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ALMOST PERIODIC FACTORIZATION OF CERTAIN
BLOCK TRIANGULAR MATRIX FUNCTIONS

ILYA M. SPITKOVSKY AND DARRYL YONG

Abstract. Let

G(x) =

[
eiλxIm 0

c−1e−iνx + c0 + c1eiαx e−iλxIm

]
,

where cj ∈ Cm×m, α, ν > 0 and α+ ν = λ. For rational α/ν such matrices G
are periodic, and their Wiener-Hopf factorization with respect to the real line
R always exists and can be constructed explicitly. For irrational α/ν, a cer-
tain modification (called an almost periodic factorization) can be considered

instead. The case of invertible c0 and commuting c1c
−1
0 , c−1c

−1
0 was disposed

of earlier—it was discovered that an almost periodic factorization of such ma-
trices G does not always exist, and a necessary and sufficient condition for its
existence was found.

This paper is devoted mostly to the situation when c0 is not invertible but
the cj commute pairwise (j = 0,±1). The complete description is obtained
when m ≤ 3; for an arbitrary m, certain conditions are imposed on the Jordan
structure of cj . Difficulties arising for m = 4 are explained, and a classification
of both solved and unsolved cases is given.

The main result of the paper (existence criterion) is theoretical; however,
a significant part of its proof is a constructive factorization of G in numerous
particular cases. These factorizations were obtained using Maple; the code is
available from the authors upon request.

1. Introduction

Let AP be the Bohr algebra of almost periodic functions, that is, the smallest
C∗-algebra of L∞(R) containing all the functions eλ(x) = eiλx, λ ∈ R. It is well
known (the standard references for these and other properties of AP are [3, 11, 12])
that for every f ∈ AP ,

1. there exists the Bohr mean value

M(f) = lim
T→∞

1
2T

∫ T

−T
f(x) dx,

and
2. the Fourier coefficients f̂(λ) def= M(fe−λ) are different from zero for at most

countably many values of λ ∈ R.
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The set Ω(f) = {µ : f̂(µ) 6= 0} is called the Fourier spectrum of f , and∑
µ∈Ω(f)

f̂(µ)eµ(1.1)

is its (formal) Fourier series.
We say that f ∈ APW if the Fourier series (1.1) converges absolutely:∑

µ∈Ω(f)

|f̂(µ)| <∞.

Finally, let

AP± = {f ∈ AP : Ω(f) ⊂ R±} and AP±W = AP± ∩APW .
Here, as usual, R± = {x ∈ R : ± x ≥ 0}.

For matrix functions f , conditions f ∈ AP,AP±, APW , etc. are understood
entrywise, and M(f), f̂(µ), Ω(f) are defined by exactly the same formulas as for
scalar functions.

Following [6], we introduce an AP factorization of an n × n matrix function G
as its representation in the form

G = G+ΛG−,(1.2)

where Λ(x) = diag[eλ1 , . . . , eλn ],

G±1
+ ∈ AP+, G±1

− ∈ AP−,(1.3)

and λ1, . . . , λn ∈ R. We say that (1.2) is an APW factorization of G if conditions
(1.3) are replaced by the (more restrictive) conditions G±1

+ ∈ AP+
W , G

±1
− ∈ AP−W .

If G is AP factorable, the numbers λ1, . . . , λn are defined uniquely; they are
called the partial AP indices (of G). Of course, for an AP (APW ) factorization
(1.2) to exist it is necessary that G±1 ∈ AP (respectively, APW ). However, this
necessary condition is not sufficient and, except for the case of periodic matrix
functions G (in which an AP factorization by a simple change of variable reduces
to the usual Wiener-Hopf factorization), the theory of AP factorization is “under
construction”. Its connections with integral equations, completion problems, and
signal processing are discussed in [6, 7], [17, 15, 1], and [14] respectively. Explicit
formulas for the factors in (1.2) for certain special types ofG are obtained in [6, 9, 8].
Most of them refer to matrices G of the following block triangular form:

Gf =
[
eλIm 0
f e−λIm

]
(1.4)

(so that n = 2m) arising in the treatment of convolution type equations on finite
intervals of length λ.

In particular, the following two statements were established in [6].

Lemma 1.1. Let f be an APW matrix function, and let

f0 =
∑

µ∈Ω(f)∩(−λ,λ)

f̂(µ)eµ.

Then the matrices Gf and Gf0 are AP (APW ) factorable only simultaneously, and
their partial AP indices coincide.

Due to Lemma 1.1, for any f ∈ APW in (1.4) we may suppose without loss of
generality that Ω(f) ⊂ (−λ, λ).
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Theorem 1.2. Let Ω(f)∩(−λ, λ) consist of at most two points, say µ and σ. Then
Gf is APW factorable. Its partial AP indices all equal zero if and only if µσ = 0,
f̂(0) is invertible, or µσ < 0, λ

µ−σ ∈ Z and both f̂(µ), f̂(σ) are invertible.

The next logical step is to consider a trinomial f with Ω(f) ⊂ (−λ, λ). However,
with no additional restrictions on the location of Ω(f) this remains an open problem.
In this paper, we concentrate on the case Ω(f) = {−ν, 0, α}, that is,

f = c−1e−ν + c0 + c1eα,(1.5)

where α, ν > 0 and α+ ν = λ.
If β = ν

α is rational, then the matrix Gf is periodic, and its APW factorization
exists and can be easily constructed. Thus, we suppose in what follows that β
is irrational. The next result applies to the case when the matrices cj in (1.5)
commute with each other. In this case there exists a similarity T such that

T−1cjT = diag[cj1, . . . , cjr], cjk ∈ Clk×lk , k = 1, . . . , r; j = 0,±1,(1.6)

and each diagonal block cjk has a singleton spectrum (see [13, Section 4.4]):

σ(cjk) = {ξjk} (j = 0,±1; k = 1, . . . r).

As in [2], we call {ξjk}1j=−1 the bonded eigenvalue triples of cj .

Theorem 1.3. Let Gf be of the form (1.4) with f given by (1.5) and commuting
coefficients cj. Then Gf is AP factorable with zero partial AP indices if and only
if, for all bonded triples {ξ−1,k, ξ0,k, ξ1,k},

|ξν1,kξα−1,k| 6= |ξ0,k|λ (k = 1, . . . , r).(1.7)

In this form, Theorem 1.3 was established in [2, Theorem 7.2]; the case of invert-
ible cj was disposed of earlier in [9]. In fact, the result of [9] contains an additional
important piece of information: if all cj are invertible and (1.7) fails for at least
one value of k, then Gf does not admit any AP factorization, even if non-zero
partial AP indices are allowed. Also, it was shown in [16] that an AP factorization
with zero partial AP indices of an APW matrix function is automatically its APW
factorization. Hence, the following result holds.

Corollary 1.4. Let Gf be as in Theorem 1.3 and, in addition, let c0 be invertible.
Then Gf is APW factorable with zero partial AP indices if condition (1.7) holds,
and is not AP factorable otherwise.

Of course, it would now be natural to consider an AP factorization of Gf with
trinomial f , pairwise commuting cj , and no restrictions imposed on the invertibility
of c0 and the values of partial AP indices. We will see, however, that this problem
embraces a general setting of a trinomial f with arbitrary (not necessarily com-
muting) coefficients cj and is therefore too difficult to handle at the present stage
of the development. Our paper is a report on several partial results on the AP
factorability of matrices (1.4), (1.5) with non-invertible c0.

The paper is structured as follows. Section 2 contains an auxiliary result on
the factorization of block diagonal matrices. It also describes a procedure which
allows us to replace a matrix of the form (1.4), (1.5) with invertible c−1 (and
no commutativity conditions on cj) by another matrix of the same type without
changing its factorability properties. This procedure is, in fact, a variation of the
one introduced in [2] for matrices (1.4) with a finite number (not limited to three) of
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points µj in Ω(f)∩ (−λ, λ) but pairwise commuting f̂(µj). As a direct application
of this procedure, APW factorability is established for matrices (1.4), (1.5) with
m = 2, invertible c−1 (or c1) and nilpotent c0c−1

−1 (respectively, c0c−1
1 ).

Section 3 contains necessary and sufficient factorability conditions for matrices
(1.4), (1.5) with commuting cj under certain additional restrictions on their Jordan
structure. This covers, in particular, all matrices of size m ≤ 3, invertible c1 or
c−1 of size m ≤ 4, and matrices of arbitrary size, provided that each eigenvalue of
at least one of the cj corresponds to one Jordan cell. An application to difference
equations is given.

In Section 4, we concentrate on 4×4 matrices cj . An example is given explaining
why this case cannot be covered in general before the AP factorability of matrices
(1.4), (1.5) with arbitrary invertible non-commuting cj is understood. All possible
cases are classified, and those for which the AP factorability remains unknown are
singled out.

Proofs of the results in Sections 3 and 4 are partially theoretical and partially
consist in exhausting a large number of cases in which an APW factorization can
be constructed explicitly. These cases are relegated to Section 5 the supplement
at the end of this volume, where final formulas are listed. Of course, they can be
checked by straightforward calculations. We emphasize, however, that a symbolic
manipulation Maple program was used to obtain these formulas, and without it
this paper could hardly have been completed.

2. Auxiliary results

Suppose G is a block diagonal AP matrix: G = diag[G1, G2]. If its diagonal
blocks G1, G2 are AP factorable, then G itself is AP factorable. Moreover, an AP
factorization of G can be obtained by “pasting together” AP factorizations of G1

and G2: G1 = G
(1)
+ Λ(1)G

(1)
− , G2 = G

(2)
+ Λ(2)G

(2)
− imply

G = diag[G(1)
+ , G

(2)
+ ] diag[Λ(1), Λ(2)] diag[G(1)

− , G
(2)
− ].

It is natural to ask whether the converse is true. The answer is positive provided
that G ∈ APW and partial AP indices of G equal zero. Indeed, a matrix F ∈
APW admits an AP factorization with zero partial AP indices if and only if the
corresponding Toeplitz operator TF is invertible on L2 [5] (see also [7]). Since TG is
a direct sum of TG1 with TG2 , the invertibility of TG is equivalent to simultaneous
invertibility of TG1 and TG2 .

We are not aware of any equivalent of AP factorability (with non-zero partial
AP indices) in operator terms. Probably, the answer to the question is still positive,
but we restrict our consideration to a somewhat weaker version.

Lemma 2.1. Let G = diag[G1, G2]. If G and one of its diagonal blocks G1, G2

are AP factorable, then the other diagonal block is also AP factorable.

Proof. Consider first the case when G1 = 1. Then an AP factorization of G can be
rewritten as

F+

[
1 0
0 G2

]
= ΛG−,(2.1)
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where F+ = G−1
+ ∈ AP+. Denote F+ = (fij)ni,j=1. From (2.1), e−λjfj1 ∈ AP−, so

that

Ω(fj1) ⊂ [0, λj ].(2.2)

In particular, fj1 = 0 for all j (if there are any) such that λj < 0. Rewriting (2.1)
as [

1 0
0 G−1

2

]
G+Λ = G−1

− ,

we find similarly that

Ω(g1j) ⊂ [0,−λj],(2.3)

where G+ = (gij)ni,j=1. Therefore, g1j = 0 for all j (if there are any) such that
λj > 0. Observe also that G+F+ = I implies that

∑n
j=1 g1jfj1 = 1. Since for non-

zero λj at least one of the entries g1j , fj1 is equal to zero, the latter equality proves
the existence of zero partial AP indices λj . Due to (2.2), (2.3), the corresponding
functions g1j, fj1 are constant, and for at least one value of j, g1jfj1 6= 0.

Applying an appropriate permutation of columns of G+ and rows of G−, we
may suppose without loss of generality that λ1 = 0, g11 = c 6= 0, f11 = d 6= 0.
Partitioning G+, F+ as

G+ =
[
c g+

1

g+
2 G+

2

]
, F+ =

[
d f+

1

f+
2 F+

2

]
,

we conclude that c = detF+
2 /detF+ = detF+

2 detG+. Since c 6= 0, the matrix F+
2

is invertible in AP+ simultaneously with G+. From (2.1) and (2.2) it follows that
the left-upper entry of G− and H− = G−1

− equals d and c, respectively. Thus,

G− =
[
d g−1
g−2 G−2

]
, H− =

[
c h−1
h−2 H−2

]
,

and c = detG−2 /detG−. Since c 6= 0, the matrix G−2 is invertible in AP− together

with G−. Now partition Λ =
[
1 0
0 Λ2

]
. Then (2.1) yields F+

2 G2 = Λ2G
−
2 , or

G2 = (F+
2 )−1Λ2G

−
2 . Since (F+

2 )±1 ∈ AP+ and (G−2 )±1 ∈ AP−, the latter formula
delivers an AP factorization of G2. This proves the desired statement in the case
G1 = 1.

If G1 = eλ, then the matrix e−λG = diag[1, e−λG2] is AP factorable together
with G. According to the already proven particular case, e−λG2 is AP factorable.
But then G2 is AP factorable as well.

An induction argument allows us to consider G1 of the form diag[eλ1 , . . . , eλk ] =
Λ1. Finally, for an arbitrary AP factorable G1 = G

(1)
+ Λ1G

(1)
− we can write

G = diag[G(1)
+ , I] diag[Λ1, G2] diag[G(1)

− , I]

and consider an (AP factorable) matrix diag[Λ1, G2] instead of the original matrix
G.

Another technical tool we need applies to matrix functions Gf with a trinomial
f containing an invertible c−1 coefficient.
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Lemma 2.2. Let G be of the form (1.4) with f given by (1.5). If c−1 is invertible,
then G is AP (APW ) factorable only simultaneously with (and has the same partial
AP indices as) the matrix function

G1 =
[
eλ1Im 0
f1 e−λ1Im

]
,(2.4)

where

f1 = c
(1)
−1e−ν1 + c

(1)
0 + c

(1)
1 eα1 ,(2.5)

c
(1)
−1 = (−1)s(c−1

−1c0)s+1, c
(1)
0 = c−1

−1c1, c
(1)
1 = (−1)s+1(c−1

−1c0)s+2,

λ1 = ν, ν1 = α− sν, α1 = (s+ 1)ν − α,

and finally, s is the integral part of α
ν : s ∈ Z and s < α

ν < s+ 1.

Proof. It suffices to construct matrix functions X+ and X− such that X±1
+ ∈ AP+

W ,
X±1
− ∈ AP−W and

X+GX− = G1.(2.6)

To this end, let

X+ =
[

c−1
−1feν −eλ+νI

e−λ−νI + (g − e−λI)c−1
−1f I − geλ

] [
I 0
0 c−1

−1

]
,

X− =
[
I 0
0 c−1

] [
e−αI +

∑s
j=1(−1)j(c−1

−1c0)jejν−α I

−I 0

]
,

(2.7)

where g = c−1
−1c1 −

∑s+2
j=1(−1)j(c−1

−1c0)je(j−1)ν−α. Directly from the definition of s
it follows that X− ∈ AP−. Since detX− = det c−1 is a non-zero constant, X−1

−
belongs to AP− together with X−.

A straightforward computation shows that

X+GX− =
[

c−1
−1feν −eλ+νI

e−λ−νI + (g − e−λI)c−1
−1f I − geλ

]
×
[
eλI 0
c−1
−1f e−λI

] [
e−αI +

∑s
j=1(−1)j(c−1

−1c0)jejν−α I

−I 0

]
=
[

c−1
−1feν −eλ+νI

e−λ−νI + (g − e−λI)c−1
−1f I − geλ

]

×


eνI +

s∑
j=1

(−1)j(c−1
−1c0)je(j+1)ν eλI

c−1
−1e−αf + c−1

−1f

s∑
j=1

(−1)j(c−1
−1c0)jejν−α − e−λI c−1

−1f


= (yij)2

i,j=1,
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where

y11 = c−1
−1fe2ν + c−1

−1f
s∑
j=1

(−1)j(c−1
−1c0)je(j+2)ν − c−1

−1fe2ν

− c−1
−1f

s∑
j=1

(−1)j(c−1
−1c0)je(j+2)ν + eνI = eνI,

y12 = c−1
−1feλ+ν − c−1

−1feλ+ν = 0,

y22 = e−νI + (geλ − I)c−1
−1f + (I − geλ)c−1

−1f = e−νI,

and finally,

y21 =
(
e−λ−νI + (g − e−λI)c−1

−1f
)eνI +

s∑
j=1

(−1)j(c−1
−1c0)je(j+1)ν


+ (I − geλ)

c−1
−1e−αf + c−1

−1f

s∑
j=1

(−1)j(c−1
−1c0)jejν−α − e−λI


= e−λI +

s∑
j=1

(−1)j(c−1
−1c0)jejν−λ + (g − e−λI)

×
(
c−1
−1feν + c−1

−1f
s∑
j=1

(−1)j(c−1
−1c0)je(j+1)ν

−c−1
−1feν − c−1

−1f

s∑
j=1

(−1)j(c−1
−1c0)je(j+1)ν + I


= e−λI +

s∑
j=1

(−1)j(c−1
−1c0)jejν−λ + g − e−λI

=
s∑
j=1

(−1)j(c−1
−1c0)jejν−λ + c−1

−1c1 −
s+2∑
j=1

(−1)j(c−1
−1c0)je(j−1)ν−α

= (−1)s(c−1
−1c0)s+1esν−α + c−1

−1c1 + (−1)s+1(c−1
−1c0)s+2e(s+1)ν−α = f1.

This implies (2.6). Since detG = detG1 = 1, from (2.6) it follows, in particular,
that detX+ = (detX−)−1 is a non-zero constant. It remains to show that X+ ∈
AP+, because then X−1

+ ∈ AP+ as well. Three blocks of X+ are obviously in AP+.
The remaining (left-lower) block can be rewritten as

e−λ−νI + (g − e−λI)c−1
−1f

= e−λ−νI + c−1
−1c1e−ν + c−1

−1c1c
−1
−1c0 + (c−1

−1c1)2eα

−
s+2∑
j=1

(−1)j(c−1
−1c0)je(j−2)ν−α −

s+2∑
j=1

(−1)j(c−1
−1c0)j+1e(j−1)ν−α

−
s+2∑
j=1

(−1)j(c−1
−1c0)je(j−1)ν(c−1

−1c1)− e−λ−νI − c−1
−1c0e−λ − c−1

−1c1e−ν

= c−1
−1c1c

−1
−1c0 + (c−1

−1c1)2eα −
s+2∑
j=1

(−1)j(c−1
−1c0)je(j−1)ν(c−1

−1c1)

+ (c−1
−1c0)e−λ − (−1)s(c−1

−1c0)s+3e(s+1)ν−α − (c−1
−1c0)e−λ.
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Cancelling out the terms ±(c−1
−1c0)e−λ in the last expression, we see that this

block belongs to AP+ as well.

Formula (2.6) is a particular case of the transformation introduced in [2] for
an arbitrary AP polynomial (not necessarily a trinomial) f with invertible Fourier
coefficient corresponding to the leftmost point in Ω(f) ∩ (−λ, λ). However, in [2]
only the case of commuting coefficients was considered. Also, formulas (2.7) for a
trinomial case are more explicit than the general formulas of [2].

The resulting matrix G1 in general has the same structure as the original matrix
G: Ω(f1) ⊂ {−ν1, 0, α1}, where α1, ν1 > 0, α1 + ν1 = λ1 and β1 = ν1/α1 is
irrational together with β. In some instances, however, G1 may be easier to deal
with. One such situation is discussed in the next theorem; other applications of
Lemma 2.2 can be found in subsequent sections.

Theorem 2.3. Let the matrix G be given by (1.4), (1.5) with c−1 invertible, c0c−1
−1

nilpotent and having all Jordan cells of the size at most
[
α
ν

]
+2. Then 1) G is APW

factorable, and 2) its partial AP indices equal zero if and only if c1 is invertible.

Proof. Due to Lemma 2.2, we may consider the matrix (2.4) instead of G. The con-
ditions imposed on the Jordan structure of c0c−1

−1 imply that (c−1
−1c0)s+2 = 0. Thus,

f1 in (2.4) is in fact a binomial with Ω(f1) ⊂ {−ν1, 0}. According to Theorem 1.2,
the matrix G1 is APW factorable, and its partial AP indices equal zero if and only
if the constant term c−1

−1c1 of f1 is invertible. The latter condition is equivalent to
the invertibility of c1.

Recall now the duality between an AP factorization (1.2) of Gf and that of Gf∗ :

Gf∗ = (JG∗−)Λ∗(G∗+J),(2.8)

where J =
[
0 I
I 0

]
. From (2.8) and Theorem 2.3 follows

Corollary 2.4. Let the matrix G be given by (1.4), (1.5) with c1 invertible, c0c−1
1

nilpotent and having all Jordan cells of the size at most
[
ν
α

]
+ 2. Then G is APW

factorable, and its partial AP indices equal zero if and only if c−1 is invertible.

Observe that the condition on the size of Jordan cells is satisfied automatically
if m = 2. Hence, the following statement holds.

Corollary 2.5. Let the matrix G be given by (1.4), (1.5) with m = 2, let one
of the coefficients c±1 be non-singular, and let the corresponding product c0c−1

±1 be
nilpotent. Then 1) G is APW factorable, and 2) its partial AP indices equal zero if
and only if the second of the coefficients c±1 is invertible as well.

3. Main result

We now turn to matrices (1.4) with the off-diagonal block (1.5) having pairwise
commuting coefficients c±1, c0. The representation (1.6) is not unique, and we
choose one with the maximal possible number r of diagonal blocks. Each triple
{c−1,k, c0k, c1k} is then irreducible, that is, does not allow a further reduction to a
block diagonal form with the help of a common similarity. Of course, the commu-
tativity property of {c−1, c0, c1} is inherited by the triples {c−1,k, c0k, c1k}.

The ambiguity of T also allows us, for each k = 1, . . . , r, to put one of the
matrices cjk (with our choice of j = 0,±1) in its Jordan canonical form. If, for a
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given k, at least one of the matrices cjk is unicellular (that is, its canonical Jordan
form consists of only one cell), then for such a T all the matrices cjk with the same k
automatically become upper triangular and, in addition, have a Toeplitz structure.
The latter means that (p, q)-entry of each of the matrices c−1,k, c0,k, c1,k is the
same as its (p+ 1, q+ 1)-entry (p, q = 1, . . . , lk − 1). For lk > 1, the common value
of the entries right above the main diagonal in cjk for such k will be denoted by
ηjk (of course, the common value of the diagonal elements of the cjk in this case is
ξjk).

With this notation at hand, we are ready to formulate our main result.

Theorem 3.1. Let G be given by (1.4), (1.5) with pairwise commuting coefficients
c±1, c0. Suppose that in (1.6) for each k = 1, . . . , r at least one of the following
conditions holds: 1) ξ0k 6= 0, 2) ξ1,kξ−1,k 6= 0, 3) one of the blocks c±1,k, c0k is
unicellular, 4) lk ≤ 3, 5) ξ1,k or ξ−1,k differs from zero and lk ≤ 4. Then G is not
AP factorable if, for at least one value of k,

|ξν1,kξα−1,k| = |ξ0k|λ 6= 0, or ξ−1,k = ξ0k = ξ1,k = 0 and |ην1,kηα−1,k| = |η0k|λ 6= 0,
(3.1)

and is APW factorable otherwise.

Proof. Using (1.6), introduce a matrix[
T−1 0

0 T−1

]
G

[
T 0
0 T

]
=
[

eλIm 0
diag[c−1,ke−ν + c0k + c1,keα] e−λIm

]
,

having the same factorization properties as G. By an appropriate permutation of
its rows and columns, this matrix can be further rewritten as a direct sum of the
blocks

Gk =
[

eλIlk 0
c−1,ke−ν + c0k + c1,keα e−λIlk

]
,

k = 1, . . . r. Let R = {1, . . . , r} and denote by R0 the subset of those r ∈ R such
that ξ1,k = ξ−1,k = ξ0k = 0, lk > 1 and (at least) one of the blocks c±1,k, c0k is
unicellular. We now partition R into a disjoint union

⋃4
j=1 Rj , where

R1 = {k : |ξν1,kξα−1,k| = |ξ0k|λ 6= 0},
R2 = {k ∈ R0 : |ην1,kηα−1,k| = |η0k|λ 6= 0},
R3 = R0 \R2,

R4 = R \ (R1 ∪R0).

For every k ∈ R0, yet another permutation of rows and columns allows us to

represent Gk as a direct sum of
[
eλ 0
0 e−λ

]
with

G′k =
[

eλIlk−1 0
c′−1,ke−ν + c′0k + c′1,keα e−λIlk−1

]
.

Here c′jk are obtained from cjk by deleting its first column and last row. The
Toeplitz structure of cjk is inherited by c′jk. In particular, the c′jk pairwise commute
and σ(c′jk) = {ηjk} (j = 0,±1; k ∈ R0).

Denote by G(1) the direct sum of all the blocks Gk, k ∈ R1, and G′k, k ∈ R2.
Let G(2) be a direct sum of all Gk (k ∈ R4), G′k (k ∈ R3), and |R2| copies of
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the diagonal blocks
[
eλ 0
0 e−λ

]
. Then G can be put in the form G(1) ⊕ G(2) by

an appropriate permutation of its rows and columns. In turn, G(1) will become
a permutation of a matrix of the type (1.4) with f = b−1e−ν + b0 + b1eα and
bj =

(⊕
k∈R1

cjk
)
⊕
(⊕

k∈R2
c′jk

)
.

In terms of the sets Rj , this theorem claims thatG is APW factorable if R1∪R2 =
∅, and is not AP factorable otherwise. This follows from Lemma 2.1, provided that
G(2) is APW factorable and, for R1 ∪R2 6= ∅, G(1) is not AP factorable. The latter
statement holds due to Corollary 1.4. It remains to prove the former. We will do
this by showing that each direct summand of G(2) is APW factorable. There are
five types of these summands:

(i) diagonal blocks
[
eλ 0
0 e−λ

]
,

and matrices (1.4) with f given by (1.5), pairwise commuting c±1, c0 (slightly
abusing the notation, we again denote their size by m), singleton spectra σ(cj) =
{ξj} (j = ±1, 0) for which

(ii) |ξν1 ξα−1| 6= |ξ0|λ,
(iii) ξ0 = 0, exactly one of ξ±1 differs from zero and (at least) one of the blocks

c±1, c0 is unicellular,
(iv) ξ0 = 0, exactly one of ξ±1 differs from zero, and m ≤ 4,
(v) ξ0 = ξ1 = ξ−1 = 0 and m ≤ 3.

Indeed, the blocks Gk with k ∈ R1 have no impact on G(2), k ∈ R2 generate only
summands of type (i), k ∈ R3 yield summands of type (i) and (ii) or (iii), and
k ∈ R4 produce summands of types (ii)-(v).

The summands of type (i) are trivially APW factorable (with partial AP indices
±λ). The summands of type (ii) are APW factorable (with zero partial AP indices)
according to Theorem 1.3. It remains to consider matrices (1.4) of types (iii)-(v).

In cases (iii) and (iv) we may without loss of generality suppose that ξ1 = 0,
ξ−1 6= 0; otherwise, Gf∗ can be considered instead of Gf . If in addition, c0 = 0 or
c1 = 0, then f is a binomial and the corresponding matrix (1.4) is APW factorable
due to Theorem 1.2. This happens, in particular, if m = 1.

If all three coefficients of f differ from zero, we consider the matrix (2.4). It
can happen that cs+2

0 = 0, in which case the resulting block (2.5) is a binomial.
Applying Theorem 1.2 and Lemma 2.2, we conclude that (2.4), and therefore (1.4),
are APW factorable. If cs+2

0 6= 0, we consider cases (iii) and (iv) separately.
(iii) The matrices cj have an upper triangular Toeplitz structure which is inher-

ited by the coefficients c(1)
j of (2.5). Hence,

m > rank c(1)
0 = rank c1

and

m > rank c(1)
−1 = rank cs+1

0 > rank c(1)
1 = rank cs+2

0 > 0.

Let q = max{rank c(1)
0 , rank c(1)

−1}, p = m − q. Then both p and q are strictly
positive. By a permutation of its rows and columns, the matrix G1 can be reduced
to the form [

eνIp 0
0 e−νIp

]
⊕
[
eνIq 0
f2 e−νIq

]
,(3.2)
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where

f2 = c
(2)
−1e−ν1 + c

(2)
0 + c

(2)
1 eα1(3.3)

and the matrices c(2)
j are obtained from c

(1)
j by deleting their first p columns and

last p rows. It suffices to prove now that the second direct summand in (3.2) is
APW factorable.

If rank c(1)
0 ≥ rank c(1)

−1, this summand falls into type (ii). In the opposite case,
this is again a matrix of type (iii), but its size is strictly smaller than that of the
original matrix: q < m. By induction we now conclude that all matrices of type
(iii) are APW factorable.

(iv) The case of unicellular c0 is covered by (iii). Since m ≤ 4 and cs+2
0 6= 0, the

only remaining case is s = 0, m = 4 and c0 consisting of one 3 × 3 and one 1 × 1
Jordan cell. The same Jordan structure is possessed by the matrix c−1

−1c0. Without
loss of generality we may suppose that in (2.5)

c
(1)
−1 = c−1

−1c0 =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .(3.4)

Then

c
(1)
1 = −(c−1

−1c0)2 =


0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
The matrix c(1)

0 = c−1
−1c1 is nilpotent and commutes with (3.4). Thus,

c
(1)
0 =


0 z u b
0 0 z 0
0 0 0 0
0 0 a 0

 .
If a = b = 0, then the matrix G1 can be split into a direct sum of

[
eνI2 0

0 e−νI2

]
and G2 =

[
eνI2 0
f2 e−νI2

]
, where f2 is given by (3.3) with

c
(2)
−1 = I2, c

(2)
0 =

[
z u
0 z

]
, c

(2)
1 =

[
0 −1
0 0

]
.

The matrix G2 is of type (ii) or (iii) (depending on whether or not z is zero), and
therefore APW factorable. Of course, G1 is APW factorable together with G2.

If a or b differs from zero, represent G1 as a direct sum of diag[eν , e−ν ] with

G3 =
[
eνI3 0
f3 e−νI3

]
, where f3 = c

(3)
−1e−ν1 + c

(3)
0 + c

(3)
1 eα1 and

c
(3)
−1 =

1 0 0
0 1 0
0 0 0

 , c(3)
0 =

z u b
0 z 0
0 a 0

 , c(3)
1 =

0 −1 0
0 0 0
0 0 0

 .
The explicit APW factorization of G3 is shown in Appendix A of the supplement.
Hence, all matrices of type (iv) are APW factorable.
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Finally, consider the remaining type (v). If m ≤ 2, then each matrix cj either is
unicellular or equals zero. In both cases, an APW factorization exists. Therefore,
we may suppose that m = 3. Excluding another trivial case c0 = 0 (in which f is a
binomial), we are left with the only possible Jordan structure of c0: one 2× 2 and
one 1× 1 block. Then, without loss of generality,

c0 =

0 1 0
0 0 0
0 0 0

 .
The matrices c±1 commute with c0 and are nilpotent. Therefore,

c±1 =

0 y± x±
0 0 0
0 z± 0

 .
The matrix G splits into a direct sum of diag[eλ, e−λ] and G1 =

[
eλI2 0
f1 e−λI2

]
,

where f1 = c
(1)
−1e−ν + c

(1)
0 + c

(1)
1 eα,

c
(1)
0 =

[
0 1
0 0

]
, c

(1)
±1 =

[
x± y±
0 z±

]
.

From commutativity of c1 with c−1 it follows that x+z− = x−z+; however, later on
we will encounter a factorization problem for matrices G1 with c

(1)
±1 not satisfying

this requirement. Therefore, we do not impose the condition x+z− = x−z+ in our
consideration.

The case x+ = x− = z+ = z− = 0 is excluded because otherwise the triple
{c−1, c0, c1} would be reducible. The cases x+z+ 6= 0 and x−z− 6= 0 are covered by
Corollary 2.5. In all the remaining cases an APW factorization of G1 also exists; it
is constructed explicitly in Appendix B of the supplement. Hence, matrices G of
type (v) are also APW factorable.

As an application of Theorem 3.1, consider a difference equation

c−1y(t− ν) + c0y(t) + c1y(t+ α) = g(t) a.e. on (0, λ),(3.5)

where g is a given vector function in Lp(0, λ), y is an unknown vector function in
Lp(R) with supp y ⊂ [0, λ].

According to standard terminology, we say that (3.5) is normally solvable (in
Lp) if the set of vector functions g for which (3.5) has a solution is closed.

Theorem 3.2. In (3.5) let α+ ν = λ, let α
ν (> 0) be irrational, and let the coeffi-

cients cj ∈ Cm×m satisfy the conditions of Theorem 3.1. Then the equation (3.5)
is normally solvable if and only if, in the notation of Theorem 3.1, condition (3.1)
fails for every k.

This result does not depend on p ∈ (1,∞).

Proof. As follows from [7, Section 4.1], equation (3.5) is normally solvable if and
only if the Wiener-Hopf operator WG, the symbol G of which is given by (1.4),
(1.5), has closed range in Lp(0,∞).

If condition (3.1) fails for all k, then the matrix function G is APW factorable
due to Theorem 3.1. Hence, WG has a generalized inverse, and therefore its range
is closed.
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To prove the converse statement, consider first a particular case when in (1.5)
each matrix cj has a singleton spectrum {ξj}, and

|ξν1 ξα−1| = |ξ0|λ 6= 0.

According to Theorem 3.1, the matrix function G in this case is not AP factorable.
If m = 1, the homogeneous equation (3.5) takes the form

y(t) =

{
− ξ−1

ξ0
y(t− ν) if ν < t < λ,

− ξ1ξ0 y(t+ α) if 0 < t < ν,

and has at most one linearly independent solution (see, for example, [4]).
For m > 1, a similarity can be used to put the cj simultaneously in a triangular

form, with ξj on the diagonal. Therefore, the number of linearly independent
solutions of the respective homogeneous equation (3.5) is at most m. Suppose that
this equation is normally solvable. Then the corresponding Wiener-Hopf operator
WG has a closed range and a finite dimensional kernel; in other words, it is n-normal.
This property, as well as the index indWG of the operator WG (the difference
between the dimension of its kernel and the codimension of its range), is preserved
under small perturbations. Consider such a small perturbation WGf′ with f ′ =
c−1e−ν + (c0 + εI) + c1eα, and 0 6= |ξ0 + ε| 6= |ξ0|. Then G′ = Gf ′ admits an APW
factorization with zero partial AP indices (Corollary 1.4), so that WG′ is invertible.
Hence, indWG = indWG′ = 0. From here it follows that codim ImWG is finite
together with dim KerWG; that is, the operator WG is Fredholm. Since G ∈ APW ,
Theorem 2.5 of [7] implies that G is APW factorable. This contradiction shows that
in fact the range ImWG of the operator WG is not closed.

Finally, consider the general case when (3.1) holds for some k. Then, as was
shown in the proof of Theorem 3.1, the corresponding matrix G can be split into a
direct sum of summands, a non-zero number of which are of the type just considered.
Hence, WG also splits into a direct sum of operators, some of which have a non-
closed range. Therefore, ImWG is not closed.

Remark. The above reasoning shows that for matrix functions G satisfying the
conditions of Theorem 3.1 the operator WG has a closed range if and only if G is
AP factorable. This is not true in general; examples of not AP factorable 2 × 2
triangular matrix functions G ∈ APW for which ImWG is closed can be found in
[10].

4. Remarks on 4× 4 cases

Theorem 3.1 covers all matrices (1.4), (1.5) with commuting cj of size m ≤ 3.
Hence, the case of reducible 4×4 triples is also covered. For irreducible {c−1, c0, c1},
each cj has a singleton spectrum, say σ(cj) = {ξj}. The cases when at least one of
the ξj differs from zero or cj is unicellular also fall into the setting of Theorem 3.1.

This leaves us with the situation of an irreducible triple of 4×4 nilpotent matrices
cj (j = 0,±1), none of which is unicellular. We may suppose in addition that none of
them is diagonalizable (that is, has only 1×1 Jordan cells). Indeed, a diagonalizable
nilpotent matrix equals zero, and the corresponding G is then APW factorable due
to Theorem 1.2. There remain three possible Jordan structures: two 2 × 2 cells,
one 2× 2 and two 1× 1 cells, and one 3× 3 and one 1× 1 cells.

The following example demonstrates why the case of two 2 × 2 Jordan cells is
hard to handle.
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Example. Let cj =
[
0 c

(0)
j

0 0

]
, where the c(0)

j are arbitrary (not necessarily com-

muting) non-singular 2× 2 matrices, j = ±1, 0. Then G can be split into a direct

sum of
[
eλI2 0

0 e−λI2

]
and G0 =

[
eλI2 0

c
(0)
−1e−ν + c

(0)
0 + c

(0)
1 eα e−λI2

]
. According to

Lemma 2.1, the matrices G and G0 are AP factorable only simultaneously. Hence,
the AP factorization problem for G is reduced to the corresponding problem for
matrices of the form (1.4) with non-commuting coefficients of f . Since the latter
problem is still open, it is not surprising that a complete description of the AP
factorability for matrices (1.4), (1.5) with commuting 4 × 4 coefficients cj is also
missing.

We will now discuss the two remaining possibilities for the Jordan structure of
c0. First, let c0 consist of one 2 × 2 and two 1 × 1 Jordan cells. Without loss of
generality, c0 itself is in a Jordan form:

c0 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .(4.1)

From the commutativity of c±1 with c0 and their nilpotency it follows that

c±1 =


0 a± b± d±
0 0 0 0
0 f± h± l±
0 g± j± k±

 ,
where A± =

[
h± l±
j± k±

]
are themselves nilpotent.

We may also use a similarity to reduce A+ to its Jordan canonical form without
disturbing c0 and the structure of A−. Thus, h+ = k+ = j+ = 0 and l+ = 0 or 1.

If l+ = 1, then commutativity of c1 with c−1 implies that h− = k− = j− = 0. If
l+ = 0 (that is, A+ = 0), then we can use a similarity to reduce A− to its Jordan
canonical form without changing c0 and A+. Hence, in any case it may be supposed
that h± = k± = j± = 0, that is,

c±1 =


0 a± b± d±
0 0 0 0
0 f± 0 l±
0 g± 0 0

 .(4.2)

Also, from commutativity of c1 with c−1 (which is preserved under the similarities
applied above),

l+g− = l−g+, l+b− = l−b+, b+f− + d+g− = b−f+ + d−g+.(4.3)

Theorem 4.1. Let G be given by (1.4), (1.5) with c0, c±1 as in (4.1) and (4.2),
respectively, satisfying (4.3) and forming an irreducible triple {c−1, c0, c1}. Then G
is not AP factorable if

b+ = b− = g+ = g− = 0, |Dα
−D

ν
+| = |lν+lα−| 6= 0,
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where

D± = det
[
a± d±
f± l±

]
= a±l± − d±f±,

and is APW factorable otherwise.

Proof. We need to show that G is APW factorable if

i) at least one of the numbers b±, d± differs from zero, or

ii) b+ = b− = g+ = g− = l+l−D+D− = 0

and that in the case

iii) b+ = b− = g+ = g− = 0, l±D± 6= 0

it is AP (APW ) factorable if and only if

|Dα
−D

ν
+| 6= |lν+lα−|.(4.4)

In case i), rewrite G as a direct sum of diag[eλ, e−λ] and another matrix of the
form (1.4), with m = 3 and

c±1 =

a± b± d±
f± 0 l±
g± 0 0

 , c0 =

1 0 0
0 0 0
0 0 0

 .
If c−1 is invertible, that is, b−g−l− 6= 0, then Lemma 2.2 can be used. A direct
computation shows that

c−1
−1c0 =

 0 0 0
1
b−

0 0
0 0 0

 ,
and therefore (c−1

−1c0)2 = 0. Hence, f1 in (2.4) is at most a binomial, and the matrix
G1 is APW factorable due to Theorem 1.2. The original matrix G is then also APW
factorable.

Using (2.8) and appropriate transpositions of rows and columns, we can cover
the case of invertible c1, that is, b+g+l+ 6= 0. It remains to construct an APW
factorization in the cases when, in addition to (4.3),

b+g+l+ = b−g−l− = 0.(4.5)

This is done in Appendix C.

In cases ii) and iii), we represent G as a direct sum of
[
eλI2 0

0 e−λI2

]
and another

matrix G1 of the form (1.4), (1.5) with m = 2 and

c
(1)
±1 =

[
a± d±
f± l±

]
, c

(1)
0 =

[
1 0
0 0

]
.

If l+ = 0 and d+f+ 6= 0, then the matrix G1 is APW factorable due to Corol-
lary 2.5. The same reasoning applies if l− = 0, d−f− 6= 0. The cases l+ = l− =
d+f+ = d−f− = 0 when not all of the four entries d±, f± equal zero are covered by
Appendix B in the supplement. Observe that the case d± = f± = 0 is excluded due
to the irreducibility of the original triple {c−1, c0, c1} given by (4.1), (4.2). Hence,
the situation when l+ = l− = 0 is covered completely.

In all other cases (when at least one of l+, l− differs from zero) we may use the
symmetry (2.8) to suppose without loss of generality that, say, l− 6= 0. An obvious
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similarity performed on the original 4×4 matrices c±1 (and not changing c0) allows
us to suppose in addition that d− = f− = 0. This similarity may, of course, change
the values of a± and d+, f+; however, det c(1)

±1 remain the same, so that the new
value of a− is D−/l−. To simplify the notation, we redenote D+ by D.

If l+ = 0, then d+, f+ do not change under the above mentioned similarity. The
only situation left uncovered by previous considerations is the case in which exactly
one of d+, f+ differs from zero.

In case ii), we are left with only two possibilities: 1) l− 6= 0, l+ = d− = f− = 0,
exactly one of the entries d+, f+ differs from zero, and 2) l+l− 6= 0, d− = f− = 0,
a−D = 0. Appendix D in the supplement shows that the corresponding matrix G1

(and therefore G) is APW factorable.
In case iii), the additional condition d− = f− = 0 means that a−(= D−/l−) 6= 0,

and (4.4) can be rewritten as

|aα−Dν | 6= |lν+|.(4.6)

A straightforward calculation shows that G1 = X+G
′X−, where

X+ =


1 d+l−eλ 0 0
− f+
l+

a−l+eλ − l−(eν + a−) −eν f+eν
l+

0 d+(a−l+ + a+l−)eα −d+ a+

0 (a−l2+ + d+f+l−)eα − l−l+ −l+ f+


is invertible in AP+

W ,

X− =


1 − d+l−

a−l+
0 − d+e−α

a−l+

0 1
a−l+

0 e−α
a−l+l−

f+(1+a−e−ν)
D −a+l−(1+a−e−ν)

a−D
f+e−λ
D

1
l−
− a+(a−e−λ+e−α)

a−D

0 0 l+
D 0

 .
is invertible in AP−W , and

G′ =


eλ 0 0 0
0 1 0 0
0 0 1 0

a−l+e−ν + l+ +Deα 0 0 e−λ


can be split into a direct sum of I2 with

G2 =
[

eλ 0
a−l+e−ν + l+ +Deα e−λ

]
.

Of course, G1 is AP (APW ) factorable only simultaneously with G′, and in turn,
G′ has the same factorability properties as G2. The latter matrix satisfies the
conditions of Corollary 1.4 with m = 1. In the notation of this statement, ξ1,k = D,
ξ0k = l+ and ξ−1,k = a−l+ with the only value of k (=1), so that condition (1.7),
necessary and sufficient for an AP (APW ) factorization to exist, is equivalent to
(4.6).

Finally, let c0 consist of one 3× 3 and one 1× 1 Jordan cells

c0 =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
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Then the only possible form of c±1 is

c±1 =


0 d± f± b±
0 0 d± 0
0 0 0 0
0 0 a± 0

 ,
where

a+b− = a−b+.(4.7)

The case a+ = a− = b+ = b− = 0 is excluded if the triple {c−1, c0, c1} is irreducible.
Splitting G into a direct sum of diag[eλ, e−λ] and another matrix of the form (1.4),
we may suppose that m = 3 and

c±1 =

d± f± b±
0 d± 0
0 a± 0

 , c0 =

1 0 0
0 1 0
0 0 0

 .
In the case when all four of the coefficients a±, b± are different from zero, an
APW factorization exists and can be explicitly constructed (see Appendix E in the
supplement). Due to the commutativity condition (4.7), the number of non-zero
entries among a±, b± cannot equal one. However, there remain cases of exactly
two or three non-zero numbers a±, b±, and in these cases the AP factorability of
the corresponding matrices G is still unknown.
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