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Strings, Chains, and Ropes∗
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Abstract. Following Antman [Amer. Math. Mon., 87 (1980), pp. 359–370], we advocate a more
physically realistic and systematic derivation of the wave equation suitable for a typical
undergraduate course in partial differential equations. To demonstrate the utility of this
derivation, three applications that follow naturally are described: strings, hanging chains,
and jump ropes.

Key words. partial differential equations, wave equation, elastic one-dimensional continua, hanging
chain, jump rope

AMS subject classifications. 35-01, 35L05, 33C10, 34B15

DOI. 10.1137/050641910

1. Introduction. The derivation of the wave equation is an important moment
in students’ understanding of partial differential equations (PDEs), as it is often the
first PDE that students learn how to derive and solve. In 1980, Stuart Antman wrote
a paper advocating an “honest derivation of the classical equations of motion” for
strings [1]:

Many elementary books on partial differential equations ostensibly show
that the wave equation in one spatial dimension describes the small trans-
verse vibrations of an elastic string. Of these books I know of but one,
namely [11], whose development of the wave equation does not invoke such
unjustified simplifications as the assumption that the motion of each par-
ticle of the string is confined to a plane perpendicular to the line joining
the ends of the string.

A survey of popular PDE textbooks in use today reveals a similar situation. To
this author’s knowledge, Pinsky’s book [10] is the only popular PDE textbook that
derives the equations for the vibrating string in the manner described in section 2.
Other notable exceptions include Zauderer’s book [13], which derives the telegrapher’s
equation using correlated random walks, Lin and Segel’s book [8], which derives the
one-dimensional wave equation as a special case of elastic wave propagation, and
Kevorkian’s book [6], which derives the linear wave equation via an asymptotic ex-
pansion in the case of small amplitudes.

Derivations of the wave equation that make unnecessary assumptions are likely
to give students the false impression that deriving PDEs is an ad hoc and unrealistic
process. This impression causes students to be less comfortable deriving PDEs on
their own and therefore less competent mathematical modelers. Given that the wave
equation is the canonical example of a hyperbolic PDE, it is important that students
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be introduced to the wave equation in a flexible, physically realistic, and systematic
way.

In this paper, we put forth the additional argument that this “honest” derivation
of the wave equation provides students access to a variety of interesting applications.
It also gives instructors an opportunity to demonstrate that PDEs are used by math-
ematicians and scientists in concert with other mathematical topics (multivariable
calculus, ordinary differential equations, and asymptotic expansions, to name a few).
In section 2, we present this derivation, followed by applications to strings, chains,
and ropes.

2. A Derivation of the Wave Equation for Strings, Chains, and Ropes. Our
goal in this section is to derive a general equation governing the motion of any one-
dimensional elastic material, like a string, chain, or rope, situated in three dimensions.
Smoothness of all functions is assumed where necessary.

Suppose that the center of a string, chain, or rope is a curve described paramet-
rically by

x(s, t) =


x(s, t)y(s, t)
z(s, t)


 ,

such that continuously increasing s traces out the curve in R3. This curve may have
finite or infinite length. Furthermore, let us imagine that each value of s refers to
a specific point along the string, chain, or rope, in the same way that mile markers
refer to specific locations along a highway. So, we can track how each part of the
curve moves in time by fixing s and changing t. Since we have some freedom in this
parametric dependence, for convenience, let us choose s to represent the arc-length
along the curve in some reference or resting configuration. For example, a tautly held
string of length L stretching from (0, 0, 0) to (L, 0, 0) could be described by

xrest(s) =


s0
0


 for 0 ≤ s ≤ L.

When the parameter for a parametric curve measures arc-length, ‖xs‖≡‖∂x/∂s‖=1.
However, it is important to keep in mind that in nonequilibrium configurations of the
curve, s may not correspond to arc-length as portions of the curve can be stretched
(‖xs‖ > 1) or compressed (‖xs‖ < 1). The equations governing the motion of the
curve describe how the curve will respond to elongation or compression and external
forces.

Consider a short segment of the curve between s and s + ∆s shown in the free-
body diagram (Figure 1). The radius and density of the string, chain, or rope can vary
with s. Let ρ(s) be the linear mass density of the material (mass per unit length),
which can be thought of as the product of the cross-sectional area and the actual
density (mass per unit volume) of the material. If ∆s is small, the total mass of the
short segment is ∫ s+∆s

s

ρ(ζ)dζ ≈ ρ(s)∆s.

As we intend to invoke Newton’s second law, we must enumerate all of the forces
that act on this short segment of the curve. First, there are contact forces on the
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increa
sing s

T(s + ∆s, t )

a(s, t ) ρ(s ) ∆s

–T(s, t )

Fig. 1 Free-body diagram of a small segment of the curve. The dashed curve is x(s, t), the centerline
of the string, rope, or chain.

segment due to the portion of the curve to the left and to the right. Let T(s, t)
represent the force experienced by the segment to the left of s due to the segment
right of s. At any moment, if the curve is cut at s, forces are required to keep both
segments where they are. This thought experiment also implies that the force that
the segment right of s experiences due to the segment left of s is −T(s, t). (A purely
mathematical proof is given in [1].)

There may also be additional body forces acting on the segment, such as gravity
or air resistance. Let the sum of all these body forces be a(s, t)ρ(s)∆s. Then, using
Newton’s second law,

xtt(s, t)ρ(s)∆s = −T(s, t) + T(s+∆s, t) + a(s, t)ρ(s)∆s.

After dividing both sides by ∆s and allowing ∆s to approach zero, we obtain the
master wave equation

(2.1) ρ(s)xtt(s, t) = Ts(s, t) + a(s, t)ρ(s).

Equation (2.1) alone is not enough to completely describe the motion of the curve,
as it contains two unknown quantities, x and T. More information about the material
being described is needed. One quality that differentiates ropes, chains, and strings
from rigid beams is that they do not resist bending. Consequently, the contact force
T for such materials must always act in the direction of the tangent to the curve at s:

(2.2) T(s, t) = T (s, t)
xs(s, t)
‖xs(s, t)‖

.

The vector xs/‖xs‖ is a unit tangent vector, so the magnitude of T(s, t) is T (s, t),
which is also known as the tension.

In addition, a constitutive relation describing the response of the string, chain, or
rope to compression or expansion is needed. Here are three examples of constitutive
relations for elastic materials,1 i.e., materials that return to their original shape after
some applied deforming force is removed.

1Elastic materials have the property that tension is only a function of strain, ‖xs‖, and position
along the curve. Students may also enjoy learning about viscoelastic materials (like taffy), whose
tension also depends on the time rate of change of strain.
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The most common constitutive relation used in the derivation of the wave equation
corresponds to a perfectly elastic material, in which tension is proportional to ‖xs‖:
(2.3) T (s, t) = E‖xs‖,
where the constant of proportionality, E, is known as Young’s modulus. This consti-
tutive relation is popular because it makes (2.1) a linear PDE. Rubber, stretched to
several times its contracted length, satisfies this relation approximately [5]. However,
notice that (2.3) predicts that the curve would have zero length in the absence of
contact forces.

A more realistic assumption is that the material is linearly elastic, a material in
which stress (force per unit area) is proportional to stretch, where

stretch =
change in length
original length

=
‖xs‖ − 1

1
.

A corresponding constitutive relation would be

(2.4) T (s, t) = k (‖xs‖ − 1) ,

where k can be thought of as a spring constant.
A metal chain is an example of a curve that is inextensible, under reasonable

forces. Inextensibilty is mathematically enforced by requiring that

(2.5) ‖xs‖ = 1;

in other words, that s always corresponds to arc-length.
A brief history of this derivation of the governing equation for the vibrating

string is given in [1]. This derivation is no more mathematically complicated than the
common derivation of the one-dimensional wave equation, except that it encourages
students to gain more familiarity with concepts from multivariable calculus such as
vectors, parametric curves, and arc-length. Because the resulting equations are direct
consequences of physical principles, this derivation builds students’ physical intuition
and facility for mathematical modeling. Finally, exposing students to a variety of
constitutive relationships gives them opportunities for exploration.

3. Plucked Strings and Rubber Tubing. The canonical wave equation problem
in introductory PDE courses is the plucked string problem: How does the profile of a
tautly held guitar string evolve after it is plucked? Once (2.1) has been derived, this
linear problem follows very naturally if we assume that the guitar string is perfectly
elastic. (This is the most common assumption used in PDE textbooks, allowing for
variations in terminology.)

For example, let us assume that the tautly held guitar string has uniform ma-
terial properties and a resting length of L. In its resting configuration, the string is
parameterized by

xrest(s) =


s0
0


 for 0 ≤ s ≤ L.

We’ll assume that when the guitar string is plucked, the effect of gravity can be
neglected. Substituting (2.3) into (2.1) and taking a = 0, we get three linear PDEs,

xtt = c2xss,

ytt = c2yss,

ztt = c2zss,
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where c2 = E/ρ. Because these three equations are decoupled, the motions in each
dimension are independent. If the string is plucked in such a way that its initial
configuration lies in the x-z plane, it will always lie in this plane, since y(s, t) = 0
will be the solution to the PDE for y. This reduced problem can then be solved by
prescribing the boundary conditions x(0, t) = z(0, t) = z(L, t) = 0 and x(L, t) = L
and initial data for x(s, 0), xt(s, 0), z(s, 0), and zt(s, 0). If the string is released from
rest, then xt(s, 0) = 0 and zt(s, 0) = 0.

This problem provides instructors with an excellent opportunity to solve the ba-
sic wave equation with both homogeneous and inhomogeneous boundary conditions.
However, if one does not wish to solve two separate PDE problems or deal with inho-
mogeneous boundary conditions, one can eliminate the x-PDE problem by assuming
that each point on the string has no initial horizontal displacement and velocity.
Specifically, if one assumes that x(s, 0) = s and xt(s, 0) = 0, then x(s, t) = s for all
time. This allows the z-PDE to be rewritten in the more familiar form

ztt = c2zxx,

where z is the vertical displacement of the string.
Students can extend this problem by including air resistance or gravity, or by

assuming a linearly elastic string. Another variant of the plucked string problem is
the problem in which a piece of perfectly elastic rubber tubing is stretched to length
L, with one end fixed and the other attached to a rotating wheel. One set of equations
describing this scenario is

xtt = c2xss

with

x(0, t)=


α(1− cos(ωt))

α sin(ωt)
0


, x(L, t)=


L0
0


, x(s, 0)=


s0
0


, and xt(s, 0)=


00
0


.

Here, α is the radius of the wheel and ω is the angular frequency of the wheel’s
rotation.

As this problem has inhomogeneous boundary conditions, solving it requires eigen-
function expansions and some facility with inhomogeneous ODEs. It also has the fea-
ture that certain values of ω lead to resonant excitation (see Figure 2). Movies of reso-
nant and nonresonant behavior can be found at http://www.math.hmc.edu/˜dyong/
strings/.

4. Vibrational Modes of a Hanging Chain. The hanging chain problem is not
only a good example of the power of mathematical modeling, but also an excellent way
for students to become more familiar with Bessel functions besides studying problems
involving circular geometries [12].

Imagine a heavy chain with linear mass density ρ and length L, hanging by its
own weight from one of its ends. The motion of the chain is dominated by gravity, so
we substitute a(s, t) = −gk in (2.1) and use (2.5) to get

(4.1) ρxtt(s, t) =
∂

∂s
[T (s, t)xs]−


 0
0
ρg


 .

http://www.math.hmc.edu/~dyong/strings/
http://www.math.hmc.edu/~dyong/strings/
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Fig. 2 Snapshots of a piece of rubber tubing at different times, showing resonant behavior (α = 0.1,
ω = π, L = c = 2).

In its resting configuration, let the chain have the parameterization

xrest(s) =


00
s


 for 0 ≤ s ≤ L.

The parameter value s = L corresponds to the end of the chain that is fixed, and
s = 0 corresponds to the free end of the chain. Since the chain is fixed at s = L,

(4.2) x(L, t) =


00
L


 ,

and because the chain must not have any tension at its free end,

(4.3) T(0, t) = T (0, t)xs(0, t) = 0.

Using this fact and (4.1), we find the resting (time-independent) tension of the chain
to be Trest(s) = ρgs, which confirms our intuition that the resting tension of the chain
is due to its own weight.

As the chain is inextensible, we will use (2.5), which can be more conveniently
written as

(4.4) ‖xs‖2 = xs · xs = 1.

Since (4.4) is nonlinear, we will linearize2 the governing equations around the resting
state to obtain linear equations. Physically speaking, we are considering motions of

2Depending on the degree of sophistication of their students, instructors can use either formal
asymptotic expansions or the simplified approach that we use here.
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the chain that are very close to the resting, perfectly vertical state of the chain. To
that end, let

x(s, t) = xrest(s) + εx̃(s, t) + · · ·(4.5a)

T (s, t) = Trest(s) + εT̃ (s, t) + · · · ,(4.5b)

where ε is a positive number, much less than 1. The terms x̃ and T̃ are the perturba-
tions to the resting state, scaled by ε.

Substitute (4.5a) and (4.5b) into (4.3), (4.4), and (4.1), and rearrange terms
according to their power of ε. Terms that are multiplied by ε2 should be discarded
as they are much smaller than terms multiplied by ε, and we have already discarded
such terms in (4.5). All of the O(1) terms (terms that are not multiplied by ε) should
cancel each other out since the resting state of the chain is itself a solution of the
governing equations.

Small movements of the chain away from the resting configuration are governed
by the remaining O(ε) terms. The O(ε) terms from (4.3) imply that

T̃ (0, t) = 0.

The O(ε) terms from (4.4) and (4.2) imply that

z̃(s, t) = 0,

meaning that to this level of approximation, points on the chain do not move vertically;
the motion is largely in the x- and y-directions. When the components of the O(ε)
terms in (4.1) are written out, we obtain the equations

ρx̃tt =
∂

∂s
(ρgs x̃s) ,(4.6a)

ρỹtt =
∂

∂s
(ρgs ỹs) .(4.6b)

(The z-component implies that T̃ (s, t) = 0, since z̃ = 0.) The motions of the chain in
the x- and y-directions are decoupled at this level of approximation, so we can treat
them in the same way.

Using separation of variables, the resulting linear boundary value problem,

x̃tt = ∂
∂s (gs x̃s)

subject to x̃(L, t) = 0
and |x̃(0, t)| <∞,

has product solutions3

x̃(s, t) = J0

(
zn

√
s

L

)[
α cos

(
znt

2

√
g

L

)
+ β sin

(
znt

2

√
g

L

)]
,

where α and β are any constants and zn is the nth positive root of J0(z). Each value
of n corresponds to a different vibrational mode of the hanging chain, the first few of
which are shown in Figure 3.

3Hint: After separating variables, the ODE involving s can be made to look like Bessel’s differ-
ential equation using the change of variables s = r2.
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Fig. 3 First four vibrational modes of the hanging chain; analytic solution shown in red. Photos
courtesy of Kevin Mapp.

As Lamb pointed out in [7], this solution correctly predicts not only the shapes
of the modes, but also their frequencies. The period of the nth mode is

Pn =
4π
zn

√
L

g
.

Verifying the analytically predicted frequencies of the vibrational modes of a hanging
chain is an easy and fun classroom demonstration. Though the motions in the x- and
y-directions are decoupled to this level of approximation, it is easier to generate these
modes by spinning the top of a hanging chain, rather than moving it from side to side
[12]. See http://www.math.hmc.edu/˜dyong/strings/ for movies taken during one of
these demonstrations.

Students can explore this problem further by examining the initial value problem
for the hanging chain problem (see [2] and [4]) or what happens at the O(ε2) level
of approximation. They might also be interested to read the wonderful paper on the
dynamics of the driven hanging chain by Belmonte et al. [3].

5. Shape of a Jump Rope. The arched curves of a catenary, a suspension bridge,
and a jump rope look similar, but they are subtly different because of differences

http://www.math.hmc.edu/~dyong/strings/
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Fig. 4 The shape of the main cables of the Golden Gate Bridge is very close to a parabola. Photo
courtesy of Patricia A. Browne.

in the forces acting on them. All three cases involve inextensible materials, and
gravity is the dominant force responsible for the shape of a catenary (hyperbolic
cosine) and a suspension bridge (parabola; see Figure 4). The difference between a
catenary, the curve made by an inextensible chain suspended from two points, and a
suspension bridge, is that the cables that support a suspension bridge are uniformly
spaced horizontally, whereas gravity acts uniformly on each segment of a catenary.
Mathematically speaking, the difference is whether the applied load is an integral
involving dx or ds.

The shape of an inextensible jump rope in motion is different from the former two
cases because at sufficiently high rotation rates, the dominant force is a centripetal
force, which is stronger at points farther from the axis of rotation. As it turns out, the
shape of a jump rope does not have a simple closed-form description like the catenary
and suspension bridge, but we can determine its shape nonetheless.

Let ω be the angular velocity of the rotation and suppose that in that rotating
frame of reference, the shape of the jump rope remains static in the x-y plane. Let us
orient the fixed ends of the jump rope at (0, 0) and (H, 0), with the x-axis being the
axis of rotation. In the rotating frame of reference, the apparent centrifugal “force”
acting on a short segment of the rope spanned by ∆s is ω2y(s)ρ(s)∆sj, so (2.1)
becomes

(5.1) 0 =
∂

∂s
(T (s)xs) + ω2y(s)ρ(s)j,

which must be solved in conjunction with the inextensibility constraint (2.5). One
way to solve this problem is to eliminate s and T and express y as a function of x.
When the mass density is constant, the resulting differential equation can be solved
using elliptic functions [9]; we do not discuss it further here.

An alternative way to attack this nonlinear ODE is to write it in terms of θ,
the angle that the tangent to the curve makes with the x-axis. Let xs = cos(θ(s))
and ys = sin(θ(s)), so that the inextensibility constraint is automatically satisfied.
In addition, the curvature of the jump rope becomes |θ′(s)|. The two components of
(5.1) become

0 =
∂

∂s
[T (s) cos(θ)] ,(5.2a)

0 =
∂

∂s
[T (s) sin(θ)] + ω2ρ(s)

∫ s

0
sin(θ(τ))dτ.(5.2b)
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Equation (5.2a), when integrated, becomes

(5.3) T (s) =
C

cos(θ)
,

where C is a constant. This equation tells us that the tension of the rope is minimized
when θ = 0, which occurs where the jump rope is farthest from its axis of rotation.
That minimum tension is C. Using (5.3) in (5.2b), we get

(5.4) 0 =
C θ′(s)

ρ(s) cos2(θ(s))
+ ω2

∫ s

0
sin(θ(τ))dτ.

Substituting s = 0 into (5.4) gives θ′(0) = 0, or that the jump rope has zero curvature
at s = 0.

As (5.4) is a nonlinear equation, we will approximate its solutions numerically.
To that end, we differentiate (5.4) once more to eliminate the integral. The system
of equations to be solved is

x′ = cos θ,(5.5a)

y′ = sin θ,(5.5b)

θ′′ = −2(θ′)2 tan θ +
ρ′(s)
ρ(s)

θ′ − ω2ρ(s)
C

sin θ cos2 θ,(5.5c)

subject to the boundary conditions x(0) = 0, x(L) = H, y(0) = 0, y(L) = 0, and
θ′(0) = 0. The minimum tension, C, and θ(0), the angle between the jump rope and
the x-axis at s = 0, are both unknown and can be determined using a simple shooting
method.

Different rotational modes of the jump rope are possible from this nonlinear
boundary value problem, as shown in Figure 5. In fact, it is easy to see that the
second mode (possessing one node in the middle of the jump rope) is made from two
copies of the fundamental mode, scaled by a factor of 1/2. This formulation of the
problem makes it easy to consider jump ropes with variable densities. An example of
one such jump rope is shown in Figure 5.

One extension of this problem is to ask students why the shape of the jump rope
becomes more sinusoidal as max y(s)/H tends to zero, as seen in Figure 5. This
extension involves linearizing the ODEs and leads to a nice discussion about the
differences between linear and nonlinear boundary value problems.

Another extension of this problem is to allow the jump rope to be linearly elastic;
in other words, to consider the rotating telephone cord problem. Intuitively, we
know that increasing the angular velocity of rotation increases the amplitude of the
telephone cord’s motion. This is different from the inextensible case, in which the
angular velocity affects the tension of the jump rope rather than its shape.

A more difficult extension is to consider the temporal dynamics of the jump rope.
For example, one can introduce a periodic forcing to simulate the effect of the jump
rope hitting the ground periodically.



STRINGS, CHAINS, AND ROPES 781

Fig. 5 On the left, first two modes of a jump rope with ρ(s) = 1 and ω = 1, for L = 5 (solid) and
L = 1.2 (dotted). On the right, jump rope with L = 5 and ω = 1, constant mass density
ρ(s) = 1 (dotted) and variable mass density ρ(s) = 5 + 4 sin(4πs) (red corresponds to ρ = 9,
blue ρ = 1).
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