ,

(10)
where ai are constants. Of greatest importance is the
evolution of the polarization and phase states because
they determine C(P, c). From Eq. (9b) we find that c̃
5 2K̃z, where it is assumed that c̃(0) 5 0. This shows
the phase to be unstable and further gives the following
evolution of the polarization state:

P̃ 5 @2/3BK̃I2C sin 2P0#z2, (11)

which grows quadratically with distance z unless we
choose P0 5 0 or P0 5 p/2. Thus the c0 5 0 phase-
locked solution will be unstable owing to the growth of the
phase and polarization states. Note that we already con-
sidered the P 5 0 and P 5 p/2 states in Section 3.

B. c0ÄpÕ2
The case of c0 5 p/2 is drastically different from that of
c0 5 0 considered above. Here the leading-order solu-
tion for P0 and h0 with c0 5 p/2 is

h0 5 I~1 2 B sin2 2P0!, (12a)

cos 2P0 5
3K

2BI/h0
. (12b)

This solution leads to a cubic equation for leading-order
amplitude h0 :

h0
3 2 I~1 2 B !h0

2 2
9K2

4BI
5 0. (13)

This cubic has three roots: one that is real and two that
are complex conjugates. We consider only the real root
because imaginary amplitudes are unphysical in Eqs. (2).
We can then insert this value of h0 into Eq. (12b) to de-
termine the value of P0 .

The resultant linearized equations are given by

dP̃

dz
5 22/3BIh0 sin 2P0c̃, (14a)

dc̃

dz
5 24/3BI~cos 2P0h̃ 2 2h0 sin 2P0P̃ !, (14b)

dh̃

dz
5 22h0b̃, (14c)

p2

2

db

dz
5 h0

3h̃ 1 2IBh0
3 sin 4P0P̃. (14d)

Unlike in the previous case, the equations do not de-
couple. To determine stability, we evaluate the eigenval-

ues associated with the matrix on the right-hand side of
Eq. (14). The resultant fourth-order polynomial for ei-
genvalue l is given by

l2~l2 1 4h0
4p2! 1 S 16

81
h0

2 2 4K2D
3 S l2 1

4h0
4

p2 1
54

p2 h0K2D 5 0, (15)

where we have taken I 5 1 and B 5 1/3 for simplicity. If
the real part of any of the eigenvalues l is positive, insta-
bility occurs. The real parts of the eigenvalues are plot-
ted in Fig. 8 and are shown to be strongly dependent on
birefringence strength K. Beyond the critical value of
K 5 2BI2/3 ' 2/9, the fixed point ceases to exist.

Figure 8 predicts two regimes of stability. The first
corresponds to values of birefringence of approximately
K < 0.14, where there are two unstable and two stable ei-
genvalues. The linearized theory then predicts that the
fixed point will be unstable. Figure 9 shows the slow
growth of the solution away from the fixed point when one
is starting close to (P0 , c0 , h0 , b0). It is reasonable to
conjecture that the addition of the passive polarizer with
Q 5 P0 might stabilize the growth. However, Fig. 9
shows that the polarizer enhances the instability. This is
so because the rotation that is due to the polarizer
projects the solution further in the direction of the un-
stable eigenvectors, enhancing the growth.

The second physically realizable parameter regime of
Fig. 8 corresponds to values of birefringence approxi-
mately 0.14 , K , 0.22, where there are two pairs of
purely imaginary eigenvalues. The linearized theory
then predicts that the fixed point will be stable. Figure
10 shows the periodic behavior of solution near the fixed
point when one is starting close to (P0 , c0 , h0 , b0).
Unlike in the previous case in which K 5 0.10, it would
seem that the addition of the passive polarizer would
maintain stability. However, once more numerical ex-

Fig. 8. Eigenvalues of the linearized equations for the phase-
locked solution c0 5 p/2 as a function of birefringence K. Three
distinct regions of operation are predicted; two of them are physi-
cally realizable. For 0 , K , 0.14 there are two unstable and
two stable eigenvalues, implying unstable growth. For 0.14
, K , 0.22 the eigenvalues are all purely imaginary, and the
solution is stable. The region to the right of the dashed line is
not relevant physically, as it gives rise to imaginary values of P0 .
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periments have shown otherwise, as demonstrated in Fig.
10. This instability is fundamentally different from that
generated by Fig. 9 because there are no unstable eigen-
values. Note the 2p phase slip that is periodically gen-
erated from the action of the polarizer. We generate this
slip by enforcing that the polarization stay fixed at Q
5 P0 .

5. OTHER REGIONS OF STABLE MODE
LOCKING
Thus far we have considered the action of the polarizer as
a separate and discrete action on the pulse evolution in
the fiber. However, it is clear from Figs. 3, 4, 6, 7, 9, and
10 that the passive polarizer has the fundamental effect
of preserving the polarization state of the propagating
pulse. To model this effect we assume that the polarizer
acts frequently enough that the polarization state effec-

tively remains constant at the value set by the passive po-
larizer, i.e., P 5 Q. In this case the differential equation
for P may be ignored. This assumption simplifies the
analysis considerably because now the evolution equa-
tions reduce to a 3 3 3 system for the remaining param-
eters, h, b, and c. The resultant system has a fixed
point:

b 5 0, (16a)

h 5
I

2 H 1 1 F1 2
6K

I
sin~2Q!tan~2Q!G1/2J , (16b)

c 5 6sin21F 3K

2BIh cos~2Q!
G1/2

. (16c)

In contrast to the previous solutions, the fixed point loca-
tion is determined by the value of the birefringence, K.
For this case the phase and polarization values force
C(P, c) Þ 0.

The inclusion of a polarizer in this case quickly locks
the amplitude, phase, polarization, and chirp parameters.
Figure 11 demonstrates the uniform pulse train gener-
ated in this case. Note that the phase is also quickly
locked to a constant value. The locked phase, chirp, and
amplitude values are predicted in Eqs. (16) and are
shown in Fig. 11 to be in excellent agreement with the nu-
merical simulations. Here we have used the arbitrary
values K 5 0.10, h(0) 5 1.0, c (0) 5 b(0) 5 0, P(0)
5 0.0305p, and Q 5 0.0305p. The small resultant po-
larization fluctuations give an average value of P
' 0.0339p. It is this value that we use to calculate the
analytically predicted fixed point in Eqs. (16). This
model provides yet another stable operating regime for
the mode-locked laser because now both the phase and
the polarization are locked and C(P, c) is nearly con-
stant.

This simplified model in which the polarization is as-
sumed to remain constant (P 5 Q) predicts a whole fam-
ily of solutions. In particular, this family of solutions in-
cludes the two fixed points associated with P 5 0 and c
5 p/2. Furthermore, the value of Q that produces c
5 p/2 is the maximum allowable polarizer angle that

Fig. 9. Amplitude, chirp, polarization, and phase evolution over
several hundred round trips of the fiber cavity near the phase-
locked solution c0 5 p/2. K 5 0.10, and the evolution without
the polarizer has two unstable eigenvalues that lead to growth.
The addition of the polarizer enhances the instability.

Fig. 10. Amplitude, chirp, polarization, and phase evolution
over several hundred round trips of the fiber cavity near the
phase-locked solution c0 5 p/2. K 5 0.18, and the evolution
without the polarizer has purely imaginary eigenvalues, leading
to oscillations without growth. The addition of the polarizer de-
stabilizes a uniform pulse train.

Fig. 11. Amplitude, chirp, and phase evolution over 100 round
trips of the fiber cavity near the phase- and polarization-locked
solution with Q 5 0.0305p, P(0) 5 0.0305p, h(0) 5 1.0, c (0)
5 b(0) 5 0, and K 5 0.10. The addition of the polarizer stabi-
lizes the otherwise unstable solution and quickly evolves to the
predicted values of h, b, and c given by Eqs. (16).
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generates real answers in Eqs. (16). Thus, although the
solution near P 5 p/2 is inherently more stable, the
stable mode-locking region near P 5 0 has the possibility
of being much bigger because of this fixed point branch of
solutions for which C(P, c) ' constant.

6. CONCLUSION AND DISCUSSION
To summarize, we have considered the evolution of a
pulse in a birefringent optical fiber with a periodic rota-
tion of the polarization state that is due to a passive po-
larizer. Four parameters are essential for understanding
the resultant pulse-train uniformity: polarization (P),
phase ( c), amplitude (h), and chirp (b). We found a re-
duced set of four coupled nonlinear differential equations
that describe the leading-order pulse dynamics by utiliz-
ing the variational nature of the governing equations.
Full numerical simulations of the governing equations
validate the analytic model, provided that the cavity
length is of the order of the dispersion length or less. Ad-
ditive noise, continuum generation, and cavity instabili-
ties can also be neglected in this limit. We found that,
although the phase and the polarization are irrelevant to
the experimentalist, these two parameters are essential
for determining the pulse train’s uniformity. In particu-
lar, the quantity C(P, c) 5 sin2@2P(z)#sin2@ c (z)# must re-
main nearly constant for pulse-train uniformity to occur
and be maximized. Numerical simulations suggest that
C(P, c) must have less than '10% fluctuation to gener-
ate a stable mode-locked pulse train. Five possible oper-
ating regimes were found for the laser. Two of these re-
gimes are unstable and correspond to phase-locked
solutions where C(P, c) 5 0 as a result of c 5 0, p/2.
The fact that these phase-locked solutions are unstable is
not surprising because the polarizer can control only the
polarization, not the phase. Two additional stable states
were found for which C(P, c) 5 0. These stable regimes
correspond to P 5 0, p/2. In contrast to the phase-locked
solutions, these are easily stabilized by the laser because
the polarizer acts to preserve the polarization state at
these critical values. Thus uniform pulse trains can eas-
ily be generated. The remaining mode-locked solution
arises from a simplified model in which the polarization
state is assumed to be fixed at the polarizer angle (P
5 Q). This model gives a family of solutions that ema-
nate from the polarization-locked P 5 0 solution. This
family of solutions was found to be stable.

The analysis provides valuable insight into the opera-
tion of the mode-locked laser. In particular, stable mode
locking is defined by a nearly uniform pulse train. Our
analysis addresses this issue directly and has found the
key quantity, C(P, c), which controls the mode-locking
stability.

We finish this paper by providing one last figure, which
illustrates the stable modes of operation of the ring laser.
In this figure we evaluate the amplitude fluctuations for
values of Q P @0, p/2#. Here the vertical axis gives the
passive polarizer angle Q, and the horizontal axis gives
the initial starting amplitude h(0). The amplitude fluc-
tuations are calculated for the last 50 of 100 round trips.

In particular, we compare the minimum and maximum
amplitudes with their average to determine a percentage
fluctuation. From a performance standpoint, we consider
only pulse solutions that exhibit less than 20% fluctuation
in power. Figure 12 shows a gray-scale plot of the re-
gions of operation in which black corresponds to perfect
mode locking (0% fluctuation) and white corresponds to
unacceptable amplitude fluctuations (20% or greater fluc-
tuation). For this figure the polarizer was set at the
value of Q indicated on the vertical axis, and the initial
amplitude was varied from 0.4 , h , 1.8. Near Q 5 0
and Q 5 p/2 the evolution is stable, as predicted previ-
ously. Moreover, a large window of stable behavior exists
near P 5 0, which corresponds to solutions settling to the
solutions given by Eqs. (16). The family of solutions (16)
is depicted by the white dotted line in Fig. 12. This fig-
ure, which we believe is the first of its kind, serves as a
guide to tuning the mode-locked fiber ring laser. Fur-
ther, it suggests that mode locking near the fast and slow
axes is crucial for achieving a uniform pulse train.
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Fig. 12. Performance of fiber ring laser for Q P @0, p/2# with
K 5 0.1. Vertical axis, passive polarizer angle Q; horizontal
axis, initial starting amplitude h(0). Near Q 5 0 and Q 5 p/2
the laser produces uniform amplitude pulse solutions. Black, no
pulse fluctuations; white, fluctuations greater than 20%. B
5 1/3, I 5 1, b(0) 5 0, L 5 1, and c (0) 5 0. The fluctuation
strength is calculated by consideration of minimum and maxi-
mum values of h fluctuations with its average value for values of
h between round trips 50 and 100. Dashed curve, the family of
solutions (16). Solutions away from P 5 0 settle to this curve
after many round trips until its termination at Q ' 0.1518p.
Average values of h , 0.4 are considered to be operationally un-
stable.
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