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Abstract

A combinatorial investigation of harmonic numbers

Final Report

by Greg Preston

May 2001

We seek to discover combinatorial explanations of known identities involving

harmonic numbers. Harmonic numbers do not readily lend themselves to com-

binatorial interpretation, since they are sums of fractions, and combinatorial argu-

ments involve counting whole objects. It turns out that we can transform these har-

monic identities into new identities involving Stirling numbers, which are much

more apt to combinatorial interpretation. We have proved four of these identities,

the first two being special cases of the third.
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Chapter 1

Introduction

1.1 Harmonic Numbers

Harmonic numbers are defined to be partial sums of the harmonic series. Let

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑
k=1

1

k
for n ≥ 1.

Since the harmonic series diverges, Hn gets arbitrarily large for big enough n.

However, it diverges very slowly, with H1000000 ≈ 14.39.

An example of how harmonic numbers appear in real life is if you try to stack

up playing cards to overhand the edge of a table by as far as possible. If the cards

are 2 inches long, then with n cards, the maximum amount any card can hang off

the edge of the table is Hn.[3] So, for example, with 4 cards, the top card could

extend past the table by just over 2 inches, since H4 = 25
12

.

1.2 Stirling Numbers

Stirling numbers (of the first kind) arise in many situations. The Stirling number[
n
k

]
is the number of permutations of n elements with exactly k cycles. Equivalently

they are the number of ways that n distinct people can sit at k identical circular

tables in a room, with no empty tables. For example,
[
3
2

]
= 3 enumerates the

permutations (12)(3), (13)(2), and (1)(23).
[
n
k

]
can be computed recursively. From
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their definition, we see for n ≥ 1, [
n

1

]
= (n− 1)! (1.1)

Also for k ≥ 2,

[
n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
. (1.2)

Equation (1.2) can be explained combinatorially. On the left we are directly count-

ing the number of permutations of n elements with exactly k cycles. On the right

we count the same thing while conditioning on what happens to the element n. If

n is to be in a cycle by itself, then the remaining n− 1 elements can be arranged in

k− 1 cycles in
[
n−1
k−1

]
possible ways. If n is not to be in a cycle by itself, then we first

take the elements [1 . . . n − 1] and arrange them into k cycles (there are
[
n−1

k

]
ways

to do this.) Then element n can go to the right of any element, giving us (n−1)
[
n−1

k

]
total permutations where n is not in its own cycle. We note that

[
n
k

]
is defined to be

0 when k > n or n < 0, and
[
0
0

]
= 1.

To represent permutations we use cycle notation. For example, in S9 (the group

of all permutations of 9 elements) the permutation π = (143)(297)(5)(68) has 4

cycles and satisfies π(1) = 4, π(4) = 3, π(3) = 1, π(2) = 9, π(9) = 7, π(7) = 2,

π(5) = 5, π(6) = 8, and π(8) = 6. Notice that we explicitly list the fixed point 5 in

its own cycle. Notice that the cycle (143) is equivalent to (431) and (314). We shall

adopt the convention of always writing our cycles with the smallest element first,

and listing the cycles in increasing order according to the first element.

Definitions: Let Tn denote the subset of Sn consisting of all of the permutations

in Sn with exactly 2 cycles. Thus |Tn| =
[
n
2

]
. So for example T9 would include

π1 = (18574)(2963), but not π2 = (195)(2487)(36) nor π3 = (123)(456)(7)(8). By

our convention, we always list the cycle containing 1 first, and call this the left

cycle. The remaining cycle is called the right cycle. Thus in Tn all permutations are

of the form (α1, α2, . . . αj)(αj+1, . . . αn) where 1 ≤ j ≤ n − 1, α1 = 1, and αj+1 =
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min{αj+1, . . . αn}. We say the left cycle has length j and has endpoint αj . In our

earlier example, π1 has left cycle (18574) with endpoint 4, and has right cycle (2963).

Alternate Interpretation: The Stirling numbers can also be defined as coeffi-

cients in the expansion of the factorial function [1]:

(x)n+1 = x(x + 1)(x + 2) · · · (x + n) =
n+1∑
m=1

[
n + 1

m

]
xm. (1.3)

We will primarily think of Stirling numbers in terms of permutations, but it is use-

ful to keep this more analytic definition in mind. To see that these definitions are

equivalent, one can easily show that when
[
n
k

]
is defined this way, it also satisfies

(1.1), (1.2), and the same initial conditions. However, in the spirit of this thesis, we

can also see this combinatorially.

1.3 The relationship between Hn and
[
n
2

]
At first it would seem that no combinatorial interpretation of harmonic numbers

should exist since it can be shown [3] that for n > 1, Hn is not an integer. Nonethe-

less, since Hn can always be expressed as a rational number, the numerator and

denominator might have combinatorial significance. A surprising connection be-

tween harmonic numbers and Stirling numbers can be found by examining the

following identity, proved in [1], which will be crucial to the rest of this thesis.

Theorem 1.3.1 For n ≥ 1,

Hn =
1

n!

[
n + 1

2

]
Proof 1:(Induction)

We can always write Hn as a rational number with denominator n!. Let an be

the numerator of the (typically, non-reduced) fraction so that Hn = an

n!
. Note that

a1 = 1.
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Since

Hn+1 = Hn +
1

n + 1
,

it follows that

an+1

(n + 1)!
=

an

n!
+

1

n + 1

=
(n + 1)an + n!

(n + 1)!

Consequently, for n ≥ 1,

an+1 = (n + 1)an + n! (1.4)

When n = 1,

H1 = 1 =

[
2
2

]
1!

.

Inductively, we assume that an =
[
n+1

2

]
and try to show that an+1 =

[
n+2

2

]
. From

Equation (1.2), we know that[
n + 2

2

]
= (n + 1)

[
n + 1

2

]
+

[
n + 1

1

]
and from Equation (1.1) and our induction hypothesis,

= (n + 1)an + n!

and finally from Equation (1.4),

= an+1.

So an =
[
n+1

2

]
, and therefore,

Hn =
1

n!

[
n + 1

2

]
�

Proof 2: We interpret
[
n
2

]
using our alternate definition of Stirling numbers from

Equation (1.3). We see that
[
n+1

2

]
is the coefficient of the x2 term of x(x + 1)(x +
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2) · · · (x + n). But the coefficient of the x2 term will simply be the sum all possible

products of 1 through n with exactly one term missing in each product. In other

words, [
n + 1

2

]
=

n!

1
+

n!

2
+ . . . +

n!

n
= n!(

1

1
+

1

2
+ . . . +

1

n
) = n!Hn.

�

Theorem 1.3.1 can also be proved combinatorially. To do this, we further ex-

plore the structure of Tn+1, the set of permutations of n + 1 elements with exactly 2

cycles.

Lemma 1.3.2 For 2 ≤ r ≤ n + 1, the number of permutations in Tn+1 with r as the

smallest element in the right cycle is
n!

r − 1
.

The permutations we are counting are all of the form (1, . . .)(r, . . .) where elements

1 through r− 1 all appear in the left cycle, and elements r + 1 through n + 1 can go

in either cycle. Proofs 1 and 2 give two ways to count this.

Proof 1: Begin with an empty array with n + 1 positions, numbered 1 through

n + 1, and put element 1 in the first position. Now we will choose the r − 1 spots

where elements 2 through r will go. There are n remaining spots available, so

we have
(

n
r−1

)
ways to do this. Once those spots are chosen, put element r in the

rightmost chosen spot. This spot indicates the beginning of the right cycle. Now

there are (r − 2)! ways to arrange the remaining elements 2 through r − 1 in the

other chosen spots. Note that this guarantees that every element smaller than r is

in the left cycle. Now we have n−r+1 elements remaining to place (elements r+1

through n + 1) in the remaining n− r + 1 spots, and there are (n− r + 1)! possible

ways to do this. Now we have a permutation of the form (1 . . .)(r . . .), and every

element less than r must be in the left cycle. Therefore r is the smallest element in
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the right cycle, as desired. The total number of permutations like this is(
n

r − 1

)
(r − 2)!(n− r + 1)! =

n!

(r − 1)!(n− r + 1)!
(r − 2)!(n− r + 1)!

=
n!

r − 1
.

�

Proof 2 of Lemma 1.3.2: Begin with (1)(r). Insert the elements 2 through r − 1

into the left cycle, but keeping 1 as the first element. There are (r − 2)! ways to do

this. Now we insert elements r + 1 through n + 1, one at a time, in such a way

that 1 and r remain first in their cycles. The element r + 1 can go to the right of

any of the r elements. Next, r + 2 can go to the right of any of r + 1 elements.

Continuing in this way, the number of ways to insert elements r + 1 through n + 1

is r(r + 1)(r + 2) · · ·n = n!
(r−1)!

. We have thus created a permutation in Tn+1 with r

as the smallest element in the right cycle, and there are

(r − 2)!
n!

(r − 1)!
=

n!

r − 1

such permutations. �

Now we can easily use Lemma 1.3.2 to show that
[
n+1

2

]
= n!Hn.

Proof 3 of Theorem 1.3.1:(Combinatorial) Since every permutation in Tn must

have some smallest number r in the right cycle, and r can range from 2 to n+1, we

get

[
n + 1

2

]
=

n+1∑
r=2

n!

r − 1
= n!

n∑
k=1

1

k
= n!Hn.

�



Chapter 2

Identity 1

Now with a grasp of harmonic and Stirling numbers, we seek combinatorial

explanations of other harmonic identities.

Identity 1
n−1∑
j=1

Hj = nHn − n.

First we show how this identity can easily be proven algebraically.

Algebraic Proof: The sum on the left is just

1

+1 +1
2

+1 +1
2

+1
3

... . . .

+1 +1
2

+1
3

. . . + 1
n−1

Adding column by column gives us
n−1∑
j=1

Hj =
n− 1

1
+

n− 2

2
+

n− 3

3
+ · · ·+ 1

n− 1

now we add and subtract n in the form 1
1

+ 2
2

+ · · ·+ n−1
n−1

+ n
n
− n,

=
n

1
+

n

2
+

n

3
+ · · ·+ n

n− 1
+

n

n
− n

= nHn − n

�

To prove Identity 1 combinatorially, we introduce the notion of inclusive and ex-

clusive permutations.
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2.1 Inclusive and Exclusive permutations

Definition: A permutation π ∈ Tn is inclusive if elements 1, 2, . . . , k are all in the

left cycle of π, where k is the endpoint of π. Equivalently, using our notation of

starting each cycle with the least element π = (1, . . . k)(r, . . .) is inclusive iff k < r.

Otherwise, π is called exclusive. Note that if π has endpoint k = 1 or k = 2 then it

must be inclusive.

For example, in T9, π1 = (136274)(598) and π2 = (1)(25487639) are both inclu-

sive, whereas π3 = (18426)(3759) is exclusive since the left cycle does not contain

all numbers from 1 to 6.

Lemma 2.1.1 The number of exclusive permutations in Tn with endpoint k is

(n− 2)!

(k − 2)!

[
k − 1

2

]
.

Proof. We begin by placing the elements 1 through k − 1 into exactly two cycles.

There are
[
k−1
2

]
ways to do this. Next, insert the element k to be the endpoint of

the left cycle. Next we insert elements k + 1 through n, one at a time as follows.

Insert k + 1 to the right of any element except k. There are k − 1 ways to do this.

Next insert k + 2, to the right of any element but k. There are k ways to do this.

Continue inserting in this manner until all of the elements from k+1 to n have been

inserted. This insertion process can be accomplished in (k−1)(k) . . . (n−2) = (n−2)!
(k−2)!

ways, resulting in an exclusive permutation with endpoint k. Hence the number

of exclusive permutations in Tn with endpoint k is

(n− 2)!

(k − 2)!

[
k − 1

2

]
.

�

We shall present several proofs of the following lemma.

Lemma 2.1.2 The number of inclusive permutations in Tn is (n− 1)!.
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Proof 1. (Algebraic) We first count permutations with endpoint 1, i.e., where ele-

ment 1 is the only element in the left cycle. There are (n− 2)! permutations of this

type, since the remaining n − 1 elements can be ordered in the right cycle (n − 2)!

different ways.

Now we count the number of inclusive permutations where 1 is not alone. Such

a permutation π will have an endpoint k, where 2 ≤ k ≤ n−1. Let r be the smallest

element in the right cycle. Since π is inclusive, r ≥ k + 1 ≥ 3. So π is of the form

(1 . . . k)(r . . .). We claim that the number of permutations with this combination of

k and r is

(r − 3)!(r − 1)(r)(r + 1) · · · (n− 2) =
(n− 2)!

r − 2
.

To see this, we first insert the numbers 1 through r − 1 into the left cycle with the

restriction that 1 is first and k is last. There are (r − 3)! ways to do this. Then put

r into the right cycle (1 way), then r + 1 to the right of any element except k (r − 1

ways), then r + 2 to the right of any element except k (r ways), and so on through

the nth element (n− 2 ways).

Thus for k > 1, the total number of inclusive permutations π with endpoint k is

n∑
r=k+1

(n− 2)!

r − 2
= (n− 2)!

n∑
r=k+1

1

r − 2

= (n− 2)!
n−2∑

j=k−1

1

j

= (n− 2)!(Hn−2 −Hk−2).

When we include the case where 1 is alone, the total number of inclusive permu-

tations is

(n− 2)! +
n−1∑
k=2

(n− 2)!(Hn−2 −Hk−2) = (n− 2)!

(
1 + Hn−2

n−1∑
k=2

1−
n−1∑
k=2

Hk−2

)
.
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Using Identity 1 for the second summation, this simplifies to

(n− 2)!

(
1 + Hn−2(n− 2)− (n− 2)(Hn−2 − 1)

)
(1.2)

= (n− 2)!(n− 1)

= (n− 1)!

as desired. Of course this proof is slightly unsatisfying, since it relies on Identity 1,

which we are trying to prove combinatorially. �

Proof 2. (Semi-Combinatorial) We will again separate the case where 1 is alone,

knowing that there are (n−2)! of these permutations. It remains to show that there

are (n − 2)(n − 2)! remaining inclusive permutations. We shall now construct all

of the possible inclusive permutations with exactly m elements in the right cycle,

where 1 ≤ m ≤ n − 2. First, we put the elements 1 and 2 into the left cycle. There

is only one way to do this. Next, we arrange the elements 3 through m + 2 in the

right cycle. There are (m− 1)! ways to do this. We note that our final permutation

will contain m elements, though not necessarily 3 through m + 2, but in the same

relative order as these elements.

Now we begin a special insertion process to introduce the remaining elements

m + 3 through n into a cycle. We begin by choosing a number t so that 2 ≤ t ≤

m + 3. There are m + 2 ways to do this. We then increase by 1 every element in the

permutation that is greater than or equal to t. Then we insert the number t to the

right of 1. See Figure 2.1 for an example with m = 4, and t = 5.

This gives us an inclusive permutation of the elements 1 through m+3. If t = 2,

the left cycle now has endpoint 3; otherwise the endpoint is still 2. Notice that the

number of elements in the right cycle has remained constant at m. So each choice of

t takes us from an inclusive permutation in Tm+2 with m elements in the right cycle
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(12) (3645)︸ ︷︷ ︸
m locations

t = 5↓

(153) (3746)︸ ︷︷ ︸
m locations

Figure 2.1: Building an inclusive permutation.

to an inclusive permutation in Tm+3 with m elements in the right cycle. Notice that

this process is easily reversed; for any inclusive permutation in Tm+3, the value of

t is the number to the right of 1, which leads to a unique inclusive permutation in

Tm+2. If we now repeat this process, this time with m + 3 choices for t, we generate

an inclusive permutation in Tm+4. We continue in this fashion until we have an

inclusive permutation in Tn.

Thus for 1 ≤ m ≤ n−2 the number of inclusive permutations of Tn with exactly

m elements in the right cycle is

(m− 1)!(m + 2)(m + 3) . . . (n− 1) =
(n− 1)!

m(m + 1)
. (2.1)

Hence the total number of inclusive permutations of Tn with at least 2 elements in

the left cycle (i.e., at most n− 2 elements in the right cycle) is
n−2∑
m=1

(n− 1)!

m(m + 1)
= (n− 1)!

( 1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 2)(n− 1)

)
= (n− 1)!

(
(1− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n− 2
− 1

n− 1
)
)

= (n− 1)!
(
1− 1

n− 1

)
= (n− 1)!

(n− 2

n− 1

)
= (n− 2)(n− 2)!
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Adding this to the (n − 2)! permutations where 1 is alone, we again obtain a total

of (n− 1)! inclusive permutations in Tn. �

Proof 3. (Induction) Let An be the set of inclusive permutations in Tn. We want

to show that |An| = (n − 1)!. T2 has only one inclusive permutation, π = (1)(2),

|A2| = 1 = (2 − 1)!. Now we inductively assume |An| = (n − 1)! and try to show

that |An+1| = n!. We will do this using a 1 to n mapping from An to An+1 defined

as follows: Let π ∈ An. If π(1) 6= 1, i.e. π does not have element 1 alone in the left

cycle, then use the insertion method described in Proof 2, giving us n choices for

how to get to An+1. That is, we choose a number t (2 ≤ t ≤ n + 1) to go to the right

of 1 and increase by 1 all other elements that were at least t. If π(1) = 1, i.e. 1 is

alone in the left cycle, then we either insert 2 into the left cycle and increase every

element in the right cycle by 1, or we insert n + 1 to the right of any element in the

right cycle. In either case, this gives us n choices to get to An+1. So every π ∈ An

maps to n elements in An+1, therefore

|An+1| = n|An| = n(n− 1)! = n!

as desired. �

Proof 4. (Bijective) As before, let An be the set of inclusive permutations in

Tn. We want to show that |An| = (n − 1)!. Let Bn be the set of integer sequences

β3, β4, . . . , βn such that 1 ≤ βi ≤ i − 1 for 3 ≤ i ≤ n. Clearly |Bn| = (n − 1)!. If we

can find a one-to-one mapping from Bn onto An then |An| = |Bn| = (n − 1)!. We

define the mapping f : Bn → An as follows:

For n ≥ 3, let β ∈ Bn. Thus β = β3β4β5 . . . βn where 1 ≤ βi ≤ i− 1 for 3 ≤ i ≤ n.

We shall interpret β as instructions on how to build some πn ∈ An starting with

the only permutation in A2, which is π2 = (1)(2). We will use two rules to build

a permutation in An. We apply Rule 1 until βt = 1, for some t. If βi 6= 1 for all i,
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then let t = n + 1. Then we apply Rule 2 until we are done. Begin with i = 3, and

stop when i = n. We illustrate these rules with β = 2243141, that is the sequence

β3 = 2, β4 = 2, β5 = 4, β6 = 3, β7 = 1, β8 = 4, β9 = 1, and t = 7.

Rule 1. For 3 ≤ i < t, we create πi by inserting the number i to the right

of βi in πi−1. In our example, beginning with π2 = (1)(2), this rule generates π3 =

(1)(23), π4 = (1)(243), π5 = (1)(2453), π6 = (1)(24536). Notice that the permutations

generated by Rule 1 are inclusive since only 1 appears in the left cycle.

Rule 2 will increase the size of the left cycle. Essentially, it “makes room” for

the number βi + 1 to be inserted to the right of the number 1.

Rule 2. For t ≤ i ≤ n, we create πi by first increasing by one all numbers in

πi−1 that are greater than βi. Then we insert βi + 1 to the right of 1. In our example,

Rule 2 generates inclusive permutations. π7 = (12)(35647), π8 = (152)(36748), π9 =

(1263)(47859). Notice that Rule 2 always generates an inclusive permutation and

that given an inclusive permutation π ∈ Tn there is a unique sequence β3, . . . , βn

that generates it. Specifically, if π = πn has l elements in its left cycle, reverse Rule 2

exactly l− 1 times, according to the element to the right of 1. After that we reverse

Rule 1 according to the location of the largest element.

We have defined a bijection between An and Bn. Therefore, |An| = |Bn| =

(n− 1)!, and we are done. �

Proof 5. (Combinatorial) We directly count the number of inclusive permuta-

tions, conditioning on the smallest element in the right cycle. We count the number

of inclusive permutations in Tn where the smallest number in the right cycle is r,

where 2 ≤ r ≤ n. If r = 2, then the left cycle must only contain 1, and there are

(n − 2)! such permutations. Now suppose r ≥ 3. First we arrange elements 1 to

r − 1 in the left cycle, with the requirement that 1 be listed first. There are (r − 2)!

ways to do this. Let k denote the endpoint of the left cycle. Now place r in the right

cycle. Note that 2 ≤ k ≤ r − 1, and the permutation thus far created is inclusive.
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At this point, we have created the inclusive permutation (1, . . . k)(r) where the left

cycle contains the numbers 1 through r − 1 in some order. Next insert element

r + 1 to the right of any element except k, with r − 1 choices. Then insert element

r + 2 to the right of any element except k, with r choices, and so on until element

n has been inserted with n − 2 choices. After each insertion, the endpoint is still

k, and the permutation remains inclusive. Thus for any r ≥ 3 the total number of

inclusive permutations of Tn with r being the smallest element of the right cycle is

(r − 2)!(r − 1)(r)(r + 1) . . . (n− 2) = (n− 2)!

as was the case for r = 2. Since r can be chosen n−1 ways, the number of inclusive

permutations of Tn is (n− 1)(n− 2)! = (n− 1)! �

2.2 Proof of Identity 1

Identity 1

n−1∑
j=1

Hj = nHn − n.

Combinatorial Proof of Identity 1: We must first convert Identity 1 to Stirling

numbers using Theorem 1.3.1, which gives us

n−1∑
j=1

1

j!

[
j + 1

2

]
=

n

n!

[
n + 1

2

]
− n

=
1

(n− 1)!

[
n + 1

2

]
− n

Multiplying both sides by (n− 1)!, we have

n−1∑
j=1

(n− 1)!

j!

[
j + 1

2

]
=

[
n + 1

2

]
− n!
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or equivalently, after re-indexing,[
n

2

]
= (n− 1)! +

n−2∑
j=1

(n− 2)!

j!

[
j + 1

2

]
Letting k = j + 2, this is equivalent to[

n

2

]
= (n− 1)! +

n∑
k=3

(n− 2)!

(k − 2)!

[
k − 1

2

]
(2.2)

The left side of this equation directly counts all permutations in Tn. If we can

show that the right side of the equation counts the same thing, then we are done.

But by Lemma 2.1.1, for 3 ≤ k ≤ n, (n−2)!
(k−2)!

[
k−1
2

]
counts the number of exclusive

permutations in Tn with endpoint k. Thus the total number number of exclusive

permutations is
n∑

k=3

(n− 2)!

(k − 2)!

[
k − 1

2

]
.

And by Lemma 2.1.2, (n − 1)! counts the number of inclusive permutations in

Tn. Since every permutation in Tn is either inclusive or exclusive, we have counted

them all, and the identity is proved. �

2.3 A Bonus Identity

As a byproduct of our analysis of inclusive permutations we offer a combinatorial

proof of the following identity, typically proved by induction or telescoping sums.

n−1∑
m=1

1

m(m + 1)
= 1− 1

n
.

To prove this combinatorially, we first create integer quantities by multiplying both

sides by n!. That is, our identity is equivalent to

n−1∑
m=1

n!

m(m + 1)
= n!− (n− 1)!
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This is explained by asking the following question:

Question: How many inclusive permutations are there in Tn+1 with at least 2

elements in the left cycle.

Answer 1: n!−(n−1)!, since the total number of inclusive permutations in Tn+1

is n!, and the number of inclusive permutations in Tn+1 with exactly 1 element in

the left cycle is (n− 1)!.

Answer 2:
∑n−1

m=1
n!

m(m+1)
. We know from Proof 2 of Lemma 2.1.2 that for 1 ≤

m ≤ n − 1, the number of inclusive permutations in Tn+1 with exactly m elements

in the right cycle is n!
m(m+1)

. And having at most n − 1 elements is equivalent to

having at least 2 elements in the left cycle. �



Chapter 3

Identity 2

Now that we have proved Identity 1, we wish to prove the following similar

identity:

Identity 2
n−1∑
k=0

kHk =
n(n− 1)

2
Hn −

n(n− 1)

4

3.1 Proof of Identity 2

Combinatorial Proof Using Theorem 1.3.1 to convert Identity 2 to Stirling numbers

yields the following: [
n

2

]
=

(n− 1)!

2
+ 2

n∑
k=3

(n− 3)!

(k − 3)!

[
k − 1

2

]
(3.1)

The left side of this equation counts the number of permutations in Tn. From Lem-

mas 3.2.1, 3.2.3, and 3.2.4, we shall see that the right side of this equation also

counts the number of permutations in Tn, by breaking Tn into three cases.

3.2 A new endpoint

In proving Identity 1, we looked at the endpoint of the left cycle, which we called

k. Now we will also look at the endpoint of the right cycle, which we will call s. So

using our cycle notation, our permutations take the form π = (1 . . . k)(r . . . s). We

keep the convention of listing the smallest element in the right cycle, r, first. We

say π is left-dominant if k > s and π is right-dominant if k < s.
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Lemma 3.2.1 For 3 ≤ k ≤ n, the number of left-dominant permutations in Tn with left

endpoint k is [
k − 1

2

]
(n− 3)!

(k − 3)!
.

Proof. Given k, we can create the desired permutations as follows: First put el-

ements 1 through k−1 into two cycles. There are
[
k−1
2

]
ways to do this. Call the last

element in the right cycle s. Next insert k at the end of the left cycle. Since k > s,

the permutation generated so far is left-dominant. To remain left-dominant with

left endpoint k, we insert the remaining elements k + 1 through n one at a time to

the right of any element except k or s. Since there are (k−2)(k−1) · · · (n−3) = (n−3)!
(k−3)!

ways to do this, the number of left-dominant permutations is
[
k−1
2

] (n−3)!
(k−3)!

. �

Since a left-dominant permutation must have left endpoint k ≥ 3, we have as

an immediate corollary

Corollary 3.2.2 The number of left-dominant permutations in Tn is
n∑

k=3

[
k − 1

2

]
(n− 3)!

(k − 3)!
.

�

Lemma 3.2.3 The number of right-dominant permutations in Tn with right endpoint s

and at least 2 elements in the right cycle is[
s− 1

2

]
(n− 3)!

(s− 3)!
.

Proof Given s, begin by putting elements 1 through s− 1 into two cycles. There

are
[
s−1
2

]
ways to do this. Call the endpoint of the left cycle k. Insert s at the end

of the right cycle. Now the right cycle has at least two elements. Finally, insert the

remaining elements s+1 through n one at a time to the right of any element except

k or s. There are (n−3)!
(s−3)!

ways to do this.
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Since a right-dominant permutation must have s ≥ 2, in total the number of

right-dominant permutations in Tn with at least two elements in the right cycle is

n∑
s=3

[
s− 1

2

]
(n− 3)!

(s− 3)!
.

�

The combinatorial proof of Identity 2 is completed by enumerating the only

remaining case.

Lemma 3.2.4 The number of right-dominant permutations in Tn with exactly one element

in the right cycle is
(n− 1)!

2
.

Proof 1 We are counting permutations of the form (1 . . . k)(s) with k < s. We

can see the number of permutations with only one element in the right cycle is

(n − 1)!, since we have (n − 1) choices for the lone element in the right cycle, and

(n − 2)! ways to fill in the left cycle. Exactly half of them have k < s, since either

(1, α1, . . . , αn−3, αn−2)(αn−1) or (1, α1, . . . , αn−3, αn−1)(αn−2) satisfies k < s. �

Proof 2 We condition on the value of s. For any given s, we have s − 2 choices

for k, since k < s and k 6= 1. Now the left cycle can be completed in (n− 3)! ways.

Since 3 ≤ s ≤ n, we get a total of

n∑
s=3

(s− 2)(n− 3)! =
(n− 1)(n− 2)

2
(n− 3)! =

(n− 1)!

2
.

�



Chapter 4

Identity 3

Now that we have proved Identities 1 and 2, we wish to prove the following

more general Identity:

Identity 3
n−1∑
j=m

(
j

m

)
Hj =

(
n

m + 1

)
(Hn −

1

m + 1
)

We must first convert Identity 3 to Stirling numbers using Theorem 1.3.1, which

gives us

n−1∑
j=m

(
j

m

)
1

j!

[
j + 1

2

]
=

(
n

m + 1

)
(

1

n!

[
n + 1

2

]
− 1

m + 1
)

n−1∑
j=m

j!

m!(j −m)!

1

j!

[
j + 1

2

]
=

n!

(m + 1)!(n− (m + 1))!
(

1

n!

[
n + 1

2

]
− 1

m + 1
).

When we multiply both sides by (m + 1)!(n− (m + 1))! we get

(m + 1)
n−1∑
j=m

(n− (m + 1))!

(j −m)!

[
j + 1

2

]
=

[
n + 1

2

]
− n!

m + 1
,

or equivalently, after re-indexing, letting t = m + 1, k = j + 2, and replacing n with

n− 1, [
n

2

]
=

(n− 1)!

t
+ t

n∑
k=t+1

[
k − 1

2

]
(n− 1− t)!

(k − 1− t)!
(4.1)

Notice that when t = 1 and t = 2, Equation (4.1) simplifies to Stirling Identities

2.2 and 3.1 respectively. In fact, when t = n − 1, Equation (4.1) simplifies to Equa-

tion (1.2) with k = 2.
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Every permutation π ∈ Tn must be of the form π = (1α2α3 . . . αj)(αj+1 . . . αn)

for some j, with 1 ≤ j ≤ n − 1 where αj+1 = min{αj+1, . . . , αn}. For 1 ≤ t ≤ n − 1

we define Mt(π) = max{αn, αn−1, . . . , αn+1−t}. That is, Mt(π) is the largest of the

last t elements of π. To explain this combinatorially, we first interpret (n−1)!
t

.

Lemma 4.0.5 The number of permutations π ∈ Tn that have Mt(π) = αn and π(αn) =

αn is (n−1)!
t

.

We are counting permutations of the form π = (1α2 . . . αn−1)(αn) where αn =

max{αn, αn−1, . . . , αn+1−t}.

Proof 1 We count permutations of the form (1α2 . . . αn−1)(αn) where αn = max{αn, αn−1, . . . , αn+1−t} =

m, and sum over all possible values of m. Such a permutation must have αn = m.

Next we assign αn−1, . . . , αn−(t−1) from the set {2, . . . ,m− t}. First we choose t− 1

elements from {2 . . . m− 1} and arrange them in positions n + 1− t through n− 1.

There are
(

m−2
t−1

)
(t−1)! ways to do this. Now we arrange the remaining elements in

the first n − t positions, making sure to put the 1 first. There are (n − 1 − t)! ways

to do this. Since t + 1 ≤ m ≤ n we get the total number of permutations to be

n∑
m=t+1

(
m− 2

t− 1

)
(t− 1)!(n− 1− t)! = (t− 1)!(n− 1− t)!

n−1∑
p=t

(
p− 1

t− 1

)
= (t− 1)!(n− 1− t)!

(
n− 1

t

)
=

(n− 1)!

t

The summation in the next to last equation can be seen combinatorially as follows:

To count the number of size t subsets of {1, . . . , n−1}, we condition on p, the largest

element of the subset. �

Proof 2 Among all (n−1)! permutations of the form (1α2 . . . αn−1)(αn) precisely
1
t
th of them will have Mt(π) in the last position. We count this directly. First choose

which elements from {2 . . . n} will fill the last t positions. There are
(

n−1
t

)
ways to
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do this. Place the largest of these t elements at the end. Now we have (t− 1)! ways

to insert the remaining chosen elements in positions n− 1 through n− (t− 1). We

can now place the remaining elements in the first n − t positions, making sure to

put the 1 first, in (n− 1− t)! ways. This gives us the total number of permutations

as (
n− 1

t

)
(t− 1)!(n− 1− t)! =

(n− 1)!

t!(n− 1− t)!
(t− 1)!(n− 1− t)! =

(n− 1)!

t
.

�

Lemma 4.0.6 The number of permutations π ∈ Tn that have Mt(π) = k and π(k) 6= k is

t

[
k − 1

2

]
(n− 1− t)!

(k − 1− t)!
.

Proof We are counting permutations where k = max{αn, αn−1, . . . , αn+1−t} and

k is not alone in the right cycle. Note that since α1 = 1, t + 1 ≤ k ≤ n. We begin by

putting elements {1 . . . k − 1} into two cycles. Then insert k to the right of any of

the last t elements. There are
[
k−1
2

]
t ways to do this. The right cycle contains at least

one element less than k. So that k remains the largest among the last t elements,

we insert elements of {k + 1 . . . n} one at a time to the right of any but the last t

elements. There are (k − t) · · · (n− 1− t) = (n−1−t)!
(k−1−t)!

ways to do this. The total is

t

[
k − 1

2

]
(n− 1− t)!

(k − 1− t)!
.

�

4.1 Proof of Identity 3

The left side of Equation 4.1 directly counts the number of permutations in Tn. If

we can show that the right side of the equation counts the same thing, then we are
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done. But from Lemmas 4.0.5 and 4.0.6, and knowing that t + 1 ≤ Mt(π) ≤ n, it is

clear that the right side also counts exactly all permutations in Tn. �

4.2 Other interpretations of (n−1)!
t

In this section we include other interpretations of (n−1)!
t

. These came from earlier

attempts to prove (4.1) combinatorially.

Lemma 4.2.1 The number of inclusive permutations in Tn with at least t elements in the

right cycle is (n−1)!
t

, for 1 ≤ t ≤ n− 1.

Proof. We build on Proof 4 of Lemma 2.1.2, but now we let Bn be the set of

integer sequences of length n − 2 such that the number in the i’th position must

be chosen from [1 . . . i + 1] whenever i > t − 1, and from [2 . . . i + 1] whenever

i ≤ t − 1. So we have 1 choice for the first position, 2 choices for the second

position, all the way up to t − 1 choices for the t − 1’th position. Then for the

t’th position we have t + 1 choices, and for the t + 1’th position we have t + 2

choices, all the way up to n − 1 choices for the n − 2’nd position. So there are

1 · 2 · · · (t − 2) · (t − 1) · (t + 1) · (t + 2) · · · (n − 1) = (n−1)!
t

elements in Bn, so

|Bn| = (n−1)!
t

.

Now using the rules from Proof 4 of Lemma 2.1.2, we generate permutations

from elements β in Bn. We begin by using Rule 1, which adds elements to the right

cycle. And since there can’t be any 1’s in β until the t’th position, we must use Rule

1 at least t − 1 times, giving us at least t elements in the right cycle, which is what

we want. �

Lemma 4.2.2 The number of permutations (inclusive or exclusive) in Tn with exactly t

elements in the right cycle is (n−1)!
t

.
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Proof 1. Begin by putting the element 1 in the left cycle. Now choose t of the

remaining n− 1 elements to go into the right cycle, and arrange them in one of the

(t−1)! possible ways. Now arrange the remaining n−1− t element in the left cycle

in one of the (n − 1 − t)! possible ways. The total number of permutations with

exactly t elements in the right cycle is therefore(
n− 1

t

)
(t− 1)!(n− 1− t)! =

(n− 1)!

t!(n− 1− t)!
(t− 1)!(n− 1− t)! =

(n− 1)!

t

�

Proof 2. List all n elements in any order, requiring only that the 1 comes first.

There are (n−1)! such listings. The first n− t elements listed form the left cycle of a

permutation. The remaining t elements form the right cycle only when the small-

est is listed first. This will happen precisely 1 out of every t times. So the number

of these arrangements that form valid permutations is exactly (n−1)!
t

. It is easy to

see that any permutation with t elements in the right cycle can be generated one

such valid arrangement. �

Corollary 4.2.3 The number of permutations in Tn with n− t elements in the left cycle is
(n−1)!

t
.

Lemma 4.2.4 The number of permutations (inclusive or exclusive) in Tn with smallest

element in the right cycle equal to t + 1 is (n−1)!
t

.

The proof of this follows immediately from Lemma 1.3.2.
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4.3 Alternate Proof of Identity 1

Now with a new understanding of (n−1)!
t

, we briefly return to Identity 1. By re-

indexing equation 2.2, we get[
n

2

]
= (n− 1)! +

n−2∑
k=1

(n− 2)!

k!

[
k + 1

2

]
(4.2)

By viewing (n − 1)! as (n−1)!
1

, we see from Lemma 4.2.4 that (n − 1)! counts the

number of permutations with r = 2. If the sum counts all permutations with r > 2,

then we have again proven Identity 1.

Theorem 4.3.1 The number of permutations in Tn with minimal element in the right cycle

greater than 2 is
n−2∑
k=1

(n− 2)!

k!

[
k + 1

2

]
Proof:

Since the smallest element in the right cycle is greater than 2, 2 must be some-

where in the left cycle. Given any permutation in Tn with r > 2, we will define k

to be the number of elements to the right of 2 in the left cycle, plus the size of the

right cycle. Note that if 2 immediately follows 1, then k = n − 2. And if 2 is the

last element in the left cycle while the right cycle contains only one element, then

k = 1.

We shall construct all permutations with a given k. We first determine the el-

ements in the left cycle between elements 1 and 2. There will be n − k − 2 such

elements. Since these elements can be anything except 1 or 2, for the first element

we have (n − 2) choices. Then for the second element, we have (n − 3) choices.

And so on until for the (n − k − 2)nd element we have (k + 1) choices. So in de-

termining the possible arrangements of the elements between the 1 and the 2, we

have (n − 2)(n − 3) · · · (k + 1) = (n−2)!
k!

. We put these n − k − 2 elements followed

by 2 into a string, α.
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Now we must determine the rest of the permutation. To do this, we take all of

the elements not in α, for a total of k+1 elements, (this includes element 1) and split

them into two cycles. There are
[
k+1
2

]
ways to do this. Now we insert the string α

to the right of 1. The result is a permutation with exactly k elements to the right

of 2, and minimal element in the right cycle is greater than 2. The total number of

such permutations is
(n− 2)!

k!

[
k + 1

2

]
.

And since 1 ≤ k ≤ n − 2, the total number of permutations in Tn with minimal

element in the right cycle greater than 2 is

n−2∑
k=1

(n− 2)!

k!

[
k + 1

2

]
�



Chapter 5

Identity 4

The last identity we prove looks dissimilar to the previous three, but actually

lends itself to a similar combinatorial argument.

Identity 4
n−1∑
j=m

(
j

m

)
1

n− j
=

(
n

m

)
(Hn −Hm)

Using Theorem 1.3.1 to convert Identity 4 to Stirling numbers yields the follow-

ing: [
n

2

]
=

[
m

2

]
(n− 1)!

(m− 1)!
+

n−1∑
t=m

(
t− 1

m− 1

)
(m− 1)!(n−m)!

(n− t)
(5.1)

5.1 Proof of Identity 4

Lemma 5.1.1 The number of permutations in Tn that do not have elements 1, 2, . . . m all

in the left cycle is [
m

2

]
(n− 1)!

(m− 1)!
.

Proof First split the elements of {1 . . . m} into two cycles, which can be done
[
m
2

]
ways. Next insert the remaining elements one at a time to the right of any existing

element. As usual, element k, m + 1 ≤ k ≤ n has k − 1 choices. Hence the number

of ways to insert these elements is

m(m + 1) · · · (n− 1) =
(n− 1)!

(m− 1)!

and the lemma follows. �
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Lemma 5.1.2 For m ≤ t ≤ n − 1, the number of permutations in Tn with exactly t

elements in the left cycle that do have elements 1, . . . m all in the left cycle is(
t− 1

m− 1

)
(m− 1)!(n−m)!

(n− t)
.

Proof We know the left cycle has exactly t elements, and therefore the right

cycle must have n − t elements. First place 1 at the front of the left cycle. Now

choose m− 1 of the remaining t− 1 spots in the left cycle, and fill these spots with

elements from {2 . . . m}. There are
(

t−1
m−1

)
(m− 1)! ways to do this. See Figure 5.1 for

an example where n = 9, t = 6, and m = 4.

1 through m are in the left cycle

π = (1 2 4 3)︸ ︷︷ ︸ ( )︸ ︷︷ ︸
t− 1 locations n− t locations

Figure 5.1: Inserting elements 2 through m.

Now there are (n−m)! ways to place elements m+1 through n in the remaining

spots, but only 1
n−t

th of them will put the smallest element in the right cycle at the

front of the right cycle. Hence, elements m + 1 through n can be inserted in (n−m)!
n−t

ways. Our total is (
t− 1

m− 1

)
(m− 1)!(n−m)!

(n− t)
.

�

Proof of Identity 4

The left side of Equation 4 counts the number of permutations in Tn. But from

Lemmas 5.1.1 and 5.1.2 and m ≤ t ≤ n − 1, we see that that the right side of this

equation also counts the number of permutations in Tn. �



Chapter 6

The Future

6.1 Generalizing from
[
n
2

]
to

[
n
k

]
Identities 1 through 4 all involve

[
n
2

]
. Perhaps they have more general forms in-

volving
[
n
k

]
. These general forms would likely have combinatorial proofs involv-

ing permutations with k cycles. General identities may not have direct harmonic

applications, but they might lead to a better understanding of the
[
n
2

]
versions of

the identities, which could help better understand harmonic numbers.

6.2 Generalized Harmonic Numbers

We explore two generalizations of harmonic numbers. The first, H
(k)
n is a sum of

harmonic numbers, as follows

H(k)
n =

n∑
i=1

H
(k−1)
i

with H
(1)
n = Hn. The identity below (see [2]) suggests that there must be a combi-

natorial interpretation of these numbers as well.

Identity 5 H
(k)
n =

(
n+k−1

k−1

)
(Hn+k−1 −Hk−1)

There may also be identities that can be proven combinatorially using a second

generalization of harmonic numbers, Hn,k, where

Hn,k = 1 +
1

2k
+

1

3k
+ · · ·+ 1

nk
=

n∑
j=1

1

jk
.
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Unlike normal harmonic numbers, Hn,k converges [3] as n goes to infinity for

k > 1. This limit is called the Riemann-Zeta function, which is well known in

mathematics, but is beyond the scope of this work.

6.3 Conclusion

We have found combinatorial explanations of several harmonic identities. Hope-

fully this work can lead to a better understanding of harmonic numbers. A side

benefit may also be some new results involving permutations, particularly new

classifications of permutations into inclusive and exclusive. It may also prove in-

teresting to use this new knowledge of permutations to create entirely new Stirling

identities and use them to discover new harmonic identities.
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