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Abstract

Estimating the Error in Coupled-Cluster Calculations of

Molecular Ground States

by Michael Rust

May 2001

In non-relativistic quantum mechanics, stationary states of molecules and atoms

are described by eigenvectors of the Hamiltonian operator. For one-electron sys-

tems, such as the hydrogen atom, the solution of the eigenvalue problem (Schrödinger’s

equation) is straightforward, and the results show excellent agreement with exper-

iment. Despite this success, the multi-electron problem corresponding to virtually

every system of interest in chemistry has resisted attempts at exact solution.

Perhaps the most popular method for obtaining approximate, yet very accurate

results for the ground states of molecules is the coupled-cluster approximation.

Coupled-cluster methods move beyond the simple, average-field Hartree-Fock ap-

proximation by including the effects of excited configurations generated in a size-

consistent manner. In this paper, the coupled-cluster approximation is developed

from first principles. Diagrammatic methods are introduced which permit the

rapid calculation of matrix elements appearing in the coupled-cluster equations,

along with a systematic approach for unambiguously determining all necessary

diagrams. A simple error-bound is obtained for the ground state energy by consid-

ering the coupled-cluster equations as entries in the first column of a matrix whose

eigenvalues are the exact eigenvalues of the Hamiltonian. In addition, a strategy is

considered for treating the error in the ground state energy perturbatively.
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Chapter 1

Introduction

The object of this work is to study quantum mechanical descriptions of molecules.

It is worthwhile to first give an overview of quantum mechanics. In quantum me-

chanics, physical systems are described by vectors in a complete vector space over

C with an inner product. The details of the vector space depend on the system

under consideration. For molecular systems, the space will generally be infinite-

dimensional. As infinite-dimensional vector spaces are not amenable to computa-

tional work, we will typically deal with finite-dimensional subspaces.

In accordance with the probabilistic interpretation of the state vector, it is addi-

tionally required that the state vectors are normalized. To every physically observ-

able quantity there corresponds a Hermitian operator which maps the vector space

into itself. The spectrum of the operator corresponds to the values of the observ-

able which may be measured. In particular, suppose X is a self-adjoint operator

corresponding to the observable x. If χ is an eigenvector of X with associated

eigenvalue λ and ψ is an arbitrary state vector, then the probability of measuring x

for the system described by ψ and obtaining the result λ is given by |(χ, ψ)|2.

1.1 Dirac Notation

In connection with these ideas, it is useful to introduce a notation due to Dirac. In

this scheme, elements of the vector space are referred to as kets and are enclosed in

the symbol | 〉. Elements of the dual space are referred to as bras and are enclosed
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in the symbol 〈 |. The reasons for this slightly peculiar terminology are that the

action of the dual space on the space itself may be denoted by simple adjacency.

That is, the bra is next to the ket forming a bra-ket or “bracket”, which is reminiscent

of the standard notation for the inner product.

The principal advantages of Dirac notation come from the importance of Her-

mitian operators in quantum mechanics. In the usual notation, an inner product

involving a self-adjoint operator X may be written (φ,Xψ) = (Xφ,ψ). The fact

that it is immaterial whether a self-adjoint operator acts on the dual space or on the

space itself is made transparent in Dirac’s scheme where the inner product would

be written as 〈φ|X|ψ〉 and it is understood that X may act either “to the right” on

the ket vector or “to the left” on the bra vector.

1.2 The Schrödinger Equation

Because of the importance of the energy in determining the dynamics of the sys-

tem, the fundamental problem in quantum mechanics is determining the eigen-

vectors and eigenvalues of the Hamiltonian, H , the operator corresponding to the

energy, E. The energy eigenvalue equation:

H|ψ〉 = E|ψ〉

is also sometimes called the time-independent Schrödinger equation.

The form of the Hamiltonian in position space for a single particle is familiar to

students of quantum mechanics as:

H = −
~

2

2m
∇2 + V

where m is the mass of the particle, V is an operator corresponding to the classical

potential energy, and ~ is Planck’s constant over 2π.

For the hydrogen atom in SI units, the Hamiltonian takes the form:

H = −
~

2

2me

∇2 −
e2

4πε0r
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where e is the electron charge, ε0 is the permittivity of free space, and me is the

mass of the electron1. In dealing with electron structure problems it is useful to

work in atomic units which non-dimensionalize the above Hamiltonian. To do so,

we express length in units of Bohrs where one Bohr is equal to the Bohr radius,
4πε0~

2

mee2 in SI. Energy is expressed in Hartrees where one Hartree is given by e4me

(4πε0)2~2 .

In atomic units, Schrödinger’s equation takes the form:

H|ψ〉 =

(

−
1

2
∇2 −

1

r

)

|ψ〉 = E|ψ〉

1.3 The Hartree-Fock Approximation

Let us now consider the general problem of quantum chemistry, the determination

of the quantum mechanical description of a multi-electron molecule. Suppose we

are given n electrons, and N nuclei. Let {Zi} be a set of natural numbers that

specify the electric charge of each of the N nuclei, and let {Mi} be a set of reals that

specify that mass of each nucleus. We can naturally split the full Hamiltonian for

this system into nuclear and electronic pieces as

H = Hnuc +Helec

where, in SI units,

Hnuc = −
N
∑

i

~
2

2Mi

∇2
i +

∑

i<j

ZiZje
2

4πε0

1

|Ri −Rj|

Helec = −

n
∑

i

~
2

2me

∇2
i −

n
∑

i

N
∑

j

Zje
2

4πε0

1

|ri −Rj|
+
∑

i<j

e2

4πε0

1

|ri − rj|

1.3.1 The Born-Oppenheimer Approximation

As the nuclei are at least three orders of magnitude more massive than the elec-

trons, to an excellent approximation it is possible to separate the electronic motion

1In reality, me is the reduced mass of the electron-proton system, but this distinction is of little
importance for us since the reduced mass approach is not useful for multi-electron systems
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from the nuclear motion. Because of this mass difference, the period of motion of

the electrons is much shorter than that of the nuclei[15], and we may regard the

electrons as moving much faster than the nuclei so that the nuclear potential ap-

pears fixed to the electrons. Treating the nuclei as fixed from the point of view

of the electrons is known as the Born-Oppenheimer approximation and is made

quantitatively precise elsewhere [11].

Since within the Born-Oppenheimer approximation Hnuc does not depend on

the electronic coordinates, we see that an eigenvector |ψ〉 of Helec is the electronic

part of an eigenvector of the full Hamiltonian with an eigenvalue different only by

a constant corresponding to the nuclear energy for the given geometry. Thus, to an

excellent approximation, the problem has been reduced to solving for the electronic

eigenvectors which depend only parametrically on the nuclear coordinates.

1.3.2 The Pauli Exclusion Principle

In dealing with quantum mechanical many-body problems, it is vital to ensure that

the state vectors have the appropriate symmetry under particle exchange. As elec-

trons have spin- 1
2
, the state vector must be anti-symmetric under exchange. This

requirement is often known as the Pauli exclusion principle, and arises naturally

in a quantum field theory of the electron[8].

A straightforward method for the enforcement of the Pauli principle is the use

of so-called Slater determinants. Given n single-particle states |ψ1〉, . . . , |ψn〉 the

n-particle state

|Ψ〉 =

√

1

n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|ψ1(1)〉 |ψ2(1)〉 · · · |ψn(1)〉

|ψ1(2)〉 |ψ2(2)〉 · · · |ψn(2)〉
...

... . . . ...

|ψ1(n)〉 |ψ2(n)〉 · · · |ψn(n)〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

has the appropriate normalization and anti-symmetry (the arguments denote par-
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ticle labels).

For convenience, the Slater determinant formed from |ψ1〉, . . . , |ψn〉 is some-

times denoted simply |ψ1ψ2 . . . ψn〉. This convention will be used throughout this

paper.

1.3.3 Independent-Particle States

Notice that if the electron-electron term
∑n

i>j
1

|ri−rj |
could be neglected in Helec,

the electronic eigenvalue problem would separate simply into pieces depending

the coordinates of only single electrons. Since each electron would in this case

move independently of all the others, eigenvectors could be formed as an anti-

symmetrized direct product of single-particle states, |Ψ〉 = |ψ1ψ2 · · ·ψn〉. In the

language of partial differential equations, the Schrödinger equation would be sep-

arable. For this reason, such a state |Ψ〉 is referred to as an independent-particle state.

Though the eigenvectors of the Hamiltonian are not, in general, independent

particle states, these states have a particularly simple form and a transparent phys-

ical interpretation. Furthermore, the similarity of the structure of the periodic ta-

ble to the hydrogenic orbitals should convince us that independent-particle states

should be good approximations for at least atomic structure. It is natural, therefore,

to seek the “best” independent-particle approximation to the true ground state.

This notion leads immediately to the Hartree-Fock approximation.

1.3.4 Sketch of Derivation of Hartree-Fock Equations

It is outside of the focus of this work to present the derivation of the Hartree-Fock

equations in detail. For a complete discussion, see a reference text such as Szabo &

Ostlund[12]. To make the notion of “best” mentioned above quantitatively precise,
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note that the ground state energy satisfies the variational principle 2

〈Φ|H|Φ〉 ≤ Eground ∀|Φ〉

The Hartree-Fock equations follow from minimizing the expectation value of the

energy of an independent-particle state subject to the constraint that the single-

particle states are orthonormal. The single-particle states that are incorporated in

the n-electron independent-particle state are sometimes called orbitals. The stan-

dard picture of electronic structure presented in introductory chemistry courses

with electrons occupying orbitals is in reality an inexact model corresponding to

the Hartree-Fock approximation.

1.4 Unrestricted Hartree-Fock Equations

It is useful to display the Hartree-Fock equations obtained from the derivation only

because they provide useful clues as to the origin of the weaknesses of the approxi-

mation. The following are known as the unrestricted Hartree-Fock equations as no

steps have been taken to ensure that the ground state is an appropriate eigenstate

of total spin[12].

Let {|χi〉} be a set of single-electron states and denote the coordinates of the n

electrons by 1, 2, . . . , n. Denote the position-space representation of electron j in

orbital {|χi〉} by χi(j). The Hartree-Fock orbitals must satisfy[12]
(

−
1

2
∇2

1 −
N
∑

i

Zi

|r1i|

)

|χa(1)〉 +
∑

b6=a

[∫

d~r2 |χb(2)|
2 1

|r12|

]

|χa(1)〉

−
∑

b6=a

[

〈χb|χa〉spin

∫

d~r2 χb(2)
?χa(2)

1

|r12|

]

|χb(1)〉 = εa|χa〉

where the “spin” subscript denotes that the inner-product is to be taken over the

spin components of the state vectors.

2This can easily be shown by expanding an arbitrary state in the complete basis of eigenstates
of H .



7

It is convenient to define the Coulomb operator , Jb(1), as[12]

Jb(1) =

∫

d~r2 |χb(2)|
2 1

|r12|

and the exchange operator, Kb(1) by its action on a state |χa(1)〉 as

Kb(1)|χa(1)〉 = 〈χb|χa〉spin

[∫

d~r2 χb(2)
?χa(2)

1

|r12|

]

|χb(1)〉

and the one-electron operator, h(1) as

h(1) = −
1

2
∇2

1 −

N
∑

i

Zi

|r1i|

so that the unrestricted Hartree-Fock equations assume the simple form of an eigen-

value problem:
[

h(1) +
∑

b6=a

Jb(1) −
∑

b6=a

Kb(1)

]

|χa(1)〉 = εa|χa(1)〉

Although this has the formal appearance of an ordinary eigenvalue problem, it

is important to note that it is not since the operators J and K depend implicitly

on the set of orbitals {|χi〉} we wish to find. In practice, the equations must be

projected onto a basis set yielding matrix representations for the above operators.

The equation is then iterated until numerical convergence is achieved. The choice

of basis set is a subtle and complex issue that will not be discussed here. For details

see Szabo & Ostlund[12].

The Hartree-Fock ground state, hereafter denoted by |Φ0〉, is obtained by filling

the n lowest-energy orbitals (that is, |Φ0〉 = |χ1χ2 · · ·χn〉).

1.4.1 Correlation Energy

We are now in a position to assign physical interpretations to the terms in the

Hartree-Fock equation. The h(1) operator is unchanged from the true Hamiltonian
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and is simply the kinetic energy of the electrons and the electron-nucleus interac-

tion. The K operator results from the requirement that the state vector be antisym-

metric under particle exchange. Note that if two orbitals have opposing spins the

K operator does not contribute while orbitals with identical spins feel a repulsive

potential based on their spatial overlap, consistent with the Pauli exclusion prin-

ciple. K has no classical interpretation. The J operator can be simply interpreted

as the average Coulomb interaction between the electrons. In the Hartree-Fock ap-

proximation, each electron feels an average potential resulting from the electrons

in the other n− 1 orbitals. For this reason, the Hartree-Fock approximation is said

to be an average-field approximation.

Recall that the Hartree-Fock ground state was constructed to be the optimum

independent-particle state vector in a variational sense. Of course, the true ground

state is not an independent-particle state. In the language of quantum mechan-

ics, we may say that the true eigenvectors are entangled states. A semi-classical

argument can give us a clue as to the nature of the error made in insisting on an

independent-particle ground state. If we imagine that the electrons possess defi-

nite trajectories, then it is clear that in the true ground state two electrons cannot

spend much time on average near each other due to their Coulomb repulsion. In

the Hartree-Fock Hamiltonian, however, the electrons do not experience an instan-

taneous Coulomb interaction with each other, but rather an average field obtained

by averaging out the trajectories of the other electrons. Since there is nothing in the

Hartree-Fock theory that prevents two electrons from being found near each other

in space due to their Coulomb interaction, it is sometimes said that the electron

trajectories are not correlated and that the Hartree-Fock ground state lacks cor-

relation3. For this reason, the difference between the energy of the Hartree-Fock

3This is not strictly true since the non-local K operator does correlate the motions of electrons
with like spins due to the requirements of the Pauli exclusion principle. It is perhaps more accu-
rate to say that the Hartree-Fock ground state lacks Coulombic correlation.
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ground state and the exact (within the basis set) energy of the true ground state is

known as the correlation energy.

Ecorr = Eexact − 〈Φ0|H|Φ0〉

1.4.2 Performance of the Hartree-Fock Approximation

How significant are the effects of electron correlation? It is generally very difficult

to answer this question. In many condensed-matter systems, such as supercon-

ductors, correlation effects are so important as to make the physics fundamentally

different from an average-field description.

In an absolute sense, the Hartree-Fock approximation performs very well on

molecular systems. Typical calculations yield the total energy of a molecule to

better than 5% accuracy. While this kind of performance may bolster our faith

in the correctness of quantum mechanics, it is insufficient to obtain an accurate

description of chemical processes. This is because the total energy of a molecule

is irrelevant in calculating chemical dynamics[12]. It is instead the differences in

energy between different species or geometries that determine the chemistry.

Unfortunately, the small relative error in Hartree-Fock calculations of ground

state energies is typically on the order of electron Volts, which is characteristic

strength of a chemical bond. Because of this, there are cases where the Hartree-

Fock description is qualitatively incorrect, despite its high accuracy relative to the

total energy. An example of qualitatively incorrect chemistry is the incorrect order-

ing of the N2 ionization potentials given by the Hartree-Fock approximation[12].

Since the error committed by the Hartree-Fock approximation is significant for

important problems in quantum chemistry, a number of techniques have been de-

veloped for partially recovering the correlation energy. The rest of this work will

be devoted to these so-called correlated methods.



Chapter 2

Configuration Interaction (CI)

Although the purpose of this work is to study coupled-cluster methods, it is

useful to first study a less complex approach to electron correlation known as con-

figuration interaction. Although the meaning of the term may not be initially trans-

parent, configuration interaction (hereafter CI) is a conceptually very simple ap-

proach to electron correlation. The CI strategy is to diagonalize the Hamiltonian in

a limited subspace that includes so-called “excited configurations”. This statement

will be made more precise below.

2.1 The Hartree-Fock Basis

Recall that in forming the Hartree-Fock ground state, we took |Φ0〉 to be an an-

tisymmetrized product of the n Hartree-Fock orbitals with lowest energy. As a

self-adjoint operator, however, the Hartree-Fock operator possesses a complete set

of eigenvectors. We can therefore express corrections to the Hartree-Fock ground

state in terms of states formed using higher energy orbitals from the Hartree-Fock

basis.

It is worthwhile to introduce some more notation and terminology. A Slater

determinant formed from a given set of n Hartree-Fock orbitals is called a con-

figuration. The Hartree-Fock ground state |Φ0〉 is sometimes called the reference

configuration1. For simplicity it is useful to label the n orbitals with the Roman

1Some of the utility of this language is that it allows one to generalize correlated methods so
that they refer to an arbitrary set of single-particle orbitals, rather than the Hartree-Fock basis in
particular.
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letters i, j, . . . and higher energy orbitals with a, b, . . ., so that the ground state is

|Φ0〉 = |ij . . .〉, ignoring the fact that for any calculation of interest the first part of

the alphabet runs into the second2.

Configurations that differ from the reference |Φ0〉 are known as excited config-

urations. These configurations are classified by the number of orbitals in which

they differ from the reference state. Thus, a configuration with differs by only

one orbital is said to be singly-excited, a configuration which differs by two or-

bitals is said to be doubly-excited, etc. . . The terminology of excited configurations

is somewhat unfortunate as it immediately suggests the physical excited states of

molecules which are the true eigenvectors of the Hamiltonian corresponding to

higher energies. The concept of “excited” configuration is quite distinct from that

of the true excited states3.

Finally, excited configurations are often indicated by simply listing the orbitals

that are newly occupied in the excited configuration above those which are freshly

unoccupied inside of the ket symbol. Thus a configuration with virtual orbital a

filled in favor of orbital i is denoted |ai 〉.

2.2 The Method of Second Quantization

We now present an operator formalism known as second quantization4 capable of

handling the requirements of many-body quantum mechanics in a more conve-

nient way. The true utility of this method will become apparent in the next chapter

in the discussion of coupled-cluster theory.

2The orbitals which are not occupied in the Hartree-Fock ground state are sometimes called
virtual orbitals[12]

3Though in some cases excited configurations can provide rough approximations to the excited
state vectors.

4“First quantization” is simply the replacement p → ~

i
∇ of wave mechanics[8].
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2.2.1 Creation and Annihilation Operators

As discussed previously, the Pauli principle requires that a quantum mechanical

state vector for a many-body electron system be antisymmetric under exchange.

Our goal is to recast the theory in terms of operators whose commutation proper-

ties naturally ensure antisymmetry. To do this, we introduce an operator x† whose

action on the vacuum state | 〉 is to create an electron in the orbital labelled by x.

That is, x†| 〉 = |x〉. It can be verified that the action of the adjoint operator x is to

annihilate an electron in the orbital labelled by x5.

Define the anticommutator of operators A and B by {A,B} = AB + BA. It

may be shown that {i, j†} = δij and {i, j} = {i†, j†} = 0. These anticommutation

relations encapsulate the requirement that electron state vectors be antisymmetric

under exchange since

|ab〉 = b†a†| 〉 = −a†b†| 〉 = −|ba〉

a†a†| 〉 = −a†a†| 〉 = 0

2.2.2 Schrödinger’s Equation in Second-Quantized Form

In order to express the theory entirely in second quantization, we must express the

Hamiltonian in terms of the creation and annihilation operators. As can be verified

by comparing with the projections of the ordinary form of the Hamiltonian, the

second-quantized form of the H is[3]

H =
∑

pq

〈p|h(1)|q〉p†q +
1

4

∑

pqrs

(

〈pq|
1

|r1 − r2|
|rs〉 − 〈pq|

1

|r1 − r2|
|sr〉

)

p†q†sr

5This presentation is casual. It is not a priori obvious that the operators should have these proper-
ties. The formalism is motivated by the quantum mechanical treatment of the harmonic oscillator.
For more details, see Szabo & Ostlund[12] or, for a rigorous discussion, Sakurai[8] or Hoffmann
& Schaeffer[4].
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Where h(1) is the one-electron piece of the Hamiltonian as previously defined

and the sums are over the entire single-particle basis.

It is customary to denote 〈p|h(1)|q〉, the so-called one-electron integral, by fpq

and, in an unfortunate choice of notation, the antisymmetrized two-electron integral

appearing in the second term by 〈pq||rs〉. After performing a Hartree-Fock calcu-

lation it is a straightforward matter to determine the values of these expressions

using the Slater-Condon rules[12]. The second-quantized Hamiltonian is typically

written using this notation as

H =
∑

pq

fpq p
†q +

1

4

∑

pqrs

〈pq||rs〉p†q†sr

2.3 Configuration Interaction

Since the Hartree-Fock basis spans the space of single-particle states, the set of all

excited configurations spans the full n-electron space6. Clearly, if we could obtain

a diagonal representation ofH in this basis, this would yield the exact eigenvectors

and eigenvalues to within the accuracy of the underlying calculation basis. Simple

combinatorial reasoning should convince the reader that performing this diago-

nalization is a practical impossibility for any sizable system. The exact results that

would be obtained from such a full diagonalization are often known as the full CI

results and are primarily useful as a standard for the success of inexact correlated

methods.

The lesser CI methods perform a less demanding calculation by diagonalizing

H within a subspace of excited configurations. The variants of CI are sometimes

denoted by appending letters to the end of the acronym to indicate the class of exci-

tations over which the diagonalization is performed. For example, diagonalization

of H over the space of singly and doubly excited determinants would be denoted

6More precisely, it spans the n-electron space where each one-electron subspace is the incomplete
subspace spanned by the basis set chosen at the Hartree-Fock level.
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CISD, adding triple excitations into the subspace would yield CISDT, etc. . .

2.3.1 Linear Excitation Operator

Though it is conceptually simple to think of CI in terms of diagonalizing a matrix

representation ofH , the CI procedure can be recast in the language of second quan-

tization. The advantages of taking this step may not be clear at this point, but its

utility will become apparent when we turn our attention to coupled-cluster theory

in the next chapter.

Define the excitation operator Tn, a linear operator which produces excitations

of order n from the reference state, as[3]

Tn =

(

1

n!

)2
∑

ab...,ij...

tab···
ij··· a

†b† · · · · · · ji

where the indices a, b, . . . and i, j, . . . are over virtual and occupied orbitals, respec-

tively. The factor of
(

1
n!

)2 occurs because of the multiple-counting caused by the

unrestricted summation.

Using this notion of excitation operators, we can restate the CI method in op-

erator language. For clarity of exposition, we will deal with CISD, though the

generalization to any form of CI is straightforward. Introduce the linear excitation

operator S which includes all relevant excitations for CISD as

S = I + T1 + T2

The CISD approximation amounts to writing the eigenvectors |ψ〉 as

|ψ〉 = S|Φ0〉

Schrödinger’s equation can then be written

(H − ECI)S|Φ0〉 = 0
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Diagonalizing H in the appropriate subspace amounts to projecting this equation

with excited configurations and solving for the sets of t amplitudes that appear in

the S operator. We can think of the CI approach as a “linear ansatz” for obtain-

ing the true eigenvectors from the reference state. Again, this excitation operator

formalism is not the most natural way to think about CI, but will become very

important in coupled-cluster theory.

2.4 Performance of CI

One of the principal advantages of CI is that it provides a straightforward method

for approximating excited states and excitation energies. Recall that the Hartree-

Fock equations minimize the total energy under the independent-particle approx-

imation, thus there is no obvious way to obtain good excited state descriptions7.

CIS provides a relatively inexpensive approximation to the excited states. In fact,

this is all that the inclusion of singly-excited states alone does since the matrix

elements 〈ai |H|Φ0〉 necessarily vanish. If they did not, this would violate the varia-

tional requirement of the Hartree-Fock equations8. Thus CID is the simplest level

of configuration interaction that can introduce correlation to the ground state.

Carrying out CI calculations including highly-excited configurations is very

computationally intensive because the dimension of the sub-block which must be

diagonalized grows combinatorially with the excitation level. For example, in a

calculation with n electrons and NB basis functions there are





n

2









NB − n

2





doubly-excited configurations.

7Actually, this is not entirely true. It is possible to converge the Hartree-Fock calculation to the
lowest energy state of a given symmetry using group-theoretic methods. See Tinkham[14], for
example.

8i.e. the Hartree-Fock orbitals are optimal in the sense that including other configurations that
differ by only one orbital cannot improve the ground state energy. This result is known as Bril-
louin’s theorem[12].
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For most molecules of reasonable size it is feasible to carry out calculations to

the CISD level, but not beyond. Szabo & Ostlund[12] present the results of several

illustrative calculations demonstrating the performance of CISD. As an example to

compare to the Hartree-Fock approximation, a calculation of the ionization poten-

tials of N2 in CISD correctly predicts the ordering of the first two potentials but still

shows noticeable disagreement with experiment (0.452 a.u. vs. 0.463 a.u.)9.

2.5 Size-Inconsistency

Performing CI calculations to high orders of excitation can be very computationally

expensive, but this is not the most serious objection to CI. Consider a system of n

molecules which are spatially separated to the point that they can be regarded as

non-interacting. Physically, the energy of the entire system must be simply n times

the energy one of the monomers. Any approximation which does not agree with

this fact is said to be size-inconsistent. Since the full CI result is exact, it is certainly

size-consistent. However, it turns out that any truncation of the S operator results

in a method which is not size-consistent.

To see why this is true we will consider a model system treated with CID,

though it should be immediately clear that the same argument will hold for any

flavor of CI that does not include all excitations. In general, the ground state energy

of a molecule treated with CID will be lower than the Hartree-Fock energy because

the ground state description is improved by mixing in doubly-excited configura-

tions. Denote the energy of the ground state in the CID approximation by ECID and

the improved ground state vector by |θ〉. Now consider two such molecules that

are well-separated so that they may be regarded as non-interacting. In order to

achieve a total energy 2ECID as a size-consistent theory must, we must be able to

9Calculation peformed in the 39-STO basis set, reported by B. J. Rosenberg & I. Shavitt in J. Chem.
Phys. 63:2162 (1975), cited in Szabo & Ostlund[12].
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form a total state vector that is a antisymmetrized direct product involving the CID

ground state for the single molecule system as |Θ〉 = |θ1θ2〉 (where notation is being

used rather loosely so that the subscripts denote the vector space corresponding

to the two different molecules.) Since |θ〉 includes doubly-excited configurations,

however, the product |θ1θ2〉 must include configurations that are doubly-excited on

both molecules. But this corresponds to a quadruple excitation in the system that

includes both molecules and can therefore not be included in a CID description.

Thus, truncated CI is not size-consistent. Worse, it can be shown[12] that the

correlation energy recovered by truncated CI per particle goes to zero as the num-

ber of particles goes to infinity. For treating a system consisting of large number of

subunits such as a crystal, truncated CI is nearly useless.



Chapter 3

Coupled-Cluster Methods (CC)

The focus of this work is on a set of approximate methods known as coupled-

cluster methods. Coupled-cluster (hereafter, CC) theory permits superior accuracy

in ground state calculations by explicitly correcting the principal flaw in CI, size-

inconsistency.

3.1 Ensuring Size-Consistency

In the previous chapter, we saw that the linear excitation operator S introduced

in CI failed to produce size-consistent results when truncated. We now seek an

operator S which is explicitly constructed to ensure size-consistency, regardless of

truncation.

One easy way to motivate the form of S is to consider a model system of n

non-interacting one-electron atoms. Unfortunately, this approach requires some

suspension of disbelief since the Hartree-Fock orbitals for a hydrogenic atom are

exact. Suppose that we have obtained a perverse set of orbitals from a non-Hartree

Fock calculation so that the true ground state for each atom is a linear combination

involving the virtual orbitals. In this case CIS would provide the exact ground state

for a single atom, although, as we have seen, CIS applied to the n-atom system

would not produce the true ground state.

What would be required for a size-consistent description of this model system?

Clearly, all of the physics1 is included in the T1 amplitudes for single excitations

1or “all of the chemistry”, if you prefer.
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since the atoms do not interact. However, S must contain terms which generate

higher-order excited configurations to produce the true eigenvectors of the n-atom

Hamiltonian. Denote by Sk the term in S that generates k-tuple excitations. For

simplicity, consider the properties of S2. Producing a double excitation is exactly

the same a producing two single excitations on distinct atoms since there is no

inter-atomic interaction. Thus the amplitude to produce a double excitation must

be the product of the T1 amplitudes to produce the component excitations. It is

tempting to write S2 = T 2
1 , but this is not right since it does not specify which T1

operator generates which excitation and therefore over-counts by a factor of 2. The

correct expression is

S2 =
T 2

1

2!

Identical reasoning for the general term yields

Sk =
T k

1

k!

Thus, to ensure size-consistency in this model system, S must take the form

S =
∑

k

Sk =
∑

k

T k
1

k!
= eT1

3.2 Exponential Excitation Operator

In general, systems of interest have more than one electron, so it is useful to con-

sider a generalized excitation operator eT where T =
∑

m Tm. Using this operator2,

the coupled-cluster ground state can be written in terms of the reference state as

|Ψ〉 = eT |Φ0〉

If T is not truncated, then the coupled-cluster ground state is exact and identical

with the full CI result. The advantage of coupled-cluster theory is that, as the

2Choosing this form for an excitation operator is often referred to as the “coupled-cluster
ansatz”.
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above argument demonstrates, even if T is truncated the method is still manifestly

size-consistent3.

As with CI, CC methods can be classified based on the terms they retain in T .

For example, the coupled-cluster method with T = T1 + T2 is abbreviated CCSD.

3.3 The Coupled-Cluster Equations

The Schrödinger equation in the CC approximation takes the form

(H − ECC)eT |Φ0〉 = 0

In order to obtain equations which express the unknown t amplitudes and the CC

energy in terms of one- and two-electron integrals, the Schrödinger equation is

projected with excited configurations including excitations up to the same order

as the terms retained in T . For CCSD, the case we will be concerned with, the

so-called CCSD equations can be written

〈Φ0|(H − ECC)eT |Φ0〉 = 0

〈ai |(H − ECC)eT |Φ0〉 = 0

〈ab
ij |(H − ECC)eT |Φ0〉 = 0

Unlike the CI case, it is non-trivial to evaluate operator products such as

〈

ab
ij

∣

∣ (H − ECC)eT |Φ0〉

The next chapter will be spent developing machinery for quickly performing these

calculations.

3Coupled-cluster theory is not the only size-consistent approach to electron correlation. A more
familiar approach is to introduce the correlation perturbatively with the perturbing Hamiltonian
H ′ = Hexact − HHF. The development of this perturbative expansion is known as Møller-Plesset
perturbation theory. While conceptually attractive, this approach is both computationally expen-
sive, and, more seriously, the perturbative expansion diverges for many molecular systems of
interest[10]



Chapter 4

Diagrammatics

4.1 Evaluating Matrix Elements

Fundamentally, there is nothing complicated behind the process of evaluating a

matrix element involving an string of Fermi creation and annihilation operators.

One simply applies the anticommutation relation {i, j†} = δij to move all annihila-

tion operators to the right. The resulting form of the operator string is sometimes

said to be normal-ordered[3]. The more sophisticated methods discussed below are

simply machinery for generalizing the results of this procedure of algebraic ma-

nipulation.

4.1.1 Simple Example

To see how this procedure operates, it is worth working out a detailed example of

the kind of operator product which appears in the derivation of the CCSD equa-

tions. For simplicity, the matrix element will be evaluated against the true vacuum

state |〉, although it is straightforward to extend the notion of normal-ordering to

work with a Fermi vacuum defined by the reference state |Φ0〉[3]. In such a case,

the normal-ordering would position all operators which give zero when acting on

the Fermi vacuum to the right.

We wish to evaluate

〈|tpq†u†|〉

which is similar to a term appearing in the matrix element 〈Φ0|He
T |Φ0〉. Applying



22

the anticommutation relation gives

tpq†u† = δpqtu
† − tq†pu†

= δpqδtu − δpqu
†t− tq†pu†

= δpqδtu − δpqu
†t− δtqpu

† + q†tpu†

= δpqδtu − δpqu
†t− δtqδpu + δtqu

†p+ q†tpu†

= δpqδtu − δpqu
†t− δtqδpu + δtqu

†p+ q†tδpu − q†tu†p

= δpqδtu − δpqu
†t− δtqδpu + δtqu

†p+ q†tδpu − δtuq
†p+ q†u†tp

At this point, all annihilation operators lie to the right and the operator is normal-

ordered. Evaluation against the vacuum state yields only the constant terms:

〈|tpq†u†|〉 = δpqδtu − δtqδpu

Matrix elements that involve excited states (or in our case states excited relative

to the reference) can be evaluated similarly by writing the excited states in terms

of operators acting on the vacuum, thereby extending the length of the operator

string[3]. Although this procedure is conceptually straightforward, it should be

apparent that it would be both time-consuming and error-prone for the signifi-

cantly longer operator strings involved in the derivation of the coupled-cluster

equations. To simplify this process, we turn to a result known as Wick’s theorem.

4.2 Wick’s Theorem

Notice that in the previous example the only terms that contributed were those that

arose from non-anticommutivity of creation and annihilation operators referring to

the same orbitals. With this process in mind we define the contraction between two

creation or annihilation operators P and Q, denoted by drawing an overhead line

linking P and Q, as the difference between PQ and the normal-ordering of PQ. It
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is straightforward to see from this definition that the contraction between P and

Q will vanish as expected unless Q is a creation operator and P is an annihilation

operator in which case the contraction is δpq.

Wick’s theorem[17] allows us to use this notion of contraction to more effi-

ciently evaluate operator products. According to Wick’s theorem we may deter-

mine the value of a matrix element such as 〈Φ0|ABC · · · |Φ0〉 merely by forming all

possible contractions between creation and annihilation operators in the operator

string, that is by drawing overhead lines between pairs of creation and annihilation

operators. The sign of the contraction is determined by the parity of the number of

line-crossings: an even number of crossings gives a positive contribution while an

odd number of crossings introduces a minus sign.

Since any operators left over after the contraction would cause the matrix el-

ement to vanish, we need only consider fully contracted pairings of operators (i.e.

pairings where every creation operator is contracted with an annihilation opera-

tor). Returning to the previous example, 〈|tpq†u†|〉, it is clear that there are only

two possible full contractions of the operators. Pairing p with q and t with u results

in no line-crossings, so this term contributes with a plus sign. In contrast, pairing

p with u and t with q results in a crossing and therefore a minus sign.

Therefore, by Wick’s theorem, the above matrix element is equal to δpqδtu −

δpuδtq, in agreement with the more cumbersome previous derivation that relied

on direct application of the anticommutators. Nevertheless, attempting to work

out all of the matrix elements in, for example, the appendices using only Wick’s

theorem would be a Herculean feat. It is for this reason that we must develop still

more mathematical technology to rapidly evaluate matrix elements.
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4.3 Linked Diagram Theorem

In deriving the coupled-cluster equations, we must project Schrödinger’s equa-

tion with the ground state and excited configurations to obtain algebraic equations

specifying the t excitation amplitudes. Schrödinger’s equation

HeT |Φ0〉 = EeT |Φ0〉

can be recast by multiplying on the left by e−T yielding

(e−THeT − E)|Φ0〉 = 0

According to Wick’s theorem, in order to evaluate the projections of this equation,

we must include contributions from every contraction within the string of creation

and annihilation operators appearing in such a product.

In reality the structure of the excitation operator eT ensures that a fortuitous

cancellation will occur. In particular, terms in which H does not share at least one

contraction with every factor in the excitation operator will ultimately cancel out.

left. Contracted terms for which this requirement is met are called linked. Terms

which do not satisfy the property are called unlinked1. To denote an expression

whose Wick expansion is to be done using only linked contractions, the operator is

sometimes given the subscript C2. This claim is stated succinctly in the following

Theorem 1 (Linked Diagram Theorem) Let T be an excitation operator andH a second-

quantized Hamiltonian. Then the only non-zero contributions to matrix elements of e−THeT

arise from terms in which H is contracted with each factor of T present. Thus e−THeT =

(HeT )C .

1Unlinked terms are related to size-inconsistency which is why they do not appear in the explic-
itly size-consistent coupled cluster methods. In fact, size-consistency is sometimes defined by the
exclusion of these unlinked terms[12].

2“C”, confusingly, is not the first letter of the word “linked”. This notation reflects the inconsis-
tent usage of the terms “linked” and “connected” in the literature. In this work, “linked” refers
to diagrams in which the Hamiltonian connects to every piece of the excitation operator while
“connected” refers to an excitation operator which has only one factor. Thus, T3 is a connected
triple excitation while T1T2 or T 3

1
are disconnected triple excitations.
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4.3.1 A Proof of the Linked Diagram Theorem

We must establish the claim that in every non-vanishing contribution to e−THeT ,

H contracts with each copy of the T operator present in the relevant term in the

expansion. The first step is to rewrite e−THeT in a form involving nested commu-

tators of H and T , the so-called Hausdorff expansion:

e−THeT = H + [H,T ] +
1

2!
[[H,T ], T ] +

1

3!
[[[H,T ], T ], T ] + · · ·

as can be verified by multiplying out e−THeT and gathering terms on the number

of factors of T present in each.

Having recast the transformed Hamiltonian in this form, we see that the the-

orem will be proved if each nested commutator appearing in the Hausdorff ex-

pansion can be shown to vanish when H is not contracted with every excitation

operator. The zeroth order term in the expansion, H , trivially satisfies the theorem.

The first order commutator [H,T ] is also easily seen to satisfy the the theorem since

a failure to contract between H and T implies that H and T commute and the term

vanishes identically.

To prove the claim for an arbitrary term in the Hausdorff expansion, it is useful

to label the copies of T in a general nested commutator in order to verify that H

must contract with each factor present. Departing briefly from the earlier notation3,

the factors of T will be labelled with indices 1, 2, . . . so that the third order term in

the Hausdorff expansion is written 1
3!
[[[H,T1], T2], T3].

Consider a kth order nested commutator from the Hausdorff expansion:

[[· · · [[H,T1], T2] · · · , Tk−1], Tk]

If this term is not to vanish identically then at least the inner-most commutator

[H,T1] must be non-zero, since every operator commutes with zero. This estab-

3This indexing of the T factors should not be confused with the earlier (and standard) notation
in which T = T1 + T2 + · · · reflecting the order of excitation of each term in T . Here, the indices
label different copies of the complete operator T including all relevant orders of excitations
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lishes that H must contract with T1. To see that H must contract with the other Ti

operators, the crucial observation is that the excitation operators commute, that is

[Ti, Tj] = 0. We will now make use of the following operator identity:

[B,C] = 0 =⇒ [[A,B], C] = [[A,C], B]

Note that applying this identity at any level of a nested commutator with B =

Ti, C = Ti+1 and A a commutator involving H allows us to swap Ti and Ti+1.

Repeated application of this identity allows any Ti to be moved into the inner-

most commutator. If the entire term is not to vanish, this implies that H cannot

commute with any of the Ti. Thus, H contracts with every copy of the T operator.

There are some interesting corollaries to the this theorem. Since H contains at

most four creation and annihilation operators in can contract with at most four T

operators. Therefore, the Hausdorff expansion appears to go out to infinite order,

but in fact terminates after the fourth order commutator.

4.4 Diagrams

It is possible to derive the coupled-cluster equations by evaluating matrix elements

using Wick’s theorem and the linked diagram theorem, as is done in the detailed

examples in Crawford & Schaeffer’s review[3]. Although this is a clear improve-

ment over the “bare-bones” anticommutator approach, it is still a quite tedious

exercise in combinatorics and, more seriously, error-prone.

To evaluate matrix elements in a much more efficient way that is also more

intuitively appealing, it is useful to develop a diagram formalism introduced to

quantum chemistry by Čížek[16] and popularized by the Bartlett group. The rules

for manipulating algebraic expressions (commutators, Wick’s theorem, etc. . . ) are

replaced with a set of rules for drawing diagrams. A “dictionary” of rules is then

used to write the algebraic expression corresponding to each legal diagram. The

calculational appeal of the diagrammatic method is that each diagram stands for
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a multiplicity of Wick contractions which it ultimately would have been necessary

to combine in a purely algebraic derivation.

Generally speaking, diagrams are composed of directed lines and vertices. The

vertices correspond to the factors of the operator product that occur in normal

order. For example, each Ti operator is associated with a vertex. Lines are asso-

ciated with creation and annihilation operators depending on their directionality

and whether they are entering or leaving a vertex. An upward-going line corre-

sponds to a virtual orbital and represents a creation operator if it is leaving a ver-

tex and an annihilation operator if entering a vertex. Likewise, a downward-going

line corresponds to an occupied orbital in the reference and represents a creation

operator when leaving a vertex and an annihilation operator when entering4.

4.4.1 The H Sub-Diagram

The Hamiltonian operator consists of both one- and two-body terms, either of

which may contribute in a matrix element. As the one-electron term contains one

creation and one annihilation operator, the sub-diagram representing this operator

must have one in-going and one out-going line. It is symbolized by

Likewise, the two-body term of the Hamiltonian must have two in-going and

two out-going lines. It is symbolized by

4Borrowing the language of the Dirac hole-theoretic treatment of the positron[8], upward-going
lines are frequently called particle lines and downward-going lines are called hole lines.
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It is important to note that the Hamiltonian sums over all orbitals, regardless

of whether they are virtual or filled. In terms of diagrammatics, this means that

the lines connected to the Hamiltonian sub-diagram could be any combination

of upward- and downward-going (hole and particle). The different forms of the

Hamiltonian sub-diagrams are presented in the appendices.

4.4.2 The T Sub-Diagram

The Ti operator term consists of a vertex to which i creation lines and i annihila-

tion lines are connected. A product of T operators such as T1T2 entails both sub-

diagrams appearing in the final diagram. T2, for example, is represented as

Unlike the Hamiltonian, the creation and annihilation operators in the T oper-

ators are restricted so that only filled orbitals can be annihilated and only virtual

orbitals can be created.

4.5 Algebraic Equivalence Rules

Generally speaking, a diagram consists of an H sub-diagram placed above and

connected to a set of T sub-diagrams. A legal diagram for a matrix element involv-

ing (HeT )C is one that yields the correct final state5 and is linked in the same sense

as the linked diagram theorem. To derive the coupled-cluster equations diagram-

matically, the first step is to write down every such legal diagram. The following

is a “dictionary” for writing down the proper algebraic equivalent for each such

legal diagram.

5that is, the lines that remain unconnected are creation and annihilation operators that produce
that state that (HeT )C is being projected with.
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4.5.1 Closed Diagram Rules

Here we will recapitulate the rules for translating diagrams as given by Hoffman

& Schaeffer[4]. It is simplest to start with closed diagram rules and then to add the

slight complication that open diagrams (corresponding to excited bras) present.

For examples of diagrams and their algebraic equivalents see the previous citation

or the diagrams in the appendices of this work.

I To each one-body Hamiltonian vertex assign the factor fpq where p and

q follow the mnemonic “out,in”. To each two-body Hamiltonian vertex

assign the factor 〈pq||rs〉 where the indices follow the mnemonic “left

out, right out, left in, right in”. To each excitation (T operator) vertex,

assign the factor tab...
ij... .

II Sum over all internal lines.

III For each pair of hole lines or particle lines that begin at the same vertex

and end at the same vertex, multiply by a factor of 1
2
.

IV If simultaneous exchange of the particle lines and the hole lines yields

a topologically equivalent diagram, and the hole and particle lines are

not independently interchangeable, multiply by a factor of 1
2
.

V The sign of the diagram is determined by (−1)h+l where h is the number

of hole lines and l is the number of closed loops.

4.5.2 Additional Open Diagram Rules

The above rules must be slightly extended for open diagrams. Again following the

treatment of Hoffman & Schaeffer[4]:
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I For the purposes of calculating the sign of a diagram, open lines should

be treated as if they were closed by fictitious loops.

II Antisymmetrically permute over all topologically distinct labellings of

open line indices.

4.5.3 Example

To illustrate the application of these rules we will work out the algebraic equivalent

of the following diagram which appears in the matrix element

〈ab
ij |e

−THeT |Φ0〉

Internal lines are represented by Greek indices:j b

i a µ α

There are 3 hole lines and 1 real loop in the diagram. However, applying the first

open diagram rule, we must add 2 more fictitious loops for the purposes of sign

determination. Thus the overall sign is positive. Rules III and IV do not apply, so

there is no factor of 1
2

multiplying the diagram. Applying the second open diagram

rule, we see that exchanging i and j yields a distinct arrangement of the indices,

as does exchanging a and b. Thus, if P (x|y) is understood to be an antisymmetric

permutation operator which exchanges x and y, the algebraic equivalent is

P (i|j)P (a|b)
∑

µ

taα
iµ 〈µb||αj〉

For all diagrams and algebraic equivalents appearing in the CCSDT equations

see Hoffmann & Schaeffer[4]. Diagrams and algebraic equivalents appearing in the

triples through hexatuples projections of the CCSD effective Hamiltonian appear

in the appendices of this work.
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Diagram Generation Algorithm

Although the above statement of the diagram rules is sufficient to properly de-

rive the expression for an arbitrary matrix element of (HeT )C , it is useful to have

a systematic procedure for producing all legal diagrams without accidentally re-

peating topologically equivalent diagrams or missing diagrams that do contribute.

The simplest form of these rules are for matrix elements in which the ket is the ref-

erence state. Since these are the only such elements that need to be evaluated for

the CC methods, we will first present these rules and generalize to matrix elements

with excited kets in the appendices.

5.1 Excitation Numbers of H and T

Let us formulate the general problem in calculating a reference-state-ket matrix

element. A diagram will consist of an H sub-diagram and some product of T

diagrams,
∏

i T
αi

i where αi is the number of Ti diagrams included in each factor.

Suppose the bra state is n-tuply excited. Clearly, a legal diagram must produce

an overall excitation of level n. Assign an excitation number nh to the Hamiltonian

as

nh =
1

2
(ndown, in + nup, out − ndown, out − nup, in)

where the n terms on the right-hand side are the number of lines connected to the

Hamiltonian sub-diagram with the subscripted properties. The excitation number

of the T product, nt is identical to the above formula, but can be written more

naturally since T contains only in-going hole lines and out-going particle lines.
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Exploiting this fact, we may write

nt =
∑

i

iαi

5.2 Disconnection and Connection Numbers

The other requirement for a legal diagram is given by the linked diagram theo-

rem. The Hamiltonian sub-diagram must connect to each sub-diagram of the T

product. However, because of the directionality of the lines attached to a T sub-

diagram, only out-going hole lines and in-going particle lines from H can link to a

T operator. Define κ, the connection number of H as

κ = ndown, out + nup, in

It is usually easier to think of nt and κ pictorially. The appendices present all the

forms of the H sub-diagram listed with values of the excitation and connection

number.

κ is the number of potential connections H can make. We must also know the

number of pieces of the T product. Denote this by ∆, the disconnection number,

defined as

∆ =
∑

i

αi

5.3 Legal Diagram Classes

Using the concepts of excitation, connection and disconnection number we can

clearly state a systematic method for generating all legal diagrams for a given ma-

trix element of (HeT )C . We proceed by generating sequentially all T products that

can be formed using whatever Ti operators are being included in a given approxi-

mation. We wish to ask which forms of the Hamiltonian sub-diagram can connect

legally with each T product. Since we must produce the appropriate net excitation
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the first diagram condition must be satisfied

nh + nt = n

To satisfy the linked diagram requirement, we must have that the connection num-

ber exceeds the disconnection number. However, the connection number cannot

exceed twice nt for this would result in unwanted open lines in the diagram. These

considerations yield the second diagram condition

∆ ≤ κ ≤ 2nt

Every pair of T product sub-diagram and H sub-diagram that satisfies these con-

ditions will be called a legal diagram class. A diagram class may be denoted by

enclosing the H and T sub-diagrams in a box without connecting them:

Proceeding through all possible T products easily produces all such diagram

classes. An important corollary of the diagram conditions is an upper limit on

the excitation level of non-vanishing projections. Denote by ν the highest order

excitation operator retained in T . Since κ can be no larger than 4, ∆ can be at

most 4. Thus the maximal excitation level producible by a T operator product is

4ν. For the Hamiltonian with κ = 4, nh = −2, thus no diagrams can contribute to

projections with higher than (4ν − 2)-tuple excited configurations1.

After obtaining all diagram classes, the classes may be expanded into diagrams

to which the above Hoffmann & Schaeffer rules apply. For each diagram class,

1This is another perspective on the termination of the Hausdorff commutator expansion. See
Crawford & Schaeffer[3]. It is not possible to obtain higher excitations by choosing an H sub-
diagram with a less negative nh because increasing nh by m decreases κ by at least m and there-
fore lowers the highest allowed excitation level of the T product by at least m.
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form diagrams by connecting theH lines to the T lines in every unique way so that

each T sub-diagram is linked to H by at least one line2. This produces all diagrams

that contribute to a general reference-state-ket matrix element of e−THeT .

2Two sets of connections are not unique if one may be obtained from the other by relabelling the
internal lines.



Chapter 6

Error Estimates

Though coupled-cluster methods have enjoyed great success in a variety of dif-

ficult quantum chemical problems[9], it is desirable to obtain a reliable indicator

of the success of the treatment of the electron correlation. One obvious approach

is to perform the electronic structure calculation at a higher level of approxima-

tion to see if the results of the lower-level calculation change substantially. Indeed,

many attempts have been made to extend CCSD to include some of the effects

of connected triple excitations such as the so-called CCSDt method[2]. One dis-

advantage of such an approach is that it requires a more laborious and complex

calculation that CCSD itself. It would be preferable to obtain an error estimate in

the form of an internal consistency check that relied only on quantities available

from the original CCSD calculation.

While it has been argued that the magnitude of the T1 amplitudes can serve as

an indicator of the success of the CC approximation[13], the error in the ground

state energy seems to be an obvious candidate for a figure of merit1. In this sec-

tion we develop estimates for |ECC − EFull CI|. It is worth reemphasizing at this

point that any such estimate does not directly relate approximate solutions to ex-

perimental values but rather relates approximate solutions to the exact solution of

Schrödinger’s equation within a finite basis set.

1Furthermore, it is possible to work with so-called Brueckner orbitals where the reference or-
bitals are rotated to make the T1 amplitudes vanish[1]. In such a case, a T1 diagnostic would not
be useful.
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6.1 The EOM matrix

The so-called EOM matrix is simply the matrix representation of e−THeT in the

basis of excited configurations. The peculiar terminology comes from the EOM-

CC or Equation-of-Motion Coupled-Cluster method[9] which was introduced to

quantum chemistry in an attempt to calculate excited states based on a coupled-

cluster description of the ground state2. The calculation of excited states in EOM-

CC is very like CI in that the matrix e−THeT is diagonalized in an appropriate

subspace of excited configurations.

6.2 Gershgorin’s Circle Theorem

One of the cornerstone results of applied linear algebra and perturbation theory is

Gershgorin’s theorem. The theorem relates the location of eigenvalues of a matrix

to the entries of the matrix as follows:

Theorem 1 (Gershgorin) Given A ∈ Mn(C), Let D be a diagonal matrix whose entries

are equal to the diagonal elements of A. Form F = A−D.

Let di be the ith diagonal entry of D and fi be the ith row (column) of F . Define the

disc Ci = {z ∈ C : |z − di| ≤ ‖fi‖1}, where the 1-norm ‖fi‖1 =
∑

j |fij|. Then every

eigenvalue of A is in one of the Ci.

Further, if k such discs form a connected region then precisely k eigenvalues lie in this

region, including multiplicity.

For the proof of Gershgorin’s theorem, see a linear algebra text such as Lax[6].

2This approach is necessary because, unlike CI, it is problematic to converge the non-linear ex-
citation operator in coupled-cluster theory to an excited state.
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6.3 Matrix Representations of H

It is now useful to reconsider some of the quantum chemical approximations dis-

cussed in light of their effect on the H matrix. The determination of the self-

consistent Hartree-Fock basis can be regarded as finding a particular similarity

transformation which makes the matrix elements 〈i
a|H|Φ0〉 vanish (Brillouin’s the-

orem).

The coupled-cluster approximation goes one step further. By applying the

(non-orthogonal) similarity transformation e−THeT to zero-out the remaining en-

tries of the first column up to level of excitation retained in the T operator. Clearly,

all of these approximations can be viewed as similarity transformations on the

representation of H in the calculation basis, so that they all have the same energy

eigenvalues as the full CI.

The presence of so many zero entries in the first column suggests that Gersh-

gorin’s theorem may provide a useful bound for the true ground state energy 3

. Unfortunately, calculating the 1-norm of the first column is somewhat computa-

tionally intensive, even at the level of the simplest useful approximation CCSD. As

demonstrated in the previous chapter, diagrams contribute to matrix elements out

to (4ν − 2)-tuply excited configurations. Although very few diagrams contribute

for highly excited matrix elements, the EOM-CC first column has strictly non-zero

entries in the triple, quadruple, quintuple and hexatuple rows. All of the diagrams

for the non-zero elements of the first column of the full EOM-CC matrix and their

algebraic equivalents are presented in the appendices.

Unfortunately, we cannot make the claim that the 1-norm of the first column

3At first blush, it may seem that the Gershgorin row regions present a more advantageous error
estimate, owing to the particularly simple structure of the first row of the transformed H matrix
which vanishes after doubly excited elements. In fact, the only diagram which contributes for
the doubles terms is algebraically equivalent to 〈ij||ab〉 which does not depend on T at all. Thus,
the Gershgorin row estimator is essentially independent of the success of the coupled-cluster
approximation. This reflects the choice to obtain T by projecting the right-hand Schrödinger
equation with excited bras rather than vice versa.
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is a rigorous upper bound on |ECCSD − EfullCI| from Gershgorin’s theorem. Strictly

speaking, this would only follow from the theorem if we could establish that the

Gershgorin disc centered on the CCSD ground state energy did not intersect any

of the other Gershgorin discs. It does not seem possible to obtain this kind of in-

formation about the topology of the Gershgorin regions without analyzing every

matrix element in the full EOM-CC matrix, precisely the kind of computational

chore we hoped to avoid. Nevertheless, speaking heuristically, we expect that the

radii of other Gershgorin discs will only cross the ground state when the 1-norms

of columns are on the order of the energy spacing between the ground state and

the excited states. In this situation, one might expect the ground state description

to have serious problems anyway. Thus, it should be possible to follow a given

molecule from a geometry where the CCSD approximation, and therefore the Ger-

shgorin estimator, works well into a regime where both begin to fail.

6.4 A Perturbative Approach

Another possible method for studying the disagreement between the CCSD ground

state and the fullCI is to treat the difference between the two perturbatively. Un-

like the analysis using Gershgorin’s theorem, we will not be able to make precise

statements about the error since such rigorous results typically require detailed

knowledge about the perturbative expansion[5]. Of course this is not an uncom-

mon situation in applications of perturbation theory to quantum mechanics.

For simplicity, we will ignore the possibility of degeneracy in the singles and

doubles block of the EOM matrix. It is important to note that the similarity trans-

formation e−THeT is non-unitary so that the transformed Hamiltonian is not Her-

mitian. In this case the left and right eigenvectors (bras and kets) are distinct, and

we must be more careful in formulating perturbation theory.
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6.4.1 Perturbation Theory for Non-Hermitian Operators

We can construct a non-degenerate perturbation theory for the non-Hermitian trans-

formed Hamiltonian as a straight-forward generalization of the familiar Rayleigh-

Schrödinger perturbation theory. Although the left and right eigenvectors are not

orthogonal among themselves, they can be chosen to satisfy a biorthogonality con-

dition4 [9]:

〈Ψ̃i|Ψj〉 = δij

We consider the operator-valued function H(λ) of a parameter λ. With H(λ) =

H0+λH1 so that as λ varies from 0 to 1,H switches smoothly from the unperturbed

to the perturbed operator. We assume 5 that the eigenvalues Ei and the left and

right eigenvectors, 〈Ψ̃i| and |Ψi〉 can be expanded in convergent power series in λ.

Then,

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · ·

|Ψi〉 = |Ψ
(0)
i 〉 + λ|Ψ

(1)
i 〉 + λ2|Ψ

(2)
i 〉 + · · ·

〈Ψ̃i| = 〈Ψ̃
(0)
i | + λ〈Ψ̃

(1)
i | + λ2〈Ψ̃

(2)
i | + · · ·

To obtain expressions for the coefficients to each order in λ we make use of the

eigenvalue equations (in this case the Schrödinger equation):

(H0 + λH1)(|Ψ
(0)
i 〉 + λ|Ψ

(1)
i 〉 + · · · ) = (E

(0)
i + λE

(1)
i + · · · )(|Ψ

(0)
i 〉 + λ|Ψ

(1)
i 〉 + · · · )

(〈Ψ̃
(0)
i | + λ〈Ψ̃

(1)
i | + · · · )(H0 + λH1) = (〈Ψ̃

(0)
i | + λ〈Ψ̃

(1)
i | + · · · )(E

(0)
i + λE

(1)
i + · · · )

By requiring that these series equalities hold identically, equating terms on powers

of λ and projecting with the ground state eigenvectors of H0 we obtain:

E
(1)
i = 〈Ψ̃

(0)
i |H1|Ψ

(0)
i 〉

4The tilde on the bra vector is just to emphasize that 〈Ψ̃| 6= (|Ψ〉)†.
5It is possible to rigorously justify this assumption under certain conditions[6][5].
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E
(2)
i = 〈Ψ̃

(0)
i |H1|Ψ

(1)
i 〉

etc . . .

Likewise, the first-order shift in the eigenvectors can be found by expanding |Ψ
(1)
i 〉

in the complete basis of eigenkets of H0 using the biorthonormality condition as:

|Ψ
(1)
i 〉 =

∑

n6=i

|Ψ(0)
n 〉〈Ψ̃(0)

n |Ψ
(1)
i 〉

Substituting this expansion into the equation obtained from the terms linear in λ

gives the following closed form for E(2)
i :

E
(2)
i =

∑

n6=i

〈Ψ̃
(0)
i |H1|Ψ

(0)
n 〉〈Ψ̃

(0)
n |H1|Ψ

(0)
i 〉

E
(0)
i − E

(0)
n

It is straightforward to continue this procedure for higher order terms in the ex-

pansion, though these results will be sufficient for our purposes. Szabo & Ostlund

present a detailed derivation of the analogous Hermitian case[12].

6.4.2 Perturbative Correction to CCSD Ground State Energy

Suppose that we know a complete set of right and left eigenvectors for the sin-

gles and doubles block. This corresponds to having performed an EOM-CCSD

excited state calculation[9]6 We may extend this set of eigenvectors in a natural

way to obtain a basis of the same dimension as the full CI matrix by choosing the

unperturbed Hamiltonian to agree with the EOM-CCSD matrix in the singles and

doubles block while the remainder is diagonal with diagonal elements equal to the

diagonal elements of the full EOM-CC matrix. Trivially, the extended set of eigen-

vectors and eigenvalues contains the standard basis vectors for the space beyond

6Although this discussion is couched in terms of knowing all the eigenvectors of the singles and
doubles block, it will not be necessary to know the excited states to calculate the leading order
energy shift.
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the singles and doubles subspace and the associated eigenvalues are simply the

diagonal elements. Symbolically7,

H0 =









































Φ0 S D T Quad Quint H

Φ0 E H0S H0D 0 0 0 0

S 0 HSS HSD 0 0 0 0

D 0 HDS HDD 0 0 0 0

T 0 0 0
. . . 0 0 0

Quad 0 0 0 0
. . . 0 0

Quint 0 0 0 0 0
. . . 0

H 0 0 0 0 0 0
. . .









































In the spirit of the Møller-Plesset approach, the perturbation H1 is taken as the dif-

ference between the full EOM-CC matrix and the unperturbed Hamiltonian. Thus

H1 vanishes in the singles and doubles block and along the entire diagonal. Else-

where, H1 agrees with the full EOM-CC matrix:

H1 =









































Φ0 S D T Quad Quint H

Φ0 0 0 0 H0T H04 H05 H0H

S 0 0 0 HST HS4 HS5 HSH

D 0 0 0 HDT HD4 HD5 HDH

T HT0 HTS HTD H?
TT HT4 HT5 HTH

Quad H40 H4S H4D H4T H?
44 H45 H4H

Quint H50 H5S H5D H5T H54 H?
55 H5H

H HH0 HHS HHD HHT HH4 HH5 H?
HH









































where the ? indicates that the diagonal elements are zero.

We may then ask what the perturbative correction to the ground state energy is

to leading order. Because the singles and doubles block of the perturbing Hamil-

7For clarity, the matrices below extend only out to hexatuple excitations since these are all that
is relevant for our consideration of the ground state. In reality, the matrices extend to n-tuple
excitations, where n is the number of electrons
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tonian vanishes and the left and right ground state eigenvectors lie in the singles

and doubles subspace, the first-order shift in the energy must vanish.

The second-order shift, however, can provide useful information about the rel-

ative importance of non-zero matrix elements in the first column. Recalling the

previous expression for the second-order energy shift, it is clear that there will be

no contribution from the singly- and doubly-excited configurations since the per-

turbing Hamiltonian vanishes in this subspace. We can write the second-order

energy shift for the ground state in the simplified form:

∆E(2) =
∑

n∈{T,4,5,H,...}

〈n|H1|Φ0〉〈Φ̃0|H1|n〉

ECCSD − 〈n|H1|n〉

where the |n〉 stand for the standard basis vectors, the eigenvectors of H0 beyond

the singles and doubles block8.

In fact, this can be further simplified by noting that the transformed Hamilto-

nian e−THeT can only de-excite an excited ket by two levels in evaluating a matrix

element. Thus, any matrix element with the ket configuration excited more than

two levels above the bra configuration must vanish. For example:

H0T = H04 = H05 = · · · = 0

8We have written 〈n| sans tilde since H0 is diagonal beyond the singles and doubles sub-block
so that the left and right eigenvectors in the triples and higher subspace are simple Hermitian
conjugates.
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We can now rewrite the perturbing matrix as

H1 =









































Φ0 S D T Quad Quint H

Φ0 0 0 0 0 0 0 0

S 0 0 0 HST 0 0 0

D 0 0 0 HDT HD4 0 0

T HT0 HTS HTD H?
TT HT4 HT5 0

Quad H40 H4S H4D H4T H?
44 H45 H4H

Quint H50 H5S H5D H5T H54 H?
55 H5H

H HH0 HHS HHD HHT HH4 HH5 H?
HH









































Since the bra ground state vector 〈Φ̃0| lies in the singles and doubles subspace,

the matrix element 〈Φ̃0|H1|n〉 must vanish for n higher than quadruple excitations.

Thus,

∆E(2) =
∑

n∈{T,4}

〈n|H1|Φ0〉〈Φ̃0|H1|n〉

ECCSD − 〈n|H1|n〉

To leading order in perturbation theory, the ground state energy does not depend

on the elements in the first column in the quintuples and hexatuples blocks. For

this reason, we are led to propose the following approximate Gershgorin-like in-

equality which simply neglects contributions from elements beyond the quadru-

ples:

|ECCSD − EfullCI| <≈ ‖H0T‖1 + ‖H04‖1

The elements ofH0T andH04 (andH05 andH0H , for that matter) are presented in

the appendices, both in diagrammatic form and in explicit algebraic form in terms

of two-electron integrals of the molecular orbitals and the excitation amplitudes

available from a CCSD calculation.
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6.5 Discussion

We have presented an algebraic function of the excitation amplitudes and known

two-electron integrals that, under certain assumptions, is an upper-bound to the

difference between the CCSD correlation energy and the full CI correlation energy,

the exact solution of Schrödinger’s equation within the given basis set. Further-

more, a perturbative argument has been given which suggests that only a smaller

subset of terms in this upper-bound contribute substantially to this difference.

It is desirable, of course, to numerically evaluate this estimator for molecular

systems of interest, particularly ones for which the CCSD approximation is known

to encounter difficulties. The principal obstacle to such an implementation is ob-

taining the necessary information about the underlying CCSD calculation. One

approach is to read the relevant data out of the output files of an existing imple-

mentation of the CCSD approximation such as the Bartlett group’s code ACES II.

Preliminary progress in this direction has been made in the form of the incomplete

code gersh presented in the appendices. Further study of the ACES II output is

required to complete this implementation.

Another avenue of research is to consider the perturbative correction to the

CCSD ground state energy more seriously. Although it would be somewhat com-

putationally burdensome, it is possible to directly calculate the second-order shift

in the ground state energy using the left-hand ground state which we have de-

noted 〈Φ̃0|, which is available from a standard CCSD properties calculation[9].

Along these lines, it might also be fruitful to consider corrections to the excited

state energies, or perhaps analyze the perturbative corrections to the eigenvectors

themselves.



Appendix A

Forms of the Hamiltonian Sub-Diagram

The numbers beneath each sub-diagram indicate excitation level / connection

number.

−1/2 +1/0 0/1 0/1

−2/4 −1/3 −1/3 +2/0

0/2 0/2 +1/1 +1/1 0/2



Appendix B

Matrix Elements in the First Column of e−THeT

In what follows we present all diagram classes and corresponding algebraic

equivalents for matrix elements of the form 〈ψ|e−THeT |Φ0〉 where 〈ψ| is a triply-

through hexatuply-excited configuration. As stated in the main body of the text,

higher excitation level matrix elements vanish owing to the linked diagram the-

orem. Diagrams and algebraic equivalents corresponding to singly- and doubly-

excited configurations and the energy term 〈Φ0|e
−THeT |Φ0〉 amount to the CCSD

equations and are widely available elsewhere[3].

The following slightly unconventional notation is used for the algebraic equiv-

alents to each diagram. Roman indices are used to label open lines with a, b, . . .

referring to virtual orbitals and i, j, . . . referring to occupied orbitals. Greek in-

dices are used to label internal lines with α, β, . . . referring to virtual orbitals and

µ, ν, . . . referring to occupied orbitals. Greek indices are implicitly summed over. P

is an anti-symmetrized permutation operator. The argument of P specifies which

permutations are to be carried out according to the rule that indices which are

exchanged must cross a vertical bar. Thus P (ab|c) tells us to construct two permu-

tations swapping a and c and then b and c, but not a permutation swapping a and

b.

Above each diagram class is a parenthetical ID by which the diagrams are re-

ferred to in notes and the preliminary implementation of the Gershgorin estimator.

0All diagrams in this text were created using the open-source METAFONT Feynman diagram
package, feynmf.
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B.1 Triples Diagrams

〈abcijk|e
−THeT |Φ0〉 =

(A1) (B1) (C1)

−P (ij|k)P (ab|c)tbcµk〈aµ||ij〉 +P (ab|c)P (i|jk)tαc
jk 〈ab||iα〉 +P (a|bc)P (ij|k)taα

ij t
β
k〈bc||αβ〉

(D1) (E1-2) (F1-2)

+P (i|jk)P (ab|c)tab
iµtcν〈µν||jk〉

−P (ij|k)P (a|b|c)taα
ij tbµ〈µc||αk〉

−P (i|j|k)P (ac|b)tac
µkt

α
i 〈µb||αj〉

−P (i|j|k)P (a|bc)taα
iµ tbcνk〈µν||αj〉

+1
2P (a|bc)P (ij|k)taα

ij tbcµν〈µν||αk〉

(G1-2) (H1)

+P (i|jk)P (a|b|c)taα
iµ t

βc
jk〈µb||αβ〉

−1
2P (ij|k)P (a|bc)tαβ

ij tbcµk〈aµ||αβ〉
−P (ij|k)P (a|bc)taα

ij tbcµkfµα
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(I1-5) (J1-2)

−P (a|b|c)P (i|jk)taα
iµ t

bβ
jktcν〈νµ||αβ〉

−P (a|bc)P (i|j|k)taα
iµ tbcνkt

β
j 〈νµ||αβ〉

−P (a|bc)P (ij|k)taα
ij tbcµkt

β
ν 〈νµ||αβ〉

+1
2P (ij|k)P (ab|c)tαβ

ij tab
µkt

c
ν〈νµ||αβ〉

+1
2P (i|jk)P (a|bc)tβa

jk tbcµνt
α
i 〈νµ||αβ〉

+P (a|b|c)P (ij|k)taα
ij tbµt

β
k tcν〈νµ||αβ〉

+P (i|j|k)P (a|bc)tbcνkt
α
i taµt

β
j 〈νµ||αβ〉

(K1-2) (L1-2)

+P (ij|k)P (a|b|c)taα
ij tbµtcν〈µν||αk〉

+P (i|j|k)P (a|bc)tbcνkt
α
i taµ〈µν||αj〉

−P (ij|k)P (a|b|c)taα
ij tbµt

β
k〈µc||αβ〉

−P (i|j|k)P (ab|c)tab
µjt

α
i t

β
k〈µc||αβ〉

B.2 Quadruples Diagrams

〈abcdijkl |e
−THeT |Φ0〉 =
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(A1) (B1)

+P (ac|bd)tαb
ij t

βd
kl 〈ac||αβ〉 +P (ik|jl)tab

µjt
cd
νl 〈νµ||ik〉

(C1) (D1-2)

−P (ij|k|l)P (a|c|bd)taα
ij tbdµl〈µc||jk〉

+P (ij|k|l)P (a|bc|d)taα
ij tbcµkt

d
ν〈µν||αl〉

+P (i|j|k|l)P (ab|cd)tab
µjt

cd
kl t

α
i 〈µν||αk〉

(E1-2) (F1-3)

−P (i|j|kl)P (ab|c|d)tab
µjt

βd
kl tαi 〈µc||αβ〉

−P (ij|kl)P (a|b|c|d)taα
ij t

βd
kl tbµ〈µc||αβ〉

−P (i|jk|l)P (a|b|cd)taα
iµ t

βb
jktcdνl 〈µν||αβ〉

+P (ij|kl)P (ab|cd)tαβ
ij tab

µkt
cd
νl 〈µν||αβ〉

+P (ij|kl)P (ab|cd)taα
ij t

bβ
kl t

cd
µν〈µν||αβ〉
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(G1-3)

+P (ij|k|l)P (a|bc|d)taα
ij tbcµkt

β
l tdν〈µν||αβ〉

+P (ac|bd)taα
ij t

cβ
kl t

b
µtdν〈µν||αβ〉

+P (ik|jl)tab
µjt

cd
νl t

α
i t

β
k〈µν||αβ〉

B.3 Quintuples Diagrams

〈abcdeijklm|e
−THeT |Φ0〉 =

(A1) (B1)

+P (ij|km|l)P (a|bcde)taα
ij tbcµkt

de
νm〈µν||αl〉 −P (ijlm|k)P (ae|bc|d)taα

ij tbcµkt
βe
lm〈µd||αβ〉

(C1-2)

+P (i|jm|kl)P (abde|c)tab
µjt

cβ
kl t

de
νmtαi 〈µν||αβ〉

+P (ijlm|k)P (ad|bc|e)taα
ij tbcµkt

dβ
lmteν〈µν||αβ〉
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B.4 Hexatuples Diagrams

〈abcdefijklmn|e
−THeT |Φ0〉 =

(A1)

+P (ijlm|kn)P (ad|bcef)taα
ij tbcµkt

dβ
lmt

ef
νn〈µν||αβ〉



Appendix C

Numerical Implementation

The following code gersh.cc is a C + + program which reads information from

the ACES II output files to compute the Gershgorin estimator derived in the body

of this document. It is currently incomplete because of difficulties in reading cer-

tain integral lists from the ACES II output. In particular the two-electron integrals

of the form 〈ab||cd〉 are stored in a file named MOABCD whose structure is un-

known. Also, the 〈ab||ci〉 integrals do not appear in the location specified by the

most recent version of the ACES II manual[7]. Any attempt at a general imple-

mentation will require more detailed knowledge about the integral storage of the

ACES II code.

Currently the code is only designed to work with an RHF reference state and

gets confused by molecular orbitals which are classified according to different ir-

reducible representations of the symmetry point group of the molecule. It expects

all orbitals to belong to the first irreducible representation in the ACES II output.

As noted in the program comments below, this is designed to work with a (very)

slightly modified version of ACES II which outputs all of the T1 amplitudes to a

large number of significant figures.

///////////////////////////////////////////////////////////////////
// gersh.cc March 4, 2001 Mike Rust
// Last modified: April 14, 2001
//
// Usage: gersh <aces2 output file> <MOINTS file> [options]

// This code parses the output from an aces2 (CRAPS) CCSD calculation
// to determine the T1 and T2 amplitudes and the symmetry of the wavefunction.
// This information is used to load integral lists from the MOINTS file
// into core memory. This information is used to form the appropriate
// matrix elements of eˆ-T H eˆT and calculate the Gershgorin estimator.

// NB: This code assumes that the modified version of aces2 has been used
// which outputs all of the symmetry allowed T amplitudes (see thesis
// notes). Further, the aces2 input file must specify a large enough
// value for PRINT (999 should do the trick) so that the MOINTS file
// structure is printed.

// NB: Currently works only for Hartree-Fock references. (i.e. assumes
// that Brillouin’s theorem holds)

#include<stdlib.h>
#include<stdio.h>
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#include<string.h>
#include<iostream.h>
#include<fstream.h>
#include<math.h>

#define RHF 1
#define UHF 2

//Here are some global constants that are relevant to lots of stuff

int calctype, nelec, nocc, nvirt;

class fourIndex {
//The fourIndex class represents a generic four-index quantity
//e.g. a set of two-electron integrals
private:

char ph[5]; //particle/hole string
char ab[5]; //spin string
char name[20]; //name of the list
double *data;
int dim[4];
int restr_left, restr_right;

//Which indices are restricted?

public:
//constructor
fourIndex(char *newName, char *newPH, char *newAB) {
//Copy strings
strcpy(ph,newPH);
strcpy(ab,newAB);
strcpy(name,newName);

//Check for spin silliness
int i;
int checksum1=0, checksum2=0;

for(i=0;i<2;i++)
checksum1+=(ab[i]==’a’);

for(i=2;i<4;i++)
checksum2+=(ab[i]==’a’);

if(checksum1!=checksum2)
cout << "Warning! " << name << " list initialized with

incompatible spins" << endl;

//Check for failure to use notation properly
for(i=0;i<4;i++) {

if(ab[i]!=’a’&&ab[i]!=’b’)
cout << "Non-sensical spin string " << ab <<
" in " << name << " initialization." <<endl;

if(ph[i]!=’p’&&ph[i]!=’h’)
cout << "Non-sensical particle/hole string " << ph <<
" in " << name << " initialization." <<endl;

}

//Now we have split up by calctype:

if(calctype==RHF) {
//Determine dimension of each index
for(i=0;i<4;i++)

if(ph[i]==’p’)
dim[i]=nocc;

else
dim[i]=nvirt;

//This is fine, except that we have to account for
//restricted lists
restr_left=(ph[0]==ph[1] && ab[0]==ab[1]);
restr_right=(ph[2]==ph[3] && ab[2]==ab[3]);

int size=1;
for(i=0;i<4;i++)

size*=dim[i];

//allocate the required space

data = new double[size];
//check if it’s all good
if(!data) {

cout << "Failed to allocate " << size << " elements for "
<< name << "!" << endl;

exit(-1);
}

}
}

˜fourIndex() {
cout << "Destructor called for " << name << "!" << endl;
if(data)

delete data;
}

void getFirstIndices(int &i1, int &i2, int &i3, int &i4);
void getNextIndices(int &i1, int &i2, int &i3, int &i4);
int getSize(void);
void set(int &i1, int &i2, int &i3, int &i4, double value);
double get(int &i1, int &i2, int &i3, int &i4);
void dump(void);
char * getName(void) {

return name;
}

};

//////////////////////////////////////////////////////////////////
//Methods for four-index class
//////////////////////////////////////////////////////////////////

void fourIndex::getFirstIndices(int &i1, int &i2, int &i3, int &i4) {
//The only complication here is whether the indices are
//restricted or not. In general the convention for restricted
//indices is left < right, following the aces2 convention.
i1=i3=0;

//Note: we are assuming the list is non-empty. If it is, don’t
//blame this method.
i2=restr_left;
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i4=restr_right;
}

void fourIndex::getNextIndices(int &i1, int &i2, int &i3, int &i4) {
//Rather than writing this in some clever way, we’ll just do it
//by hand.

i4++;
if(i4>=dim[3]) {

i3++;
if(restr_right)

i4=i3+1;
else

i4=0;
}
if(i3>=dim[2]) {

i3=0;
if(restr_right)

i4=1;
i2++;

}
if(i2>=dim[1]) {

i1++;
if(restr_left)

i2=i1+1;
else

i2=0;
}
if(i1>=dim[0])

cout << "Error: Cannot increment (" << i1 << "," << i2 << ","
<< i3 << "," << i4 << ") in " << name << endl;

}

int fourIndex::getSize(void) {
//simply returns the number of elements in the list
int leftsize, rightsize;

if(restr_left)
leftsize=(dim[0]*(dim[0]-1))/2;

else
leftsize=dim[0]*dim[1];

if(restr_right)
rightsize=(dim[2]*(dim[2]-1))/2;

else
rightsize=dim[2]*dim[3];

return leftsize*rightsize;
}

void fourIndex::set(int &i1, int &i2, int &i3, int &i4, double value) {
//Do range-checking

if(i1>=dim[0]) {
cout << "First index exceeds its dimension in set(" << i1 << ","
<< i2 << "," << i3 << "," << i4 << ") in " << name << endl;

return;
}
if(i2>=dim[1]) {
cout << "Second index exceeds its dimension in set(" << i1 << ","

<< i2 << "," << i3 << "," << i4 << ") in " << name << endl;
return;

}
if(i3>=dim[2]) {
cout << "Third index exceeds its dimension in set(" << i1 << ","
<< i2 << "," << i3 << "," << i4 << ") in " << name << endl;

return;
}
if(i4>=dim[3]) {
cout << "Fourth index exceeds its dimension in set(" << i1 << ","

<< i2 << "," << i3 << "," << i4 << ") in " << name << endl;
return;

}

if(restr_left && i1>=i2) {
cout << "set(" << i1 << "," << i2 << "," << i3 << "," << i4 <<

") violates left index restrictions." << endl;
return;

}

if(restr_right && i3>=i4) {
cout << "set(" << i1 << "," << i2 << "," << i3 << "," << i4 <<

") violates right index restrictions." << endl;
return;

}

//If we made it this far, we’re o.k.
data[i1*dim[1]*dim[2]*dim[3] + i2*dim[2]*dim[3] + i3*dim[3] + i4]=value;
//DEBUG
// cout << "Setting element " << i1*dim[1]*dim[2]*dim[3] + i2*dim[2]*dim[3] + i3*dim[3] + i4 << " to " << value << endl;

}

double fourIndex::get(int &i1, int &i2, int &i3, int &i4) {
//Do range-checking

if(i1>=dim[0]) {
cout << "First index exceeds its dimension in get(" << i1 << ","
<< i2 << "," << i3 << "," << i4 << ") in " << name << endl;

return -1;
}
if(i2>=dim[1]) {

cout << "Second index exceeds its dimension in get(" << i1 << ","
<< i2 << "," << i3 << "," << i4 << ") in " << name << endl;

return -1;
}
if(i3>=dim[2]) {

cout << "Third index exceeds its dimension in get(" << i1 << ","
<< i2 << "," << i3 << "," << i4 << ") in " << name << endl;

return -1;
}
if(i4>=dim[3]) {

cout << "Fourth index exceeds its dimension in get(" << i1 << ","
<< i2 << "," << i3 << "," << i4 << ") in " << name << endl;

return -1;
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}

if(restr_left && i1>=i2) {
cout << "get(" << i1 << "," << i2 << "," << i3 << "," << i4 <<

") violates left index restrictions." << endl;
return -1;

}

if(restr_right && i3>=i4) {
cout << "get(" << i1 << "," << i2 << "," << i3 << "," << i4 <<

") violates right index restrictions." << endl;
return -1;

}

//If we made it this far, we’re o.k.

return
data[i1*dim[1]*dim[2]*dim[3] + i2*dim[2]*dim[3] + i3*dim[3] + i4];

}

void fourIndex::dump(void) {
//This method displays the contents of the list

cout << "Contents of " << name << ":" << endl;
cout << "-----------------------------------------------" << endl;

//Isn’t this cute?
int minusone=-1;
int *left, *right;
int i1, i2, i3, i4;
int iphys1, iphys2, iphys3, iphys4;

if(restr_left)
left=&i1;

else
left=&minusone;

if(restr_right)
right=&i3;

else
right=&minusone;

//Begin the dump loop
for(i1=0;i1<dim[0];i1++)

for(i2=*left+1;i2<dim[0];i2++)
for(i3=0;i3<dim[2];i3++)

for(i4=*right+1;i4<dim[3];i4++) {
//Convert from internal to physical indices

if(ph[0]==’p’)
iphys1=i1+1;

else
iphys1=i1+nocc+1;

if(ph[1]==’p’)
iphys2=i2+1;

else
iphys2=i2+nocc+1;

if(ph[2]==’p’)
iphys3=i3+1;

else
iphys3=i3+nocc+1;

if(ph[3]==’p’)
iphys4=i4+1;

else
iphys4=i4+nocc+1;

cout << iphys1 << "\t" << iphys2 << "\t" << iphys3 << "\t"
<< iphys4 << "\t" << get(i1,i2,i3,i4) << endl;

}

}

//////////////////////////////////////////////////////////////////////

class twoIndex {
//The twoIndex class represents a generic two-index quantity
private:

char ph[3]; //particle or hole string
char ab[3]; //spin string
char name[20]; //name of the list
double *data; //the goods
int dim1, dim2;

public:
//constructor
twoIndex(char *newName, char *newPH, char *newAB) {
//Copy strings
strcpy(ph,newPH);
strcpy(ab,newAB);
strcpy(name,newName);

//Check for spin silliness
if(ab[0]!=ab[1])

cout << "Warning! " << name << " list initialized with
non-matching spins" << endl;

//Check for failure to use notation properly
int i;
for(i=0;i<2;i++) {

if(ab[i]!=’a’&&ab[i]!=’b’)
cout << "Non-sensical spin string " << ab <<
" in " << name << " initialization." <<endl;

if(ph[i]!=’p’&&ph[i]!=’h’)
cout << "Non-sensical particle/hole string " << ph <<
" in " << name << " initialization." <<endl;

}

//Now we have split up by calctype:

if(calctype==RHF) {
//Determine dimension of each index
if(ph[0]==’p’)

dim1=nocc;
else
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dim1=nvirt;
if(ph[1]==’p’)

dim2=nocc;
else

dim2=nvirt;

//allocate the required space
data = new double[dim1*dim2];
//check if it’s all good
if(!data) {

cout << "Failed to allocate " << dim1*dim2 << " elements for "
<< name << "!" << endl;

exit(-1);
}

}
}

//Method prototypes
void set(int index1, int index2, double value);
double get(int index1, int index2);
void dump(void);

//Destructor
˜twoIndex() {

if(data)
delete data;

}

};

/////////////////////////////////////////////////////////////////
//Methods for two-index class
/////////////////////////////////////////////////////////////////

void twoIndex::set(int index1, int index2, double value) {
//Sanity check
if(index1>=dim1||index2>=dim2) {
cout << "Range check error: attempt to set ("

<< index1 << " , " << index2 << ") in " << name << endl;
}
else

data[index1*dim2 + index2]=value;
}

double twoIndex::get(int index1, int index2) {
//Sanity check

if(index1>=dim1||index2>=dim2) {
cout << "Range check error: attempt to get ("

<< index1 << " , " << index2 << ") in " << name << endl;
return -1.0; //Error code

}
else
return data[index1*dim2 + index2];

}

void twoIndex::dump(void) {
//This method displays the contents of the list

cout << "Contents of " << name << ":" << endl;
cout << "-----------------------------------------------" << endl;
int i, j;
int iphys, jphys;
for(i=0;i<dim1;i++) {

iphys=i+1;
if(ph[0]==’h’)

iphys+=nocc;
for(j=0;j<dim2;j++) {

jphys=j+1;
if(ph[1]==’h’)

jphys+=nocc;
cout << iphys << "\t" << jphys << "\t" << get(i,j) << endl;

}
}

}

/////////////////////////////////////////////////////////////////
//Global instances of four-index and two-index to store
//the integral lists.
/////////////////////////////////////////////////////////////////

twoIndex *t1;
fourIndex *T2mixed;
fourIndex *T2same;
fourIndex *hhpp_aaaa;
fourIndex *hhpp_abab;
fourIndex *ppph_aaaa;
fourIndex *ppph_abab;
fourIndex *hhhp_aaaa;
fourIndex *hhhp_abab;

//////////////////////////////////////////////////////////////////
//Debugging functions
//////////////////////////////////////////////////////////////////

void printmoints(FILE *moints) {
double dummy;
int i=0;
while(!feof(moints)) {

i++;
fread(&dummy,sizeof(double),1,moints);
cout << i << ": " << dummy << endl;

}
}

/////////////////////////////////////////////////////////////////
//int matchesHere(target, line)
//
// Returns a truth value according to whether target occurs
// starting at the first position of line.
/////////////////////////////////////////////////////////////////
int matchesHere(char *target, char *line) {

if(*target==’\0’)



57

return 1;

while(*target!=’\0’&&*line!=’\0’) {
if(*target!=*line)

return 0; //Bad programmer, bad!
target++;
line++;

}

return (*target==’\0’);
}

/////////////////////////////////////////////////////////////////
//int matches(target, line)
//
// Returns a truth value according to whether target occurs in
// line.
/////////////////////////////////////////////////////////////////
int matches(char *target, char *line) {

int check;

if(*target==’\0’) //Base case, null target string
return 1;

if(*line==’\0’) //Can’t match an empty line
return 0;

while(*line!=’\0’) {
if(matchesHere(target,line))

return 1;
line++;

}
//No match found
return 0;

}

/////////////////////////////////////////////////////////////////
//long goToLine(file, scanString)
//
// Scans through file line by line until scanString is found or
// the end of file is reached. The number of lines read is returned
// or -1 if scanString is not found. This routine potentially
// suffers from a truncation error, since it assumes the file is
// nicely cut into lines with < 256 chars (no problem for normal
// aces2 output...)
/////////////////////////////////////////////////////////////////
long goToLine(FILE *file, char *scanString) {

char buff[256];

long lineCount=0;
int found=0;

do {
fgets(buff,255,file);
lineCount++;
found=matches(scanString,buff);

}
while(!found && !feof(file));

if(found)
return lineCount;

return -1;
}

/////////////////////////////////////////////////////////////////
//showHelp()
//
// Displays info on the command-line options.
/////////////////////////////////////////////////////////////////
void showHelp() {

cout << endl << "Usage: gersh <aces2 output> <MOINTS file>"
<< " [options]" << endl;

cout << "Options: " << endl;
cout << "-debug Show copious debugging output." << endl;
cout << "-verbose Show helpful(?) details." << endl;
cout << "-elec <n> Correlate n electrons." << endl;
cout << "-energy Recalculate CCSD energy." << endl;

}

/////////////////////////////////////////////////////////////////
//parseOptions(argc (number of arguments), argv (argument array),
// debug, verbose, nelec (number of electrons), energy)
//
// Scans through the argv list and processes any command-line
// options.
/////////////////////////////////////////////////////////////////
void parseOptions(int argc, char **argv, int &debug, int &verbose,

int &nelec, int &energy) {

int n;
for(n=3;n<argc;n++) {

if(!strcmp(argv[n],"-help")||!strcmp(argv[n],"-?")) {
showHelp();
exit(-1); //multiple exit points.
//deal with it, code fascists!

}
else
if(!strcmp(argv[n],"-verbose"))

verbose=1;
else
if(!strcmp(argv[n],"-debug"))

debug=1;
else
if(!strcmp(argv[n],"-energy"))

energy=1;
else

if(!strcmp(argv[n],"-elec")) {
n++; //move to next argument
nelec=atoi(argv[n]);

}
else {
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cout << "Option " << argv[n] << " ignored." << endl;
}

}
}

/////////////////////////////////////////////////////////////////
//analyzeCalc(outfile, calctype, norbs)
//
// Extracts from outfile the calculation type (e.g. RHF, UHF) and
// the number of active orbitals.
/////////////////////////////////////////////////////////////////
void analyzeCalc(FILE *outfile, int &calctype, int &norbs) {

char dummy[255]; //dummy buffer

rewind(outfile);
goToLine(outfile,"Parameters for SCF");
fgets(dummy,255,outfile);
//Check for calculation type
if(matches(" RHF",dummy)) {

calctype=RHF;
cout << "Detected RHF reference function." << endl;

}
else {

//Unimplemented reference type
cout << dummy << endl << "Not yet implemented!!" << endl;
exit(-1); //More bad style

}

//Detection needs to be done by cases
if(calctype==RHF) {

goToLine(outfile,"Index Eigenvalue Symmetry");
fgets(dummy,255,outfile); //skip line of hyphens
norbs=0;
int good=0;
float temp1, temp2, temp3;
do {

good=fscanf(outfile,"%f %f %f",&temp1,&temp2,&temp3);
if(good>0)

norbs++;
}
while(good>0);
cout << "Read in " << norbs << " molecular orbitals." << endl;

}
}

/////////////////////////////////////////////////////////////////
//readT1RHF(outfile (aces2 output), t1 (t1 class))
//
// Parses the aces2 output file to obtain the t1 amplitudes for
// the RHF case (again, ignoring symmetry).
/////////////////////////////////////////////////////////////////
void readT1RHF(FILE *outfile, twoIndex *t1) {

char buff[255];
int i, j, n;
double amp;

rewind(outfile);
//Skip to modified output portion
goToLine(outfile,"Displaying T amplitudes");
//Skip 3 lines
for(n=0;n<3;n++)

fgets(buff,255,outfile);
//loop over all T1 amplitudes
for(n=0;n<nocc*nvirt;n++) {

fscanf(outfile,"%i %i %lf",&i,&j,&amp);
//convert to internal indices
i--;
j-=1+nocc;
t1->set(i,j,amp);

}
}

/////////////////////////////////////////////////////////////////
//int getListStart(outfile (aces2 output), listnum, irrep)
//
// Parses the aces2 output file to find where listnum for
// irreducible representation irrep starts on the MOINTS file
// Returns the number of words listnum is from the beginning
// of the MOINTS file.
//
// NB: Currently assumes 4096 words per record without checking.
/////////////////////////////////////////////////////////////////
int getListStart(FILE *outfile, int listnum, int irrep) {

int n;
char buff[255];

rewind(outfile);
//First, scan to the MOINTS directory listing
goToLine(outfile,"List Subclass Distribution");
//Skip the next three lines
for(n=0;n<3;n++)

fgets(buff,255,outfile);

//linear search for the proper entry
int good;
int record, word, list, subclass, dummy;
do

good=fscanf(outfile,"%i %i %i %i %i %i",&list,&subclass,
&dummy,&dummy,&record,&word);

while(good && (list != listnum || subclass != irrep));

if(list != listnum || subclass != irrep)
cout << "Danger! Failed to locate list (" << listnum

<< ", " << irrep << ")" << endl;

return (record-1)*4096 + (word-1);
}

/////////////////////////////////////////////////////////////////
//loadListRHF(outfile (aces2 output), MOINTS, listnum, irrep,
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// fourList (4-index list to hold data))
//
// Locates the desired list on the MOINTS file and loads it into
// core memory in fourList (an instance of the fourIndex class
// structure).
//
// NB: The particle/hole string in fourList is used to determine
// the indices of each quantity. Thus, it must match the ordering
// used by aces2 in storing the lists. For details see the aces2
// user’s manual. Note that the left-most index is the least
// significant.
//////////////////////////////////////////////////////////////////
void loadListRHF(FILE *outfile, FILE *MOINTS, int listnum,

int irrep, fourIndex *fourList) {
//First, obtain the location of the list
int offset;
offset=getListStart(outfile,listnum,irrep);

//DEBUG
//cout << "Found offset " << offset << " for list " << fourList->getName()
// << endl;
//DEBUG END

//Now, seek to that location in MOINTS
fseek(MOINTS,(offset/2)*sizeof(double),SEEK_SET);

//Get size and index information from the fourList
int size, n;
double temp;
int i1, i2, i3, i4;

size=fourList->getSize();
fourList->getFirstIndices(i1,i2,i3,i4);

//Now, loop over the n data points
for(n=0;n<size;n++) {

fread(&temp,sizeof(double),1,MOINTS);
fourList->set(i1,i2,i3,i4,temp);
if(n<size-1) //avoid range-check error

fourList->getNextIndices(i1,i2,i3,i4);
}
//Presumably, the list has now been read in

}

/////////////////////////////////////////////////////////////////////////
//double CCSDenergyRHF(T1, T2mix, T2same, aaaa, abab)
//
// Calculates and returns the CCSD correlation energy for RHF reference.
/////////////////////////////////////////////////////////////////////////

double CCSDenergyRHF(twoIndex *T1, fourIndex *T2mix, fourIndex *T2same,
fourIndex *aaaa, fourIndex *abab) {

double tally=0;
double term1=0, term2=0;
double temp1, temp2, temp3, temp4;

int i,j,a,b;

//First, do aaaa sums
for(i=0;i<nocc;i++)

for(j=i+1;j<nocc;j++)
for(a=0;a<nvirt;a++)

for(b=a+1;b<nvirt;b++) {
temp1=T2same->get(a,b,i,j);
temp2=aaaa->get(a,b,i,j);
temp3=T1->get(i,a)*T1->get(j,b);
//temp4=T1->get(i,b)*T1->get(j,a);
tally+=temp2*(temp1 + 2*temp3);

}

//Now, do abab sums
for(i=0;i<nocc;i++)

for(j=0;j<nocc;j++)
for(a=0;a<nvirt;a++)

for(b=0;b<nvirt;b++) {
temp2=abab->get(a,b,i,j);
temp1=T2mix->get(a,b,i,j);
temp3=T1->get(i,a)*T1->get(j,b);
term2+=temp2*(temp1 + temp3);

}
term2/=2;

return 2*(tally+term2);

}

/////////////////////////////////////////////////////////////////
//Low-level contraction functions
/////////////////////////////////////////////////////////////////

double tripA1ss(int i, int j, int k, int a, int b, int c,
int is, int js, int ks, int as, int bs, int cs) {

double result=0.0;
double t, integral;
double tphase=1, intphase=-1;
int temp, mu;

if(b>c) {
temp=b;
b=c;
c=temp;
tphase*=-1;

}

if(i>j) {
temp=i;
i=j;
j=temp;
intphase*=-1;

}

for(mu=0;mu<nocc;mu++) {
if(mu==k||mu==a)
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continue;
if(mu<k)

t=tphase*T2same->get(mu,k,b,c);
else

t=-tphase*T2same->get(k,mu,b,c);
integral=intphase*ppph_aaaa->get(i,j,mu,a);
result+=t*integral;

}

return result;
}

double tripB1ss(int i, int j, int k, int a, int b, int c,
int is, int js, int ks, int as, int bs, int cs) {

double result=0.0;
double t, integral;
double tphase=1, intphase=-1;
int temp, alpha;

if(j>k) {
temp=j;
j=k;
k=temp;
tphase*=1.0;

}

if(a>b) {
temp=a;
a=b;
b=temp;
intphase*=1.0;

}

for(alpha=0;alpha<nvirt;alpha++) {
if(alpha==c||alpha==i)

continue;
if(alpha<c)

t=tphase*T2same->get(j,k,alpha,c);
else

t=-tphase*T2same->get(j,k,c,alpha);
integral=intphase*hhhp_aaaa->get(a,b,alpha,i);
result+=t*integral;

}
return result;

}

double tripA1ms(int i, int j, int k, int a, int b, int c,
int is, int js, int ks, int as, int bs, int cs) {

double result=0.0;
double t, integral;
double intphase=-1;
int temp, mu;

if(i>j) {
temp=i;
i=j;
j=temp;
intphase*=-1;

}

for(mu=0;mu<nocc;mu++) {
if(mu==a)
continue;

if(ks!=cs)
t=-T2mixed->get(mu,k,c,b);

else
t=T2mixed->get(mu,k,b,c);

integral=intphase*ppph_aaaa->get(i,j,mu,a);

result+=t*integral;
}
return result;

}

double tripB1ms(int i, int j, int k, int a, int b, int c,
int is, int js, int ks, int as, int bs, int cs) {

double result=0.0;
double t, integral;
double tphase=1, intphase=-1;
int temp, alpha;

if(a>b) {
temp=a;
a=b;
b=temp;
intphase*=1.0;

}

for(alpha=0;alpha<nvirt;alpha++) {
if(alpha==i)

continue;
if(ks==cs)

t=tphase*T2mixed->get(j,k,alpha,c);
else

t=-tphase*T2mixed->get(k,j,alpha,c);
integral=intphase*hhhp_aaaa->get(a,b,alpha,i);
result+=t*integral;

}
return result;

}

double tripA1sm(int i, int j, int k, int a, int b, int c,
int is, int js, int ks, int as, int bs, int cs) {

double result=0.0;
double t, integral;
double tphase=1, intphase=-1;
int temp, mu;

if(b>c) {
temp=b;
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b=c;
c=temp;
tphase*=-1;

}

for(mu=0;mu<nocc;mu++) {
if(mu==k)

continue;
if(mu<k)

t=tphase*T2same->get(mu,k,b,c);
else

t=-tphase*T2same->get(k,mu,b,c);
if(as!=js)

integral=-intphase*ppph_abab->get(j,i,mu,a);
else

integral=intphase*ppph_abab->get(i,j,mu,a);
result+=t*integral;

}
return result;

}

double tripB1sm(int i, int j, int k, int a, int b, int c,
int is, int js, int ks, int as, int bs, int cs) {

double result=0.0;
double t, integral;
double tphase=1, intphase=-1;
int temp, alpha;

if(j>k) {
temp=j;
j=k;
k=temp;
tphase*=1.0;

}

for(alpha=0;alpha<nvirt;alpha++) {
if(alpha==c)

continue;
if(alpha<c)

t=tphase*T2same->get(j,k,alpha,c);
else

t=-tphase*T2same->get(j,k,c,alpha);
if(as!=is)

integral=-intphase*hhhp_abab->get(a,b,alpha,i);
else

integral=intphase*hhhp_abab->get(b,a,alpha,i);
result+=t*integral;

}

return result;
}

double tripA1mm(int i, int j, int k, int a, int b, int c,
int is, int js, int ks, int as, int bs, int cs) {

double result=0.0;
double t, integral;
double tphase=1, intphase=-1;
int temp, mu;

for(mu=0;mu<nocc;mu++) {
if(ks!=cs)

t=-tphase*T2mixed->get(mu,k,c,b);
else

t=tphase*T2mixed->get(mu,k,b,c);
if(as!=js)

integral=-intphase*ppph_abab->get(j,i,mu,a);
else

integral=intphase*ppph_abab->get(i,j,mu,a);
result+=t*integral;

}
return result;

}

double tripB1mm(int i, int j, int k, int a, int b, int c,
int is, int js, int ks, int as, int bs, int cs) {

double result=0.0;
double t, integral;
double tphase=1, intphase=-1;
int temp, alpha;

for(alpha=0;alpha<nvirt;alpha++) {
if(ks!=cs)

t=-tphase*T2mixed->get(j,k,c,alpha);
else

t=tphase*T2mixed->get(j,k,alpha,c);
if(as!=is)

integral=-intphase*hhhp_abab->get(a,b,alpha,i);
else

integral=intphase*hhhp_abab->get(b,a,alpha,i);
result+=t*integral;

}
return result;

}

/////////////////////////////////////////////////////////////////
//Diagram drivers:
//
//Each diagram has two levels of driver functions so that the
//implementation is as close to a literal rendering of the
//mathematics as possible. The top level driver generates all
//specified antisymmetrized permutations, while the second
//level driver determines the spin case and calls a final
//function to actually perform the contraction.
/////////////////////////////////////////////////////////////////

//second-level spin case drivers

double TripA1d2(int i, int j, int k, int a, int b, int c) {
//Unpack spin and orbital information

int is, js, ks, as, bs, cs;
int io, jo, ko, ao, bo, co;
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is=i%2; io=i/2;
js=j%2; jo=j/2;
ks=k%2; ko=k/2;
as=a%2; ao=a/2;
bs=b%2; bo=b/2;
cs=c%2; co=c/2;

//Check to see if the element is spin-forbidden
if(bs==cs && ks!=bs)

return 0.0;
if(is==js && as!=is)

return 0.0;

//Sort according to spin-case
if(bs==cs) { //T2 same

if(is==js) //same integral
return tripA1ss(io,jo,ko,ao,bo,co,is,js,ks,as,bs,cs);

else
return tripA1sm(io,jo,ko,ao,bo,co,is,js,ks,as,bs,cs);

}
else { //T2 mixed

if(is==js)
return tripA1ms(io,jo,ko,ao,bo,co,is,js,ks,as,bs,cs);

else
return tripA1mm(io,jo,ko,ao,bo,co,is,js,ks,as,bs,cs);

}

}

double TripB1d2(int i, int j, int k, int a, int b, int c) {
//Unpack spin and orbital information

int is, js, ks, as, bs, cs;
int io, jo, ko, ao, bo, co;

is=i%2; io=i/2;
js=j%2; jo=j/2;
ks=k%2; ko=k/2;
as=a%2; ao=a/2;
bs=b%2; bo=b/2;
cs=c%2; co=c/2;

if(as==bs && is != as)
return 0.0;

if(js==ks && cs != js)
return 0.0;

if(js==ks) { //T2 same
if(as==bs)

return tripB1ss(io,jo,ko,ao,bo,co,is,js,ks,as,bs,cs);
else

return tripB1sm(io,jo,ko,ao,bo,co,is,js,ks,as,bs,cs);
}
else {

if(as==bs)
return tripB1ms(io,jo,ko,ao,bo,co,is,js,ks,as,bs,cs);

else
return tripB1mm(io,jo,ko,ao,bo,co,is,js,ks,as,bs,cs);

}

}

//top-level permutation drivers

double TripA1driver(int i, int j, int k, int a, int b, int c) {
double result=0.0;

result+= -TripA1d2(i,j,k,a,b,c);
result+= +TripA1d2(i,j,k,a,c,b);
result+= +TripA1d2(i,j,k,c,b,a);

result+= +TripA1d2(i,k,j,a,b,c);
result+= -TripA1d2(i,k,j,a,c,b);
result+= -TripA1d2(i,k,j,c,b,a);

result+= +TripA1d2(k,j,i,a,b,c);
result+= -TripA1d2(k,j,i,a,c,b);
result+= -TripA1d2(k,j,i,c,b,a);

return result;
}

double TripB1driver(int i, int j, int k, int a, int b, int c) {
double result=0.0;

result+= TripB1d2(i,j,k,a,b,c);
result+= -TripB1d2(i,j,k,c,b,a);
result+= -TripB1d2(i,j,k,a,c,b);

result+= -TripB1d2(j,i,k,a,b,c);
result+= TripB1d2(j,i,k,c,b,a);
result+= TripB1d2(j,i,k,a,c,b);

result+= -TripB1d2(k,j,i,a,b,c);
result+= TripB1d2(k,j,i,c,b,a);
result+= TripB1d2(k,j,i,a,c,b);

return result;
}

/////////////////////////////////////////////////////////////////
//Main function
/////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {

//Print banner
cout << "gersh: Calculates Gershgorin estimator v0.3" << endl;

//Program operation flags
int debug=0;
int verbose=0;
int energy=0;

//The first two arguments must be the aces2 output and MOINTS file
//respectively. If argc is too small, display the help and quit
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if(argc<3) {
cout << "gersh: file names missing" << endl << endl;
showHelp();
return -1;

}

//Most importantly need the number of active electrons
int nelec=-1; //set to minus 1 as a flag

//Try opening the files to be sure everything works
FILE *outfile=fopen(argv[1],"r");
FILE *intsfile=fopen(argv[2],"rb");

if(!outfile)
cout << "Couldn’t open aces2 output file: " << argv[1] << endl;

if(!intsfile)
cout << "Couldn’t open integral file: " << argv[2] << endl;

if(!outfile||!intsfile)
return -1;

//Parse any special options
parseOptions(argc,argv,debug,verbose,nelec,energy);

if(nelec==-1) {
nelec=2;
cout << "Warning! Number of electrons not specified" << endl
<< "Defaulting to 2 electrons." << endl;

}

//If this is debugging mode, examine MOINTS
if(debug)

printmoints(intsfile);

//We must read the MOINTS file structure
int norbs; //number of orbitals

//For now, we will make no attempt to exploit the
//symmetry group of the molecule under consideration

if(debug||verbose)
cout << "Scanning " << argv[1] << "..." << endl;

analyzeCalc(outfile,calctype,norbs);

if(calctype==RHF) {
//Currently only closed-shell RHF reference works
//Then occupied orbitals are just n/2, etc...
nocc=nelec/2;
nvirt=norbs-nocc;

cout << "Correlating " << nelec << " electrons..." << endl;
if(verbose) {

cout << nocc << " occupied orbitals." << endl;
cout << nvirt << " virtual orbitals." << endl;

}
//O.K., now we have to load all the relevant coupled-cluster info
//We’ll start with T1

//Sadly, T1 does not appear in MOINTS, so we have to parse it
//out of the aces2 output file.
int numt1=nocc*nvirt;

t1 = new twoIndex("T1 Amps","ph","aa");
//Now, read in the T1 amplitudes...

readT1RHF(outfile,t1);

if(debug)
t1->dump();

//Load the mixed T2 amplitudes
T2mixed = new fourIndex("T2 IjAb", "pphh", "abab");
loadListRHF(outfile,intsfile,46,1,T2mixed);
if(debug)

T2mixed->dump();

//Load the alpha-alpha T2 amplitudes
T2same = new fourIndex("T2 IJAB", "pphh", "aaaa");
loadListRHF(outfile,intsfile,44,1,T2same);
if(debug)

T2same->dump();

//For coupled-cluster energy, only integrals
//of the form <pp||hh> appear.

//Load the hhpp, aaaa integrals (list 14)
hhpp_aaaa = new fourIndex("<AB||IJ>","hhpp","aaaa");
loadListRHF(outfile,intsfile,14,1,hhpp_aaaa);
if(debug)

hhpp_aaaa->dump();

//Load the hhpp, abab integrals (list 16)
hhpp_abab = new fourIndex("<Ab||Ij>","hhpp","abab");
loadListRHF(outfile,intsfile,16,1,hhpp_abab);
if(debug)

hhpp_abab->dump();

//consistency test
if(energy)

cout << "CCSD correlation energy: " <<
CCSDenergyRHF(t1,T2mixed,T2same,hhpp_aaaa,hhpp_abab) << endl;

//For the excited diagrams, we need more integral lists

ppph_aaaa = new fourIndex("<IJ||KA>","ppph","aaaa");
loadListRHF(outfile,intsfile,7,1,ppph_aaaa);
ppph_abab = new fourIndex("<Ij||Ka>","ppph","abab");
loadListRHF(outfile,intsfile,10,1,ppph_abab);
hhhp_aaaa = new fourIndex("<AB||CI>","hhhp","aaaa");
loadListRHF(outfile,intsfile,27,1,hhhp_aaaa);
hhhp_abab = new fourIndex("<Ab||Ci>","hhhp","abab");
loadListRHF(outfile,intsfile,30,1,hhhp_abab);

double G_3 = 0.0; //this is supposed to be the triples piece...



64

//Now, loop over all triples
//I’ll try to follow to notation used in my thesis (latin indices to
//specify the matrix elements, greek indices to specify summation)
//I guess that’s the Sommerfeld convention.

int i, j, k; //occupied indices
int a, b, c; //virtual indices
double element; //tally current element

for(k=2;k<2*nocc;k++)
for(j=1;j<k;j++)

for(i=0;i<j;i++)
for(c=2;c<2*nvirt;c++)

for(b=1;b<c;b++)
for(a=0;a<b;a++) { //Whew!

if(debug)
cout << "Calculating matrix element for: " << endl
<< a << "\t" << b << "\t" << c << endl
<< i << "\t" << j << "\t" << k << endl;

//The convention here for RHF reference is that
//even numbers (0, 2, 4,...) are alpha spin (0, 1, 2)
//odd numbers (1, 3, 5,...) are beta spin (0, 1, 2)

//Begin calling diagrams (see thesis)
element=0;

element+=TripA1driver(i,j,k,a,b,c);
element+=TripB1driver(i,j,k,a,b,c);

}
}

}
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