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ABSTRACT

Cluster robust models are a kind of statistical models that attempt to estimate pa-

rameters considering potential heterogeneity in treatment effects. Absent heterogeneity in

treatment effects, the partial and average treatment effect are the same. When heterogene-

ity in treatment effects occurs, the average treatment effect is a function of the various

partial treatment effects and the composition of the population of interest. The first chapter

explores the performance of common estimators as a function of the presence of heterogene-

ity in treatment effects and other characteristics that may influence their performance for

estimating average treatment effects. The second chapter examines various approaches to

evaluating and improving cluster structures as a way to obtain cluster-robust models. Both

chapters are intended to be useful to practitioners as a how-to guide to examine and think

about their applications and relevant factors. Empirical examples are provided to illustrate

theoretical results, showcase potential tools, and communicate a suggested thought process.

The third chapter relates to an open-source statistical software package for the Julia

language. The content includes a description for the software functionality and technical

elements. In addition, it features a critique and suggestions for statistical software devel-

opment and the Julia ecosystem. These comments come from my experience throughout

the development process of the package and related activities as an open-source and profes-

sional software developer. One goal of the paper is to make econometrics more accessible

not only through accessibility to functionality, but understanding of the code, mathematics,

and transparency in implementations.
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Chapter 1

On Cluster Robust Models

Regression analysis is commonly used to estimate parameters in a model for prediction

or causal inference (i.e., β̂ vs ŷ). In either case, the process consists in obtaining good

estimates for model parameters which can help answer the following questions: What is the

expected effect of a treatment on the outcome ceteris paribus? For a specific case, what

is the expected effect of a treatment on its outcome ceteris paribus? For these purposes,

the average treatment effect (ATE) is a common parameter of interest which is defined in

equation 1.1

βATE = 1
m

m∑
i=1

∂yi

∂x
(1.1)

where i denotes an observation in the population of interest with m observations and ∂yi

∂x

denotes the marginal effect of x (a feature) on the outcome y. The definition of the ATE is

then the average of the partial effects across every observation in the population of interest.

When the partial effect is the same across every observation, the average treatment effect

simplifies to just the partial effect as seen in equation 1.2.

βATE = ∂y

∂x
= 1

m

m∑
i=1

∂yi

∂x
(1.2)
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When the partial effects vary across observations, the population exhibits heterogeneity in

treatment effects (HTE). The ATE under HTE simplifies to equation 1.3

βATE = 1
m

g∑
j=1

|Gj|
∂yj

∂x
(1.3)

where j is a cluster identifier that groups all observations that share the same partial effect

and |Gj |
m

is the share of cluster j in the population of interest.

Estimators for the ATE ideally exhibit the same desirable traits regardless of the pres-

ence of HTE such as (1) consistency, (2) unbiasedness or low bias, (3) efficiency, and (4)

provide an appropriate estimator for the variance of the estimates. This study examines the

properties of estimators given relevant assumptions identified in previous research. How-

ever, unlike previous work, the present provide an analysis of these estimators under a set

of joint assumptions that fully characterize an application rather than analyzing each con-

dition in isolation. Fully characterizing a scenario allows practitioners to better identify the

case for their application and choose among potential options taking into account a more

comprehensive view.

A canonical example of HTE relates to the medical literature (e.g., clinical trials). Det-

tori et al. (2011) discusses the different questions a clinical trial seeks to answer; a clinical

trial attempts to answer “is treatment A better than treatment B on average for a select

population?” while most clinicians would like to know “is treatment A better than treatment

B for this specific patient?” In the ideal scenario, the clinician would be able to correctly

identify the patient’s type (how it is likely to respond to treatments) and based on the pa-

tient’s type, prescribe the optimal treatment (e.g., personalized medicine). A second best,

is to use the distribution of partial effects to inform the optimal course, for example, using

the ATE when screening is unfeasible.

HTE are also critical to fields such as discrimination and program evaluation. For exam-

ple, the Blinder-Oaxaca decomposition (Blinder 1973; Oaxaca 1973) is one tool specifically

2



designed to address HTE in the context of discrimination which is often applied in the con-

text of race/gender for wages and returns to education such as in Card and Krueger (1992).

In the case of program evaluations, a critical component is external validity or what features

influence whether the intervention effect generalizes. External validity may be invalid due to

differences in explanatory variables (e.g., differences in implementations) or HTE, meaning

that the estimated relation does not hold for cases different from the ones used in the analysis

(Athey and Guido W. Imbens 2016).

Differences in the ATE computed from incorrect models do not provide correct estimates

and in many cases these differ substantially from cluster robust models (Gibbons, Súarez Ser-

rato, and Urbancic 2018). The importance of HTE is often ignored with grave consequences.

One known debacle concerns breast screening guidelines for which non-white women are

recommended to start screening decades later than what would be optimal for these groups

resulting in serious under-screening (Stapleton et al. 2018). In this case, extrapolating from

one subgroup to the population of interest was a mistake and disentangling heterogeneity

between groups could have led to an improvement through group specific models.

The ATE under HTE is a function of the partial treatment effects and the population

composition (see equation 1.3). For estimating an ATE with potential HTE, the literature

has identified several factors that influence the performance common estimators: the sam-

pling design (random or clustered), the treatment mechanism (for experimental studies), and

the distribution of the treatment (Abadie et al. 2017). Other considerations are shared with

estimators in general such as the sample size. The set of commonly used estimators include

pooling, fixed effects (within), and interaction. In addition to these, I include the regression-

weighted estimator (RWE) proposed in Gibbons, Súarez Serrato, and Urbancic (2018). This

study presents the properties of each estimator under fully characterizing applications in

order to assess when are these appropriate and which are optimal if any.

3



1.1. ASSUMPTIONS AND CONDITIONS

1.1 Assumptions and Conditions

The two conditions that affect the properties of commonly used estimators for ATE with

HTE are the sampling design and the distribution of the treatment. The sampling designs

can be either random or clustered. Under the random sampling design, every observation

has an equal probability of being observed. Under the clustered sampling design, every

observation has a probability of being observed that depends on the cluster. Equation 1.4

describes the sampling probability for each observation under each sampling design

P (si|i ∈ Gj) =


s if random sampling

|Gj |
m

sj if clustered sampling
(1.4)

where P (si|i ∈ Gj) is the conditional probability of observation i, an observation that

belongs to cluster j, being observed, s is a constant probability, and |Gj |
m

sj expresses the

product of the cluster’s share in the population and a cluster specific sampling probability

sj.

The conditional distribution of treatment in observational studies is akin to the treatment

mechanism in experimental studies. For this study, I have chosen a continuous treatment

normally distributed which allows us to fully characterize its distributions by its first two

moments. The four possible conditions considered are,

• D ∼ N (µ, σ2)

• D ∼ N (µj, σ2)

• D ∼ N
(
µ, σ2

j

)

• D ∼ N
(
µj, σ2

j

)

which allows for constant or cluster dependent moments for the first two moments (i.e., fully

characterizes the distribution).
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1.2. EVALUATION METRICS

Considering both the sampling design and the possible treatment distribution, a neces-

sary assumption is that any sample will have, in expectation, a representative distribution

of explanatory variables by each cluster. An assumption I impose on the cluster-specific

sampling probabilities ({s}) is that every element is sufficiently relatively high conditioned

on the population composition such that that every cluster is represented in the sample.

1.2 Evaluation Metrics

Desirable characteristics of an estimator include consistency, unbiasedness or low bias,

efficiency, and an estimator for the variance of the estimates. Approaches to evaluating es-

timators include deriving the probability limits (i.e., probability limit and convergence rate)

and Monte Carlo simulation to observe finite-sample properties. This study uses both ap-

proaches by relying on probability limits derived in previous studies to explain and document

finite-sample properties through Monte Carlo simulations.

The consistency, bias, and efficiency of estimators is assessed based on the distribution of

estimates from Monte Carlo simulations. For evaluating the properties of the variance of the

estimates, this study consider the 95% confidence intervals from various variance covariance

estimators in order to assess their performance in the context of empirical coverage rates.

The empirical coverage rates are simply the average rate at which statistically significance

at the given confidence level is observed. The statistical significance refers to the trial

estimate being statistically different from expected value (e.g., for consistent estimators the

probability limit).

1.3 Estimators

The two major strategies to handle HTE in estimating ATE are: estimating the cluster-

specific partial effects or using weights to correct the sample or intermediate estimates used

by the estimator (Athey and Guido W. Imbens 2016). However, one should note that simply
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1.3. ESTIMATORS

using weights to make a sample representative does not provide a suitable model for ATE

with possible HTE (Solon, Haider, and Wooldridge 2015). The estimators considered in this

study include both strategies.

The most basic estimator is the pooling model which ignores the HTE and fits a single

slope for all observations leading to equation 1.5

y = β0 + X1β1 + X2β2 + u (1.5)

where y is a continuous non-censored outcome, X1 and X2 are two explanatory features, β1

and β2 are the parameters for the partial effects, and u is the idiosyncratic error term. The

pooling model makes the assumption that the partial effect β̂1 is a good estimate for the

ATE with HTE for dimension X1. A second estimator is the within estimator (fixed effects

models) which uses equation 1.6

y = βGj
+ X1β1 + X2β2 + u (1.6)

where β1 is the ATE for X1. The within estimator may be estimated through a series of indi-

cators for cluster memberships or through the annihilated version of the linear predictor/re-

sponse. A third estimator is the regression-weighted estimator (Gibbons, Súarez Serrato,

and Urbancic 2018) which uses the proportional inverse of the variance of the annihilated

treatment variable by cluster as the weights as in equation 1.7.

ŵi =
[
V̂
(
X̃j

)]−1/2
(1.7)

The annihilated distribution of the treatment can be computed from the residuals of the

model given by 1.8.

X1 = γGj
+ X2 + u (1.8)

One needs to obtain the annihilated version of the outcome, ỹ, which can be obtained as the

6



1.3. ESTIMATORS

residuals of the model given by 1.9.

y = γGj
+ X2 + u (1.9)

One obtains the parameter estimates through the weighted least squares model as in equation

1.10

β̂RWE =
(
X̃>WX̃

)
W >ỹ (1.10)

Lastly, the interactions model which uses equation 1.11

y = β0 + X1 (β1 + γg) + X2β2 + u (1.11)

where the ATE is constructed using a linear combination of the partial effects and estimates

for the population composition. When the sample frequencies are used as the estimates

for the population frequency I refer to the estimator as the interaction-weighted estimator

(IWE). If some outside estimate is used for estimating the population composition I refer

to the estimator as interaction-weighted estimator using population composition estimates

(IWE POP).

We present a dummy example of a trial using a population to illustrate how the inter-

action estimator allows to obtain the ATE. The first step is to fit the model described in

equation 1.11. Without loss of generality, the results may look something like Table 1.1.

Next, I look at the sample composition (equation 1.12). Lastly, I can apply equation 1.13 for

the ATE and equation 1.14 for the standard error estimates. When applying the interactions

model to a sample the difference between IWE and IWE POP is how is L̂ formed; through

the sample frequencies or some outside estimate (e.g., gender ratios, age distributions, urban

share of population, etc.)

L =
(

|G1|
m

,
|G2|
m

,
|G3|
m

,
|G4|
m

,
|G5|
m

)
= (0.350, 0.385, 0.071, 0.075, 0.119) (1.12)
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1.3. ESTIMATORS

Table 1.1: Estimates of Cluster-Specifics Partial Effects (β1 + γg) (population)

Parameter Estimate

X1 & cluster: 1 0.488
X1 & cluster: 2 0.756
X1 & cluster: 3 1.016
X1 & cluster: 4 1.269
X1 & cluster: 5 1.484

β̂ATE
X1 =

5∑
g=1

Lgβ̂X1,g = 0.807 (1.13)

The standard error is computed from the linear combination as well.

√
L>

(
Var

[
β̂X1,g

])
L = 0.006 (1.14)

The variance covariance estimators considered are the expected information matrix (EIM)

and the cluster robust variance covariance estimator (Liang and Zeger 1986; Arellano 1987;

Rogers 1993; Stock and Watson 2008; Cameron and Miller 2015) which is a generalization of

the heteroscedasticity consistent Eicker-Huber-White (EHW) variance covariance estimator

(Eicker 1967; Huber 1967; White 1980). The CRVE can be biased in many cases, but

appropriate in certain cases with the presence of HTE and clustered sampling in the case of

the pooling and within estimators (Abadie et al. 2017). It is also the recommended variance

covariance estimator for the RWE estimator. The estimator uses equation 1.15

VLZ

(
β̂
)

=
(
X>X

)−1
 J∑

j=1
X>

j ΩjXj

(X>X
)−1

(1.15)

In this study, the CRVE was considered for the clustered sampling design conditions, but

its performance was orders of magnitude worst than the EIM. For this reason, the reported

empirical coverage rates are reported using the EIM for all cases.
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1.4. METHODOLOGY: MONTE CARLO SIMULATION

1.4 Methodology: Monte Carlo Simulation

Consider the following DGP

y = β0 + X1 (β1 + γg) + X2β2 + u (1.16)

where y is the outcome variable, X1 and X2 features, (β1 + γg) and β2 the partial effects for

each feature, β0 is an intercept term, and u the error term. In this model, the DGP shows

HTE for the X1 dimension since the partial effect differs for each observation depending on

which cluster g the observation belongs to. The partial effect for an observation in cluster

g = 1 would then be the linear combination β1 + γ1 and so on.

Consider the following population, sampling designs, and treatment distributions:

• (β0, β1, β2) = (−0.2, 1.0, 0.5)

• (γ1, γ2, γ3, γ4, γ5) = (−0.5, −0.25, 0.00, 0.25, 0.50)

• X2 ∼ N (−1.0, 0.5)

• u ∼ N (0.0, 1.0)

• X1 ∼ D

• Random Sampling: p = 0.1

• Clustered Sampling: (p1, p2, p3, p4, p5) = {0.10, 0.15, 0.20, 0.25, 0.30} (in each trial each

cluster dependent sampling probability sampled from the set without replacement)

• Under constant mean and variance D = N (0.0, 1.0)

• Under variable mean D = N (γg, 1.0)

• Under variable variance D = N (0.0, 0.25 + |γg|)

• Under variable mean and variance D = N (γg, 0.25 + |γg|)

9



1.5. RESULTS

Using the DGP specified above I generate a population with the following summary

statistics:

• m = 100, 000

• (|G1| , |G2| , |G3| , |G4| , |G5|) = (35013, 38502, 7093, 7455, 11937)

• βATE
X1 = 0.8070025

Given the DGP and sampling designs, this study can explore the behavior of different

estimators for the ATE using common metrics for the quality of the first and second moments

under various conditions. Each Monte Carlo simulation consists of 1,000 trials. This exercise

allows to survey various results in the literature in an accessible format.

1.5 Results

The results are reported through the empirical distribution of the parameters estimates

in Figure 1.1, the estimated distribution moments in Table 1.2, and the empirical coverage

rates in Table 1.4. Under the random sampling design all estimators show a bell curved

distribution centered on the true parameter value except for the within estimator which

shows bias when the variance of the treatment distribution is correlated with the clusters

and the pooling estimator with the treatment distribution having a constant mean and

correlated variance. The RWE is robust to the presence of correlated variance of treatment

different from the pooling nor within estimators.

Under the clustered sampling design only the interaction-weighted estimator using pop-

ulation estimates showed a first-rate convergence rate. While the other estimators had a

mean close to the parameter value, the standard deviation is about six times larger, has

about three times as much skewness, and about one kurtosis less than under the random

sampling counterpart.
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1.5. RESULTS

Empirical coverage rates for the random sampling seem appropriate having rates close

to the expected 0.95. One exception is the RWE which has significant lower coverage rates.

The t-distribution used with the estimated variance covariance estimates had a residual

degrees of freedom based on the single parameter à la manner in the implementations by

the authors. However, it may be the case that the residual degrees of freedom should be

adjusted to account for the intermediate estimates. Under the clustered sampling design both

the CRVE and the EIM estimators (to lesser extend) are unable to capture the variability

of the parameter estimates.
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Figure 1.1: Distribution of ATE Estimates
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1.5. RESULTS

Table 1.2: Moments of Parameter Estimates (1,000 trials) With Variance of Treatment
Independent

Distribution Estimator Mean Std Dev Skewness Kurtosis
Sampling Design R C R C R C R C

N (µ, σ2) Pooling 0.80 0.81 0.01 0.06 0.12 0.34 0.03 -0.92
N (µ, σ2) Within 0.80 0.81 0.01 0.06 0.12 0.34 0.02 -0.92
N (µ, σ2) RWE 0.80 0.81 0.01 0.06 0.13 0.34 0.01 -0.93
N (µ, σ2) IWE 0.81 0.81 0.01 0.06 0.14 0.34 0.02 -0.93
N (µ, σ2) IWE POP 0.80 0.80 0.01 0.01 0.08 -0.05 -0.04 -0.04
N (µj, σ2) Pooling 0.82 0.82 0.01 0.06 0.05 0.28 0.09 -0.97
N (µj, σ2) Within 0.80 0.81 0.01 0.06 0.12 0.34 0.02 -0.92
N (µj, σ2) RWE 0.80 0.81 0.01 0.06 0.13 0.34 0.01 -0.93
N (µj, σ2) IWE 0.81 0.81 0.01 0.06 0.07 0.34 0.06 -0.93
N (µj, σ2) IWE POP 0.81 0.81 0.01 0.01 0.02 -0.05 -0.02 0.11

The average treatment effect is 0.807.
Sampling designs include: random (R) and clustered (C).

Table 1.3: Moments of Parameter Estimates (1,000 trials) With Variance of Treatment
Correlated

Distribution Estimator Mean Std Dev Skewness Kurtosis
Sampling Design R C R C R C R C

N
(
µ, σ2

j

)
Pooling 0.77 0.78 0.02 0.08 0.14 0.35 -0.05 -0.95

N
(
µ, σ2

j

)
Within 0.77 0.78 0.02 0.08 0.14 0.35 -0.05 -0.95

N
(
µ, σ2

j

)
RWE 0.81 0.81 0.02 0.06 0.13 0.34 -0.03 -0.85

N
(
µ, σ2

j

)
IWE 0.81 0.81 0.02 0.06 0.13 0.34 0.00 -0.85

N
(
µ, σ2

j

)
IWE POP 0.81 0.81 0.02 0.01 0.10 0.00 -0.01 0.06

N
(
µj, σ2

j

)
Pooling 0.81 0.81 0.02 0.08 -0.02 0.24 0.05 -1.04

N
(
µj, σ2

j

)
Within 0.77 0.78 0.02 0.08 0.14 0.35 -0.05 -0.95

N
(
µj, σ2

j

)
RWE 0.81 0.81 0.02 0.06 0.13 0.34 -0.03 -0.85

N
(
µj, σ2

j

)
IWE 0.81 0.81 0.02 0.06 0.09 0.34 -0.04 -0.87

N
(
µj, σ2

j

)
IWE POP 0.81 0.81 0.02 0.01 0.07 -0.06 -0.08 0.34

The average treatment effect is 0.807.
Sampling designs include: random (R) and clustered (C).
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1.6. CASE STUDY

Table 1.4: Empirical Coverage Rates (95% nominal rate, 1,000 trials)

β̂ATE
X1

Distribution Sampling Pooling Within RWE IWE IWE POP

N (µ, σ2) Random 0.94 0.94 0.97 0.95 0.96
Clustered 0.16 0.16 0.15 0.15 0.97

N (µj, σ2) Random 0.93 0.95 0.97 0.95 0.96
Clustered 0.13 0.16 0.15 0.15 0.97

N
(
µ, σ2

j

) Random 0.95 0.94 0.73 0.96 0.97
Clustered 0.13 0.13 0.15 0.26 0.97

N
(
µj, σ2

j

) Random 0.93 0.95 0.73 0.96 0.96
Clustered 0.07 0.14 0.15 0.24 0.98

1.6 Case Study

In order to validate the results, this study includes a case study using data from the

IPUMS Current Population Survey (CPS) for Social and Economic and Health Research

(Flood et al. 2018a). Imagine you are a high school counselor at a men’s high school in

California. Something you may want to know if the return on education attainment for men

in the civilian population living and working in California. Define the population of interest

as 25 - 64 years old white or black men part of the civilian population living and working in

California. Furthermore, define the treatment or variable of choice as education attainment:

(1) drop high school, (2) high school diploma or equivalent, (3) bachelor’s degree, or (4) a

graduate degree. The outcome can be operationalized as the typical weekly earning before

deductions (excludes self-employed). One covariate you would like to include is a career

stage proxied by age groups: (1) 25 - 34, (2) 35 - 44, (3) 45 - 64 in years old. You might be

concerned that the returns to education might have a racial disparity (i.e., heterogeneity in

treatment effects), but even though you could employ a screening / discrimination choice,

you prefer not to. Hence, you would like to use the average treatment effect.

After reflecting on the simulation results you decide to test the following estimators:
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1.6. CASE STUDY

1. pooling

ln (inc) = β0 + age β1 + educ β2 + u (1.17)

2. within

ln (inc) = β0 + age β1 + educ β2 + race β3 + u (1.18)

3. interaction

ln (inc) = β0 + age β1 + race ∗ educ β2 + u (1.19)

You use the IPUMS website and request a sample with the appropriate variables, sample

selection, restrict the sample to that of interest, and make sure to use the appropriate

sample weights such that your sample is representative. Given the quality of the survey

design you operate under the assumption of random sampling design. Afterwards you fit

the three models and ponder on whether and what estimates for the population composition

should you use for the interaction estimator. You decide to consider three choices: (1) sample

weights, (2) survey-weighted sample frequencies, and (3) best, potentially external, estimates

of the population composition. For the “best” estimates of the population you generated the

relevant tables using the CPS Table Creator tool.

You find the following results (see Figure 1.2) for the ATE. Your overall results sug-

gest a high school diploma predicts an 11% increase in income compared to no high school

diploma, a bachelor’s degree predicts a 8% increase in income compared to a high school

diploma or equivalent, and an advanced degree predicts a 3% increase in income compared

to a bachelor’s degree all interpretations under ceteris paribus and only about the defined

population of interest. The direction and magnitudes are as expected as more education

seems correlated with higher earnings and the percentage magnitudes are decreasing. The

first observation is that the pooling estimator gives different parameter estimates than the

other estimators suggesting the presence of HTE and failure of the pooling estimator to

provide good estimates. From the contingency table you notice the distribution between
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High School Diploma Bachelor's Degree Advanced Degree-0.1

0.0

0.1

0.2

0.3

0.4

0.5
Pooling
Within
Interaction: Sample Frequencies
Interaction: Survey Weights
Interaction: Population Estimates

Figure 1.2: Estimates of ATE for Returns to Education

15



1.7. CONCLUSION

race by treatment is consistent across education levels (i.e., treatment conditions) and thus

the within estimator should be an acceptable option. This observation is robust to using

weighted/unweighted sample statistics or population composition which consistently yield

an approximate 1:9 Blacks to Whites ratio.

You examine the parameters estimates and notice a difference not in point estimates,

but in the confidence intervals. The interaction estimator with sample weights and the

interaction estimator with survey weights are for all purposes equivalent. This phenomenon

might be increasing with the adoption of replication weights by many widely used surveys.

Likewise, the interaction estimator with sample frequencies is practically equivalent to the

interaction estimator with the population composition estimates. Between the two classes of

estimators, the interaction estimator with sample or population estimates of the composition

offers a more efficient estimator and thus it is chosen as the preferred approach.

This case study covered various tools and consideration from an applied side that will

hopefully help practitioners internalize the content of the study and make it easier to adopt in

their research. As with the other sections, the scripts in the appendix can help practitioners

incorporate these consideration in their day to day. For those purposes, the scripts for

replicating the case study are provided as a Stata do file.

1.7 Conclusion

This study contributes to the literature of econometrics of program evaluation by ex-

ploring the performance of various estimators for ATE under HTE across applications fully

characterized by simultaneously considering a set relevant conditions. The set of conditions

considered to characterize an application were the sampling design, random or clustered,

and the distribution of the treatment as a function of the first and second moments. The

estimators explored in this study were: pooling, within, interaction-weighted (using sample

frequencies or population estimates), and the regression-weighted estimator.
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1.7. CONCLUSION

Based on the results from the Monte Carlo simulations, the sampling design does not

change the expected value the parameter estimates. The variance of the distribution of

parameter estimates increased three to six fold under clustered sampling compared to random

sampling. Based on the distribution of the treatment effect in the population, which is skewed

(1.02), under the clustered sampling, the skewness of the parameters estimates increased

three fold compared to under random sampling. This result suggests that the parameters

estimates are an image of the distribution of the treatment effect in the population under

both sampling designs, but more so under clustered sampling. Clustered sampling also

decreased the kurtosis of the parameter estimates by around one.

The within estimator was shown to be biased when the variance of the distribution of the

treatment was correlated with the clusters. The pooling estimator seems to be biased as well

when the mean of the distribution of the treatment is constant, but the variance is correlated

with the clusters. As an alternative, the RWE provides a consistent and unbiased estimator,

but lacks a proper estimator for the variability of the estimates as it shows significantly lower

empirical coverage rates.

Under clustered sampling design the distribution of the parameters estimates is a func-

tion of the population composition which conventional variance covariance estimators fail

to capture. Under random sampling, the distribution of the parameter estimates follows

a t-distribution and the variance covariance estimators provide proper empirical coverage

rates.

One estimator showed improved performance across all specifications: the interaction-

weighted estimator using estimates of the population composition rather than sample fre-

quencies. The IWE using sample frequencies was still a top performant option across the

various conditions. These results suggest practitioners should consider interaction-weighted

estimators as a top choice or at least as a robustness specification.

Estimates of the population composition beyond sample frequencies suggest a stark dif-

ference in robustness and efficiency provided for the interaction weighted estimator. In
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addition, in many applications the partial effects in the context of HTE may be as insightful

as the ATE. One last argument in favor of interaction-weighted estimators includes the high

prevalence of correlated variance in the distribution of treatment effects with clusters. For

example, in the case of seeking medical treatment, variability in promptness is many times

correlated with seriousness and also with effectiveness of treatments.

Future work might consider the sensibility and robustness of the estimators based on

various distributions of the ATE. Another consideration which is not in the scope of this

study is the performance the estimators when there are true fixed effects (i.e., curse of

dimensionality) or under-powered studies which provide bad estimates of the partial effects.

Practitioners are recommended to use the interaction-weighted estimators as the first-

best with the best estimates for the population composition or sample weights if those are

not available. The RWE is a suitable alternative which provides similar performance and

does not rely on estimating the partial effects, but caution is advised on using common

variance-covariance estimators for such models.
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Chapter 2

Better Cluster Structures

Cluster robust models refer to models that attempt to estimate average treatment effects

(ATE) in the potential presence of heterogeneity in treatment effects. Many strategies rely

on obtaining an estimate of the cluster structure (e.g., within / fixed effects, interactions). It

is customary to proxy the cluster structure based on theory and convenience. For example,

potential treatment effects may be specified based on location (e.g., jurisdictions such as

countries or states), period (e.g., year or seasonality), or based on the literature (e.g., race,

ethnicity, gender). This study contributes to the field of econometrics of program evaluation

by proposing a framework to understand the main characteristics of a cluster structure and

method to help obtain better estimates for these.

The core problem is identifying a suitable cluster structure to use for estimating the

average treatment effect for a parameter with heterogeneity in treatment effects. The solution

should allocate each observation to a unique cluster where every cluster has the same partial

treatment effect and clusters share the same partial effects. Each cluster structure should be

defined and applied by each treatment effect. For a solution to be useful, one should have

some way to map the estimated partial effects to a population composition. For example,

using quantiles to allocate various clusters yields a clean way to estimate the population

composition based on the cluster shares. The goal of this study is to help practitioners
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understand, qualify, and estimate better cluster structures through a theoretical framework

and examples that showcase available tools and thought processes.

The average treatment effect is given by

βAT E = 1
m

m∑
i=1

∂yi

∂x
=

J∑
j=1

πjβj (2.1)

which can be understood as the weighted sum of the partial effects for each observation

in the population of the interest or as the weighted sum of the partial effects times the its

share in the population. The homogeneity in treatment effects leads to the simplified version

where the partial effect is equal to the ATE. Evidently, one vital component in obtaining

sound estimates for the ATE is the cluster structure which will influence both the estimates

for the partial effects (β̂j) and the population composition ({π̂j}).

In certain applications cluster structures can be developed cleanly based on a sound

theoretical model. For example, Bitler, Gelbach, and Hoynes (2006) studies the effect of

Connecticut’s Jobs First welfare reform experiment and estimates quantile treatment effects

for various subgroups based on labor supply theory. As the treatment effect varies by income,

it makes it a natural choice to explore a cluster structure based on the earnings dimension.

The subsequent Bitler, Gelbach, and Hoynes (2017) explored more in details potential cluster

structures and theoretical bases. For example, having the youngest child younger than five

years old (e.g. operationalization of having small children) proxies for high fixed costs of

work. Other dimensions included pre-intervention history (i.e., earnings and welfare), level

of education of case head, etc.

Other applications lack a strong theoretical framework and may be good candidates for

data-driven approaches. A few data-driven approaches include multiple hypothesis testing

corrected for false discovery (List, Shaikh, and Xu 2016), subgroup analysis, causal trees

which are modified regression trees (Athey and Guido W Imbens 2016), and other variants

(Athey and Guido W Imbens 2017). The three main themes are (1) exhaustively explore
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the search space accounting for multiple hypothesis testing to obtain valid inference, (2)

exploit conditions in the experiment or process (e.g., requirements for menu), or (3) apply

a supervised or unsupervised machine learning tool to strike a balance between robustness

and parsimony.

This study has three purposes: (1) develop a framework for qualifying the quality of a

cluster structure estimate, (2) examine the behavior of estimators as function of the quality

of cluster structure proxies (i.e., does it matter?), and (3) examine potential ways to obtain

better estimates for cluster structures (i.e., can we do better?).

Chapter 1 considered four estimators that are commonly used for estimating ATE with

HTE: (1) pooling, (2) within / fixed effects, (3) interactions, and (4) the regression weighted

estimator (RWE). The performance of these estimators was explored based on the sampling

design (i.e., random vs clustered) and the distribution of the treatment (combination of

first and second moments either cluster independent or dependent). This study explores the

performance of the interaction weighted estimator which showed the best behavior for ATE

with HTE.

2.1 Framework

Cluster robust models typically assume perfect information where each observation in the

sample is properly identified as a member of its cluster on every relevant dimension. However,

in applied work it is rarely if ever the case and one must use a good approximation based

both in theory and educated guesses. For example, a survey design might collect information

about individuals by households. In this case, for certain dimensions it is sensible to assume

that members of the same household might share the same partial treatment effect for some

dimensions and that information could lead to a suitable proxy.

Cluster proxies have certain properties that characterize their quality: (1) purity, (2)

level, and (3) dimension. The purity of a cluster measures the degree to which observations

21



2.2. PROPOSAL

in a cluster are part of the same group and no foreign observations are included. The level

refers to clusters sharing the same partial effects not being classified as the same cluster. The

dimension refers to ensuring the clusters are defined by the partial effect of the treatment in

question and not being defined by the partial effect of other treatments. Consider a study

on self-image and one of the explanatory variables being exposure and use of social media

(e.g., instrumented by hours spent daily on social media). The population of interest is

heterogeneous in treatment effects by the exposure and use of social media by age groups:

(1) 18 - 25, (2) 26 - 45, and (3) 46+. The researcher does not know the true data generation

process and has access to their ages; thus models it by specifying the following clusters:

(1) 18 - 25, (2) 26 - 35, (3) 36 - 45, (4) 46 - 60, (5) 61+. Using the 5-groups proxy, the

researcher is able to achieve perfect purity as every cluster would only contain members of

the same cluster. In terms of the level, the proxy has an incorrect level since clusters have

been desegregated (i.e., groups 2 and 3 should be together as well as groups 4 and 5). Lastly,

the model should specify the clusters as proper of the social media exposure and use variable

and not extrapolate the cluster structure to other predictors.

2.2 Proposal

The proposal offers a way to address estimating cluster structures based on previous

work, available tools, and new results that rise from the theoretical framework and analysis

in this study.

Previous work suggests a broad and exhausting brute search (e.g., multiple hypotheses

testing) or a data-driven (e.g., causal trees) approach. The results from the analysis of

purity in cluster structures shows that obtaining consistent estimates of the partial effects

is a first-order concern. Results from the analysis of precision levels shows that there is a

low cost to erring on the side of consistency even if the solution is not a parsimonious one.

Figures 2.2 and 2.3 show that even a high purity wrong level cluster structure estimate can
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still yield a good estimate for the average treatment effect.

Given a set of suitable conditions, it is possible to learn the true cluster structure from

a proxy that has high purity, but at an incorrect level. The technique requires that each

sub-cluster has enough power to provide consistent estimates (e.g., a pair of observations

or household level might not provide enough observations). For example, observations that

are located in a hierarchical setting such as county-state, could have a cluster structure at

some unknown level. The county level presents a potential high-purity proxy, but would lead

to a model with a great number of parameter estimates. In addition, it may be that the

population distribution is not accurately estimated at the county level. One potential way

to construct a suitable proxy would be to estimate the model with the proxy at the county

level and test whether the parameter estimates of certain heterogeneous parameters are the

same (e.g., a joint significance test such as a Wald or score test). One can re-estimate the

models until each heterogeneous in treatment parameter has been identified which leads to

a parsimonious yet robust model.

In summary, the proposal provides a new approach to existing techniques in the way to

search for a suitable cluster structure estimate. First, it highlights that parsimony should

not be a primordial criterion for estimating the cluster structure. Second, it proposes using

hypotheses tests not as a valid instrument for inference, but as a rule to determine the al-

gorithms path (i.e., similar to bucket size and numbers in causal trees). Third, it recognizes

that the cluster structure is a proxy which is a source of error for which it emphasizes in ob-

taining valid partial effects estimates. Lastly, it allows for the initial path to be theoretically

driven or agnostic depending on the application.

2.3 Simulation Design

The following simulation shows the behavior of the interaction weighted estimator under

random sampling as a function of the purity and precision of cluster structure estimates.
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The analysis focuses on the first and second moments. However, the empirical coverage

rates are orthogonal to cluster structures and thus results are presented only for the first

moment (i.e., using the interaction weighted estimator the expected information matrix

yields nominal coverage rates).

All simulations use the following design with a data generation process as follows

y = β0 + X1γg + X2β2 + u (2.2)

where y is the outcome variables, X1 and X2 are explanatory variables, βj and γg are the

main parameters, and u is the idiosyncratic error term. The data generation process indicates

that the population of interest is heterogeneous in treatment, namely in the X1 dimension.

Clusters g ∈ G are determined by the relation between X1 and y; meaning γg. The explana-

tory variables as well as the error term are standard normal distributed X1, X2, u ∼ N (0, 1).

The main parameters, (β0, β1) = (−0.2, 0.5), and

γg =



−0.50 if g = 1

−0.25 if g = 2

0.00 if g = 3

0.25 if g = 4

0.50 if g = 5

(2.3)

The population is finite with 100,000 observations and each observation is assigned a sub-

group g ∈ {Z | g ∈ [1, 5]} with equal probability. The sampling design is a random sampling

design with 5% probability of being observed. In other words, the probability of sampling

an observation with of a particular cluster is the share of the cluster in the population times

the sampling probability.

Each simulation performs an experiment based on repeating trial where a sample is drawn
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2.3. SIMULATION DESIGN

and the model is specified as

y ∼ X1 & G + X2 (2.4)

where G is a categorical variable and & represents the interaction operator. The model is

fitted and the parameter estimates are used to compute the 95% confidence interval for the

average treatment effect of X1. The estimated average treatment effect is recorded as well

for computing the empirical distribution of estimates.

During each section a different procedure is used to construct G which allows to examine

the consequences varying conditions and emerging trade-offs for estimating and using a

cluster structure. In order to test how purity affects the model, the varying purity condition

perturbs G using the following rule: with probably equal to the chosen expected purity rule

α, the cluster identifier is the true group and with 1−α probably a different cluster identifier

is chosen based on the relative distance in partial effects. The exact probability distribution

for different cluster identifiers is given by the softmax function applied to the inverse of the

squared root of absolute differences (see table 2.1 for resulting probabilities). This design

allows for the mistakes in assigning observations to clusters to be a function of how different

the clusters in question are in terms of partial effects. One could make the analogy of an

observation belonging to age group 25-30 might be mislabeled more likely with the 31-35

than the 56-60 years old cluster.

Table 2.1: Cluster Structure Based on Purity Levels

True Cluster
Assigned Label

1 2 3 4 5

1 α (1 − α) 0.42 (1 − α) 0.24 (1 − α) 0.18 (1 − α) 0.16
2 (1 − α) 0.33 α (1 − α) 0.33 (1 − α) 0.19 (1 − α) 0.14
3 (1 − α) 0.18 (1 − α) 0.32 α (1 − α) 0.32 (1 − α) 0.18
4 (1 − α) 0.14 (1 − α) 0.19 (1 − α) 0.33 α (1 − α) 0.34
5 (1 − α) 0.16 (1 − α) 0.18 (1 − α) 0.24 (1 − α) 0.42 α

α is the expected purity level.

25



2.4. ANALYSIS FOR PURITY CONDITIONS

In the analysis of precision level conditions, G is obtained by allowing each observation

to be a member of k clusters restricted such that all subgroups have perfect purity with

equal probability. For example, given a true cluster structure by state, the state would be

broken up into k various jurisdictions and the observations would be assigned to some of the

jurisdiction within the state.

2.4 Analysis for Purity Conditions

Proxies for establishing cluster structures are not necessarily the true cluster structure

in the data generation process. In most empirical work, one can use educated guesses that

might have sensible accuracy, but it is important to understand how the results vary based

on the quality of the proxy. This simulation studied the distribution of parameter estimates

for a cluster robust model. Figure 2.1 shows the distribution of parameters estimates for the

average treatment effect of X1.
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Figure 2.1: Distribution of Parameter Estimates (1,000 replications)
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2.5. ANALYSIS FOR PRECISION LEVEL CONDITIONS

The performance of the interaction weighted estimator for the average treatment effect of

the parameter with heterogeneity in treatment effects varies as a function of the purity of the

cluster identifiers. Under the ground truth (i.e., 100% purity), the distribution is centered

at the parameter value as the estimator is consistent and unbiased. However, as noise/error

is introduced in the cluster structure, the estimator becomes biased and does not converge

to the parameter value.

2.5 Analysis for Precision Level Conditions

Cluster robust models can be specified at a level that increases the probability of the proxy

to being one of high purity. However, it may be the case that it leads to a large number of

parameter estimates and difficult to obtain estimates of the population composition at that

level of precision. An alternative is to estimate the model and use the results to develop

a more parsimonious yet robust model based on the information gained (i.e., information

about differentials in partial effects).

Figure 2.2 shows the distributions of partial effects for each condition and figure 2.3 shows

the estimated average treatment effects. The k in the first figure indicates how many clusters

share the same partial effects, but the proxy treats as different. As long as the partial effects

are consistently estimated, the probability limits will be the same yielding similar partial

effects estimates. Ideally, these would be consolidated to a model where k = 1, meaning a

correct level specification where no cluster shares the same partial effects. The next figure

shows that even if the model is not parsimonious, the same average treatment effects can

be obtained regardless. Differences in inference could rise from lower power and changes to

the degrees of freedom. These figures illustrate that cluster robust model with pure proxies,

but at the wrong level still provide consistent estimates. Moreover, the model results could

be used to construct a refined proxy which uses the estimates of heterogeneous in treatment

parameters for constructing a proxy at the correct level.
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Figure 2.2: Distribution of Partial Effects (1,000 replications)
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2.6. HIGHER DIMENSIONAL ISSUES

2.6 Higher Dimensional Issues

Regression analysis use features as opposed to variables in the sense that a feature is a

mapping from an observable to an explanatory/predictive instrument. For example, income

in thousands could be a variables, but it may be better for the model operationalize it through

income brackets which shows the distinction between variables and features. Likewise, the

cluster structure needs not to be a function of variables, but a feature. For example, rather

than being age groups, a feature that allows to define a correct cluster structure might be

the age groups and gender (i.e., the interaction). Another example could be a combination

of spatial and temporal dimensions such as states and years.

Models may have multiple main parameters of interest. For example, one may want to

estimate both a policy impact and the effect of a control variable. The analysis for obtaining

average treatment effects with parameters which exhibit heterogeneity in treatment effects

generalizes past the single parameter of interest. In other words, one would have to estimate

the cluster structure for each parameter rather than imposing the same structure for every

parameter as a requirement.

2.7 Caveats

In the case of homogeneity in treatment effects, any cluster structure with sufficient

power to consistently estimate the partial effect will lead to a consistent estimate. In this

regard, cluster robust models will are relatively safe which makes these appropriate as main

estimation technique or as a robustness check.

High-purity cluster structure estimates provide a powerful tool for obtaining valid par-

tial effect estimates. However, for estimating average treatment effects one might need to

collapse the clusters up to the point that allows for estimating the population composition.

A parsimonious/stop-rule criterion could be used is to collapse clusters up to the point that

is feasible to estimate the population composition and apply the partial effect estimates.
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Practitioners may face the problem where a potential heterogeneous in treatment pa-

rameter could have a cluster structure dependent on more than one possible dimension. For

example, support for welfare programs could be heterogeneous in treatment by age, political

ideology or some combination. The first step is to identify if the sampling cluster is clustered

by any of the dimensions. If the sampling design is not clustered, a consistent estimator for

the average partial effect in the population can be obtained if the samples are representative

(both in cluster composition and cluster-specific distribution of attributes). In the case that

the sampling design is clustered in a dimension that can pose an issue requiring a cluster

robust model, the following guidelines can help. (1) If the dimension is unrelated to the

cluster structure, the parameter estimates should converge to the same probability limit.

(2) If the parameter estimates differ statistically, modify the cluster structure to a higher

expected purity level for testing whether the cluster structure is at the wrong level.

2.8 Case Study

2.8.1 Objective

The motivation of the case study is to estimate the average treatment effect of education

on earnings (i.e., returns to education). One potential source of heterogeneity in treatment

effects for returns to education is race and ethnicity. Another potential source of heterogene-

ity in treatment effects could be through gender (Dougherty 2005). In other words, we would

like to obtain estimates for returns to education that are robust to potential heterogeneity in

treatment effects on basis of race/ethnicity/gender combinations. For these purposes, an in-

termediate objective is to obtain a suitable combination of cluster structures and population

composition which can be used to estimate the average treatment effects (i.e., partial effects,

population shares, and components for estimates of the second moment of the parameter

estimates).
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2.8. CASE STUDY

2.8.2 Target for Inference

For this case study, the target for inference is defined as the returns to education for

California residents for work-age employed (excludes self-employed) in the civilian workforce.

For these purposes, work-age is operationalized as 18 - 79 years old not enrolled in an

educational program. A representative sample for this population is obtained through data

from the Institute for Social Research and Data Innovation Current Population Survey Data

for social, economic, and health research also known as IPUMS CPS (Flood et al. 2018b).

2.8.3 Data and Methodology

For developing the model specification, we first consider a previous study on differentials

of returns to education. Barrow and Rouse (2005) used the National Longitudinal Survey of

Youth, 1979 (NLSY79) 1993 round for estimating returns to education by groups across racial

and ethnic characteristics. The NLSY79 survey is sponsored and directed by the U.S. Bureau

of Labor Statistics and conducted by the Center for Human Resource Research at The Ohio

State University. Interviews are conducted by the National Opinion Research Center at the

University of Chicago. The estimates used an ordinary least squares estimator regressing the

natural logarithm of hourly pay on years of completed education, a third-order polynomial

in age, a gender indicator, a four geographic regions indicators, and a constant. The variance

covariance estimator used is the expected information matrix. Robustness checks included

using a weighted least squares estimator, using cluster robust variance covariance estimators,

and fixed effects for ability based on the Armed Forces Qualification Test (AFQT) score and

siblings effects. A second model includes restricting the sample to a within siblings sample.

This second model is estimated both with ordinary least squares and instrumental variables

estimators. The study concluded no significant differences to returns to education by race

and ethnicity.

Consideration should be given to correctly define the treatment effect. For example,

one potential operationalization may be a discrete scale on years of completed education.

31



2.8. CASE STUDY

Since a requirement for the interaction-weighted estimator is to obtain good estimates for

the population composition, consider the Census Bureau Educational Attainment - Detailed

variable. This variable has the following education attainments: (1) less than 9th grade, (2)

9th - 12th grade, no diploma (3) high school diploma or equivalent, (4) some college, but

no degree (5) associate degree, (6) bachelor’s degree, (7) master’s degree, (8) professional

degree, and (9) doctorate degree.

A theoretical argument for using education attainment over years of schooling is that

signals in the job market are usually carried through degrees rather than years of schooling.

The actual coding for the case study collapses Less than 9th grade and 9th - 12th grade,

no diploma conditions as the reference: Less than high school diploma or equivalent. Some

college, but no degree is coded as High school diploma or equivalent. These transformations

are consistent with having degrees as the actual signal / milestones. Robustness checks were

performed that suggested said schema was appropriate (e.g., similar partial effects).

For estimating the cluster structure, first consider the treatment: educational attainment

and the outcome variable: earnings. The outcome variable is operationalized as the natural

log of weekly earnings. The mechanism can be argued to be that more education allows for

higher productivity, serves as signal in the job market, and gives more options for job-seekers.

Hence, what aspects could impact the mechanism? Gender, race, and ethnicity can interact

with these mechanism through various paths. For example, statistical discrimination can in-

fluence signals through providing a more prominent prior. Glass ceiling discrimination could

severely impact access to certain jobs even as education levels should suffice. This analy-

sis provides a theoretical argument as to why race/ethnicity and gender could potentially

present heterogeneity in treatment effects for returns to education on earnings.

The second step is to operationalize the features to estimate the cluster structure. Given

the racial composition of the US and California, the racial/ethnic composition is defined in

terms of White only, Black only, or Latino. These groups are the most prevalent within the

population of interest and the US in general. This assumption excludes groups more prevalent
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in California than in the US in general such as Asian Americans and other minorities such

as Native Americans, other subgroups (e.g., heritage/nationality), and other specifications

(e.g., multiple races), but it is only done as a simplification. Likewise, gender is restricted

to male and female. For average treatment effects, one should take into consideration the

population composition as small shares may be omitted without influencing the average.

The model to estimate is a weighted least squares as following

ln(weekly earnings) = β0 +

β1(Education Attainment & Race and Ethnicity & Gender) +

β2 Gender +

β3 Age +

β4 (Age)2 +

u

(2.5)

u is the idiosyncratic error term and & is the interaction operator. The main effect of gender

is included as a control since gender can influence earnings through other mechanisms other

than educational attainment. A second degree polynomial on age is included as a control.

2.8.4 Causal Trees Approach

The treatment, education attainment, has several treatment conditions. These treatment

conditions lead to six treatment coding contrasts (i.e., one for each non-reference category).

A cluster structure would need to be defined for each treatment condition leading to eight

estimated cluster structures. One approach is to perform a set of casual trees to identify

most salient differences in partial effects by treatment condition.

The results for the causal trees align with what one would expect. More education

is associated with higher earnings. The returns to education follow the expected second
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Figure 2.4: Causal Trees
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degree polynomial relation with first positive and negative second derivatives. In order of

salience, gender shows more explanatory power in differences of partial effects than than

the race/ethnicity dimension. At the doctorate level race plays a more significant role than

gender in explaining the potential heterogeneity in treatment effects which could be driven

by race-dominated fields.

We can analyze the cluster structures for each treatment condition through exploring the

causal trees. The first treatment condition (second since first is the control/reference), 9th -

12th grade with no diploma, shows an effect of practical insignificance. The estimated partial

effect is very close to zero and thus we could collapse the control and the first treatment

effect. That would redefine the treatment variable reference class as less than high school

diploma or equivalent.

The causal trees provide evidence consistent with the literature as it suggests a premium

for men up to the point of an advanced degree after which the premium disappears. In other

words, it pays for women to obtain a degree past bachelor’s such as masters. The returns

to education differentials at the highest levels of education reach parity. The evidence for a

race/ethnicity disparity in returns to education is weaker than by gender. However, it seems

that the potential disparity favors White non-Latino.

2.8.5 Estimates

This study will compare the average treatment effect estimates for returns to education

using four different models. The models are: (1) pooling, (2) fixed effects, (3) gender cluster

robust, and (4) race/ethnicity cluster robust. The models use the specifications given in

equations 2.6 - 2.9. Figure 2.5 shows the average treatment effect, returns to education

based on treatment condition, education attainment, and uses the population composition

estimates from table 2.2. The population composition as expected is quite unbalanced in

the racial/ethnicity dimension and more balanced in the gender dimension. Fixed effects are

included in the models since race and gender might contribute to earnings through other
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mechanisms not necessarily through differences in returns to education. Gender effects were

consistently significant while race/ethnicity (i.e., Latino) was jointly significant.

Table 2.2: Population Composition Estimates

Education
Attainment

Race/Ethnicity Gender
White (Non-Latino) Black or Latino Male Female

High School 81% 19% 57% 43%
Associate 84% 16% 49% 51%
Bachelor 92% 8% 56% 44%
Master 72% 28% 61% 39%

Professional 82% 18% 56% 44%
Doctorate 88% 12% 64% 36%

Tool: CPS Table Generator
Source: Current Population Survey and Annual Social and Economic Supplement, 2018
Description: Adult Civilian Year-Round Workers in California

lnweekearn = β0 + β1 educ + β2 age + β3(age)2 + u (2.6)

lnweekearn = β0 + β1 educ + β2 age + β3(age)2 + β4 race + β5 gender + u (2.7)

lnweekearn = β0 + β1(educ & gender) + β2 age + β3(age)2 + β4 race + β5 gender + u

(2.8)

lnweekearn = β0 + β1(educ & race) + β2 age + β3(age)2 + β4 race + β5 gender + u (2.9)

The first two treatment conditions show very similar average treatment effect estimates

across estimators. Similarly, the returns to education for terminal degrees or even advanced

degrees are similar, but to a lesser extent. The pooling and within (fixed effects) estima-

tors provide similar estimates suggesting the data obtained uses weights which provide a

representative sample (i.e., earning weights are specifically designed for analysis using the

earnings variable). When comparing the gender and the race/ethnicity cluster robust mod-
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els, the estimates seem to differ the most in the professional degree treatment condition.

The difference in returns to education by treatment condition is the largest in professional

degrees under a gender or a race/ethnicity cluster structure. Another observation worth of

notice is that the cluster-robust estimator based on race/ethnicity shows a larger confidence

intervals than the other estimators.

High school Associate Bachelor Master Professional Doctorate

0.0

0.5

1.0

1.5

2.0

2.5
Pooling
Fixed Effects
Gender
Race

Figure 2.5: Estimates for Average Treatment Effects (Returns to Education)

2.9 Conclusion

Cluster robust models offer a way to consistently estimate average treatment effects with

potential heterogeneity in treatment effects. Various approaches have been proposed to ob-

tain estimates for cluster structures that range from theoretically driven, corrected inference

tests, and data-driven approaches. This study contributes a comprehensive overview to
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understand and evaluate cluster structure estimates and their effect in the performance of

estimators. The analysis relaxes the unrealistic perfect information assumption and consider

the various implications of having an imperfect cluster structure proxy. It shows that proxies

can be understood within a framework of purity, level, and dimension. Purity relates to ac-

curately each observation is correctly labeled, level considers if clusters should be aggregated,

and the dimension offers tools to diagnose and improve proxies.

The second major contribution of the study is to provide a worked out case study that

illustrates a thought process that practitioners can incorporate in their empirical work. One

aspect to highlight is to develop a theoretical justification to a cluster structure directly

related to identified mechanisms. Practitioners also gain access to data sources and tools

(e.g., causal tress) they can use to incorporate in work that can benefit from refined cluster

structures. For reporting results, the recommended approach is under uncertainty to report

the multiple specification, but also apply a prior from the literature to access which cluster

one believe is more likely.
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Chapter 3

Econometrics.jl

Software to economists is what hammers are to blacksmiths. As scientists, the tools to

work with data are as important as the know-how to perform the analysis. A requirement

for good science is that the tools used in the process have a certain standard in terms of

quality, transparency, and flexibility. The analysis must allow for the process to be verifiable

and replicable.

This study will: (1) provide an overview of common routines and their statistical and

technical requirements, (2) provide an overview of tools available with their peculiarities, (3)

discuss design decisions in the development of these tools, and (4) showcase Econometrics.jl

as a new tool for applied work.

Regression models may be used for several purposes. These may provide a basis for

prediction models, causal inference, etc. Common targets include confidence intervals of the

parameters estimates, joint-significance of a feature, out-of-sample predictive performance,

and others. In other words, obtaining the estimates of a model is usually only part of the

task. In order to judge a model, one may require to perform diagnostics and tests to justify

potential conclusions for an analysis.

Regression analysis is at the core of applied econometrics. It can be challenging to grasp

the extent what makes up the broad term of regression analysis. The following describes a
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very brief survey of what this technique might entail. Regression analysis can be used for

both observational and experimental settings and it allows great flexibility for a multitude

of applications. The main idea is to find estimates for model parameters to optimize some

objective such as the likelihood in maximum likelihood estimation (MLE). Other potential

objectives include restricted maximum likelihood (REML) or a Bayesian approach such as

maximum a posteriori probability (MAP). One framework is the generalized linear model

(GLM) which use a linear predictor that is mapped through a link function to a distribu-

tion modeling the response. Continuous responses might use a Normal distribution, count

responses a log link with a Negative Binomial distribution, and probability models might

use a categorical distribution with links that map to valid probabilities such as the Logit

link. In cases such as probability models where the responses are multidimensional, the

generalization is known as vector generalized linear models (VGLM). Other generalizations

include relaxing the relation between the linear predictor and the outcome to be the sum of

smoothing functions through a generalized additive model (GAM) framework or incorporat-

ing random effects through a mixed models approach. Some estimators address challenges

such as endogeneity, censored responses, and zero-inflated responses through various solu-

tions such as instrumental variables or censored regression model. Others, exploit aspects

of the data to overcome challenges or increase efficiency such as random effects in longitu-

dinal data. In relation to the second moment of the estimator, robust variance covariance

estimators or boostrapping may be required for inference.

Out of the many potential tools practitioners may require, what are some of the most

common? Not every estimator is as widely accessible or commonly used. Some educated

guesses may be well justified such as ordinary least squares being more widely used than

spatially-weighted regressions. In order to avoid speculation, I defer to a reasonable assump-

tion that the most common estimators are those usually taught in academic programs and

available in widely used software similarly to Renfro (2009). Most programs teach tools to

address the most common response types: continuous, count, rates, nominal, and ordinal
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outcomes. Hence, some routines might be linear models, Poisson/negative binomial, multi-

nomial logistic regression, and ordinal logistic regression with proportional odds assumption.

Topics in time series and panel data are usually offered in most programs. Perhaps the most

common topic is short panels (many units of observations through relatively small number

of repeated observations). Common estimators include pooling, first-difference, fixed effects

/ within estimator, and one-way random effects. The between estimator is usually masked

as an intermediate model for estimating the error component in the random effects model.

Lastly, the two big challenges taught in most programs are endogeneity and heteroscedas-

ticity. These challenges are usually countered through instrumental variables (e.g., 2SLS) or

robust variance-covariance estimators (e.g., heteroscedasticity consistent estimators).

Renfro (2009) surveyed the functionality of 24 alternatives for common econometrics rou-

tines. Throughout the history of econometrics software, alternatives have risen and fallen in

following. Some high contenders by market share include Stata (StataCorp 2017), R (R Core

Team 2018), MATLAB, Python (Python Software Foundation 2018), IBM SPSS Statistics,

SAS software, and EViews. These include both commercial and open-source alternatives.

Functionality may be provided by the base/standard libraries in the statistical software en-

vironment, as a product such as a toolkit or user contributed such as a module/package

that is distributed. Some examples of user-contributed functionality include the reghdfe

Stata module and a series of R packages such as MASS (Venables and Ripley 2002), lmtest

(Zeileis and Hothorn 2002), sandwich (Zeileis 2004), plm (Croissant and Millo 2008), and

mlogit (Croissant 2018).

The Julia language (Bezanson et al. 2017) is an upcoming language especially well-suited

for scientific computing such as econometrics, data science, machine learning, and other

related tasks. The following sections describe commons estimators, the Julia ecosystem

supporting tools, and Econometrics.jl which provides further functionality.
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3.1. COMMON ESTIMATORS

3.1 Common Estimators

3.1.1 Weighted Least Squares

Weighted least squares solves

β =
(
X>WX

)−1
X>Wy (3.1)

with information matrix

Ψ =
(
X>WX

)−1
(3.2)

where X is the full rank version of a model matrix, W a diagonal matrix with positive

values (e.g., frequency), and y the response. The common solution method is to factorize X

as either its QR decomposition or Cholesky decomposition. Singular value decomposition

may also be used, but it is rare as the computational complexity is significantly higher. In the

case of the QR decomposition the solution method comes down to, transforming the model

matrix and the response by row-wise multiplying them by the square root of the weights.

Afterwards, the factorization is used to solve the system of equations using the appropriate

method. In the case of a QR decomposition, R is an upper triangular matrix which enables

back substitution to obtain the solution efficiently without matrix inversion. However, a

Cholesky decomposition would still be required if the information matrix is desired. The

solution method with QR decomposition is delineated in equation 3.3.1

The case for the Cholesky decomposition follows closely and without loss of generality

other variants could be used such as Bunch-Kaufman decomposition or the upper triangu-

lar form (U>U). The QR decomposition is more numerically stable, but more expensive

than Cholesky.2. Equation 3.4 delineates the solution method with Cholesky decomposition.

Since the information matrix is an important component, Bunch-Kaufman decomposition,

a Cholesky variant, is the preferred method used in Econometrics.jl.

1. The refers multiplication of b by the inverse of A on the left
2. O

(
n3) > O

(
2mn2 − 2

3 2n3) where the matrix has m rows and n columns
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X̃ = X. ∗
√

w

ỹ = y. ∗
√

w

QR = X̃

β = R \
(
Q>ỹ

)
(3.3)

LL =
(
X>WX

)

β = L \
(
X>Wy

)

Ψ =
(
L−1

)>
L−1

(3.4)

The remaining estimators will assume a Cholesky decomposition as part of the estima-

tion technique. The QR decomposition will be used in models estimated through iterative

reweighted least squares (IRLS) as the factorization may be computed once and recycled.

3.1.2 Within Estimator

The within estimator is an application of the Frisch-Waugh-Lovell theorem (Frisch and

Waugh 1933; Lovell 2008). The estimator allows to compute the parameters estimates

and information matrix for a subset of predictors without having to include the full set of

categorical features. For example, one may include individual fixed effects in a large data set

that may increase the dimension of the model matrix to several thousand making the problem

unfeasible or inefficient. Moreover, some parameters may not be consistently estimated in

certain contexts. For example, individual fixed effects are not consistently estimated when

there is a fixed length for the panels (i.e., more observations implies more parameters).
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Consider the following model,

y = Xβ + Dθ + e (3.5)

where y is the response, β the parameters of interest, X the features of the parameters of

interest, D a high dimensional representation of categorical features as control, θ the param-

eters on said covariates, and e the error term. In order to obtain the parameter estimates β

and the associated information matrix, we can estimate an alternative specification.

ỹ = X̃β + e (3.6)

where X̃ and ỹ are obtained by using projections, such as the annihilator matrix (i.e.,

I−X
(
X>WX

)−1
X>). There are several methods to obtain a suitable alternative regression

and these are not unique. Correia (2017) presents several approaches to solving these problem

including specialized methods in certain applications. Some implementations include reghdfe,

Stata module, and Matthieu Gomez FixedEffectModels.jl package. The two most common

approaches are solving for the residuals through a sparse least-squares problems such as

with LSMR (Fong and Saunders 2011) or using some variant for the method of alternating

projections. The residuals approach tends to be more efficient, but degrades certain aspects

of the model (e.g., no longer able to obtain the mean response). The method of alternating

projections is able to preserve under certain conditions artifacts of the original regression

such as obtaining the same estimate for the intercept even though it is not particularly

meaningful.

3.1.3 Between Estimator

The between estimator estimates

ỹ = X̃β + e (3.7)
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where the transformed model components are collapsed through some dimension through

the mean function. For example, one approach to obtaining the error component for a

random effects model is to use model statistics of the between estimator collapsing by panel.

The weighted version of the model uses the observation weights to compute the weighted

mean values and may use the weight fractions by the collapsing dimension as weights for the

weighted least squares regression on the transformed model.

3.1.4 Random Effects Model

The random effects model relies in estimating the unobserved error components. Random

effects requires a particular schema for the data which has a panel component and a temporal

component. There are multiple approaches, but the most common one is the Swamy-Arora

approach (Swamy and Arora 1972). This estimator uses the mean squared residuals estimates

(i.e., deviance divided by residual degrees of freedom) of the between and within models

using the panel dimension as the collapsing / dimension to absorb. The error components

are estimated as

θg = 1 −

√√√√ σ2
e

Tg ∗ σ2
u + σ2

e

σ2
e = W

σ2
u = max

{
0, B − σ2

e ∗ T̄
}

(3.8)

where W is the mean squared residuals of the within model, B the mean squared residuals

of the between model, and Tg is the length of the panel g, and T̄ is the harmonic mean of

the panel lengths.
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The model terms are then transformed by partial demeaning

ỹit = yit − θg ∗ ȳ.t

X̃it = Xit − θg ∗ X̄.t

(3.9)

and these are used in the standard regression setting.

3.1.5 First-Difference

The first-difference estimator is a special case that use time / panel context for feature

designs. The most common transformations include contrasts such as treatment coding

(dummy coding), sum coding (effects coding) or Helmert coding which apply to categorical

variables. Other common feature engineering techniques include log-transform and polyno-

mial terms. However, certain transformations require a context such as a time dimension.

Some examples include shift operations (lag, lead) and differentiating (e.g., first-difference).

These operations may optionally require a group context such that the operations are per-

formed group wise. Time-context operations have important concepts such as frequency and

gaps. The frequency describes the difference between periods/observations and gaps describe

observations that are skipped and should be understood as missing.

3.1.6 Instrumental Variables

Every estimator thus far can be generalized to include endogenous covariates through in-

strumental variables. The most common method is through two stages least squares (2SLS).

The idea is to first apply all the relevant transformations to the model terms and apply the

2SLS standard procedure. In the case of the random effects model, the within and between

models are estimated using 2SLS to obtain the error component estimates. After applying

the random effects transformation to each model term the 2SLS process is employed in the

final regression model à la Balestra and Varadharajan-Krishnakumar (1987).
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The standard 2SLS estimator uses,

ẑ = [XZ]
[(

[XZ]>W [XZ]
)−1

[XZ]>Wz
]

β̂ =
(
[Xẑ]>W [Xẑ]

)−1
[Xẑ]>Wy

Ψ =
(
[Xẑ]>W [Xẑ]

)−1

ŷ = [Xz]β̂

(3.10)

for each model where z is endogenous variables and Z the additional instruments.

3.1.7 Nominal Response Model

Multinomial logistic regression is a probability model for estimating probabilities across

multiple categories. It is a vector generalized linear model with softmax link function and the

categorical distribution. It is estimated through iterative re-weighted least squares (IRLS)

methods such as the QR Newton variant (O’Leary 1990). The data schema for discrete

choice models include the response (observed behavior), unit of observation covariates, and

outcomes-specific covariates. The initial implementation allows for the base case of no-

outcome specific features.

3.1.8 Ordinal Response Model

Ordinal logistic regression is a probability model for estimating probabilities across mul-

tiple ordered categories. Similarly to its nominal counterpart, it has a pool of alternatives,

and observed outcome, unit of observation covariates, and outcome-specific covariates. A

common assumption is the proportional odds assumption which may be relaxed in other

models.

The log-likelihood function has the same form as the general form for computing the cost

associated with a categorical distribution and predicted probability for realization. More
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specific,

`` =
m∑

i=1

K∑
k

1 (yi = k) ln [F (αk+1 − η) − F (αk − η)] (3.11)

where F is the cumulative distribution function of the logistic distribution with zero

location and unit scale, η is the linear projection, and αk is the threshold for lower threshold

(McKelvey and Zavoina 1975). The log-likelihood function and the gradient are passed to the

Optim.jl framework (K Mogensen and N Riseth 2018) using ForwardDiff.jl (Revels, Lubin,

and Papamarkou 2016) forward mode automatic differentiation (AD) for the Newtonian

solver.

3.1.9 Count/Rate Model

Count/rate models are generalized linear models and follow a similar description as nom-

inal models. The most common distribution choices are Poisson and Negative Binomial with

the log link function. Negative Binomial is a generalization of the Poisson model, which adds

an extra parameter for modeling the second moment (i.e., relaxes the mean equal variance

assumption in the Poisson model). For the Negative Binomial to be a distribution in the

exponential family it needs a restriction parameter which may be optimized through maxi-

mum likelihood estimation. An offset may be included to handle rates, a generalization of

counts, that account for differences in exposures. Other generalizations include additive or

multiplicative errors relations.

3.1.10 Duration Models

Duration models deal with responses of the type time until an event. One such model is

the Cox proportional hazards model which relies on the proportional hazards assumption.

Various models of these kind may be re-specified in a generalized linear model framework

relating to the previous descriptions.
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3.2 Technical Challenges

One technical challenge that is prevalent through every model is the issue of rank deficient

terms. Rank deficient systems of linear equations are not identifiable. One approach is to

error out and let the user explore and find a subset of features such that the no multi-

collinearity assumption holds. The second approach is to automatically promote the system

to a full rank version by excluding linearly dependent features. How much collinearity is too

much is not an exact science. Some potential criteria include using the absolute values of the

diagonal in the triangular matrix of the factorization (e.g., L in LL>, R in QR, D in LDL>,

Σ in UΣV >). These values are then compared against a chosen tolerance and the column of

the term is deemed linearly independent if the values are greater than the tolerance. Note

that Cholesky, QR, and Bunch-Kaufman decomposition allow to identify which columns are

independent while singular values only allow to determine the rank. It may be arbitrary to

choose among linearly dependent features. An additional level of complexity in probability

models is the issue of linearly separability. Konis (2007) provides an overview of potential

approaches to identifying the issue.

3.3 Julia Ecosystem

The usual pipeline for regression analysis involves (1) accessing data (I/O), (2) obtaining

a tabular data representation, (3) data wrangling, and (4) employing regression analysis

tools. The Julia ecosystem follows this canonical pipeline. The following sections provides

an overview of the pipeline available in Julia.

3.3.1 Data to Modeling

StatsBase.jl builds on top of Statistics.jl (standard library) to provide additional statisti-

cal functionality. One which includes the abstraction for Statistical Models (and Regression

models which inherit from the former). It provides a simple and powerful API for the whole
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Julia ecosystem to use. It allows packages to implement the API and easily support a com-

mon functionality users can expect and interact with in a familiar manner. For example,

coef will extract the parameter estimates from any object that implements the API. The full

API include model statistics such as: coefficient of determination (or adjusted), information

criteria statistics such as AIC/BIC (and corrected), statistics about the model fitness such

as deviance, log-likelihood, and usual queries such as point estimates, variance covariance

estimates, standard errors, confidence intervals, degrees of freedom (or residual degrees of

freedom), etc. Lastly, several accessors are available for fitted values, response, model ma-

trix, information matrix, leverage values, error components, etc. Lastly, it also provides an

abstraction for weights including frequency weights and analytical weights.

Tables.jl provide an interface for tabular data. This API allows users to choose from

various solutions the tabular data implementation of their choosing without having to worry

that their choice will limit potential functionality. Many tabular implementations such as

DataFrames.jl provide robust functionality to many routines such as handling categorical

features, dates/time, missing values, reshaping data, split/apply operations, and others.

Users need not to worry about any I/O issues as a rich array of options exist for importing

and exporting across different file formats such as delimiter-separated values, JSON, Feather,

HDF5, MATLAB, Stata, SPSS, SAS, and R.

StatsModels.jl is a package that provides the means to go from data to model terms. It

provides the formulae language (e.g., similar syntax to R’s formulae syntax). A model is

then build using a formula, data, and additional model specific arguments. The process can

be summarized as (1) collecting the information in the formula, (2) parsing its meaning by

applying a schema based on the data, user-specified contrasts or other arguments, and (3)

generating the model terms such as a response, model matrices, etc. Lastly, a package fits

said model and implements the API.

50



3.4. ECONOMETRICS.JL

3.3.2 Regression Analysis

The regression analysis ecosystem in Julia has GLM.jl as its flagship. GLM.jl provides

the typical functionality for fitting generalized linear models through Fisher scoring. This in-

cludes linear models, Poisson/Negative Binomial, Logit/Probit, and other non-canonical link

models. CovarianceMatrices.jl provides various variance covariance estimators for GLM.jl

models à la R’s sandwich package. LinearMixedModels.jl (Bates et al. 2019) extends GLM.jl

for mixed-effects models. FixedEffectModels.jl provides fast estimation of linear models with

instrumental variables and high dimensional categorical variables à la reghdfe. Survival.jl

provides a series of estimators for duration models. Two major gaps in the ecosystem in-

clude estimating nominal and ordinal response models (i.e., discrete choice) with more than

two alternatives and support for longitudinal estimators.

3.4 Econometrics.jl

Econometrics.jl is a package for performing several common econometrics routines in

the Julia language. It aims to provide the following functionality for two major gaps in the

ecosystem, longitudinal estimators and discrete choice models. Developing the package has

resulted in many contributions in the current ecosystem. However, the development of this

package serves multiple purposes beyond the immediate effect. As the statistics ecosystem

evolves and matures, Econometrics.jl aims to serve as inspiration and an alternative to design

decisions, standards, and option for user.

3.4.1 Fitting Models

This section will showcase some examples of using the package for various estimators. For

each estimator a brief description of the data, model, syntax, and output will be provided.

Results will be provided for Econometrics.jl and some alternatives such as R or Stata.

For linear models, the examples use the crime data set from Cornwell and Trumbull
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(1994). The data set is a balanced longitudinal data set with 90 counties in North Carolina

from 1981 to 1987. The outcome variable is the crime rate and the explanatory variables

include the probability of conviction, average sentence, and probability of prison sentence.

Estimating the pooling estimator or between estimators can be accomplished as in figure

3.1. Table 3.1 shows the estimated 95% confidence intervals using Econometrics.jl, Stata,

and R’s plm package.

Figure 3.1: Estimation of the pooling and between panel estimator
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Table 3.1: Pooling and Between Estimators

Model Parameter Econometrics.jl Stata R (plm)

Pooling

Intercept 0.0102 0.0271 0.0102 0.0271 0.0102 0.0271
PrbConv -0.0020 -0.0003 -0.0020 -0.0003 -0.0020 -0.0003
AvgSen -0.0003 0.0008 -0.0003 0.0008 -0.0003 0.0008
PrbPris 0.0113 0.0434 0.0113 0.0434 0.0113 0.0434

Between

Intercept -0.0417 0.0324 -0.0417 0.0324 -0.0412 0.0319
PrbConv -0.0073 0.0002 -0.0073 0.0002 -0.0072 0.0002
AvgSen -0.0015 0.0032 -0.0015 0.0032 -0.0014 0.0031
PrbPris 0.0070 0.1390 0.0070 0.1390 0.0079 0.1381

The fixed effects model or within estimator can be estimated as in figure 3.2 which es-

timates the panel effects and the two-ways fixed effects model (i.e., fixed effects for time

dimension as well). Table 3.2 shows the estimated 95% confidence intervals using Econo-

metrics.jl, Stata, and R’s plm package.

Table 3.2: Absorbing Panel or Panel and Temporal Indicators

Model Parameter Econometrics.jl Stata (reghdfe) R (plm)

Within PID

Intercept 0.0274 0.0355 0.0274 0.0355
PrbConv -0.0004 0.0004 -0.0004 0.0004 -0.0004 0.0004
AvgSen -0.0002 0.0003 -0.0002 0.0003 -0.0002 0.0003
PrbPris -0.0093 0.0066 -0.0093 0.0066 -0.0093 0.0066

Within PTID

Intercept 0.0279 0.0360 0.0279 0.0360
PrbConv -0.0003 0.0005 -0.0003 0.0005 -0.0003 0.0005
AvgSen -0.0004 0.0002 -0.0004 0.0002 -0.0004 0.0002
PrbPris -0.0070 0.0089 -0.0070 0.0089 -0.0069 0.0089
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Figure 3.2: Estimation of the within estimator
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The random effects model can be estimated with similar syntax by including the PID

(panel identifier) and TID (temporal identifier) tags such as in figure 3.3 which shows esti-

mating a random effects model as well as its instrumental variables counterpart. Table 3.3

shows the estimated 95% confidence intervals using Econometrics.jl, Stata’s reghdfe module,

and R’s plm package.

Figure 3.3: Estimation of the random effects model
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Table 3.3: Random Effects and Instrumental Variables

Model Parameter Econometrics.jl Stata R (plm)

Random

Intercept 0.0257 0.0362 0.0257 0.0362
PrbConv -0.0004 0.0004 -0.0004 0.0003 -0.0004 0.0004
AvgSen -0.0002 0.0003 -0.0002 0.0003 -0.0002 0.0003
PrbPris -0.0081 0.0078 -0.0080 0.0078 -0.0093 0.0066

IV Random
Intercept -0.0097 0.0852 -0.0096 0.0851 -0.0096 0.0851
PrbConv -0.0004 0.0004 -0.0004 0.0004 -0.0004 0.0004
AvgSen -0.0059 0.0045 -0.0059 0.0045 -0.0059 0.0045

The sysdsn1 Stata example health insurance data set is used to illustrate the multinomi-

nal logistic regression when the response is nominal as seen in figure 3.4. A comparison with

the estimates for the 95% confidence intervals between Econometrics.jl and Stata is shown

in table 3.4.

Figure 3.4: Estimation of the multinomial logistic regression
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Table 3.4: Multinomial Logistic Regression

Response Parameter Econometrics.jl Stata

Indemnity

(Intercept) -0.3753 0.9148 -0.3740 0.9134
Age -0.0239 0.0004 -0.0239 0.0004

Gender: Male 0.1635 0.9599 0.1643 0.9591
Nonwhite 0.5107 1.4389 0.5116 1.4380
Site: 2 -0.2998 0.5258 -0.2989 0.5250
Site: 3 -1.0356 -0.1404 -1.0347 -0.1412

Prepaid

(Intercept) -2.4502 -0.1237 -2.4479 -0.1260
Age -0.0303 0.0147 -0.0302 0.0146

Gender: Male -0.2698 1.1736 -0.2684 1.1721
Nonwhite -0.6188 1.0530 -0.6172 1.0513
Site: 2 -2.1356 -0.2875 -2.1338 -0.2894
Site: 3 -0.9272 0.5115 -0.9257 0.5101

The fullauto Stata example automobile models data set is used to illustrate the pro-

portional ordinal logistic regression when the response is ordinal as seen in figure 3.5. A

comparison with the estimates for the 95% confidence intervals between Econometrics.jl,

Stata, and R’s MASS is shown in table 3.5.

Table 3.5: Parallel Ordinal Logistic Regression

Parameter Econometrics.jl Stata R’s MASS

Foreign 1.3168 4.4768 1.3472 4.4464 1.4111 4.5293
Length 0.0374 0.1282 0.0383 0.1274 0.0395 0.1292
MPG 0.0900 0.3716 0.0927 0.3689 0.0986 0.3781

(Intercept): Poor | Fair 6.8343 29.0206 7.0473 28.8076
(Intercept): Fair | Average 8.6814 31.0487 8.8962 30.8340
(Intercept): Average | Good 10.6949 33.5117 10.9140 33.2926
(Intercept): Good | Excellent 12.9204 36.4639 13.1465 36.2378
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Figure 3.5: Estimation of the proportional odds logistic regression

3.4.2 Design Decisions

Statistical software developers play a very powerful role in shaping culture and norms.

For example, whether to default to maximum likelihood estimation (MLE) or restricted

maximum likelihood estimation (REML), can shape not only choices by practitioners, but

by stakeholders, regulatory agencies, and expected components for reports. These changes

may be good or bad depending on the case. For example, advances in econometrics are

rarely widely adopted without buy-in from software developers. The following discussions

will survey survey some of the decisions relevant to Econometrics.jl.

Should software be dummy-proof? Many times software developers have to choose be-

tween exposing users to make mistakes on their own volition or put safeguard against poten-

tial misuses by restricting behavior that may be correct under rare scenarios. For example, a

basic tool might allow users to mix and match link and distributions in a GLM settings even

if the combinations are nonsensical. A safer approach would be to restrict combinations to

those “safe” combinations such as distributions with canonical links. The trade-off occurs

when users may encounter a specification that while uncommon it may be the correct one for

that particular model. Currently, Econometrics.jl takes a conservative approach that pro-
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vides “dummy-proof” experience as well as ease of use. For example, rather than requiring

users to specify the model, the estimator is inferred based on the type of the response and

information provided. Other examples of this approach include making model statistics such

as promoting the coefficient of determination to a pseudo-version for non-linear models (a

generalization of the linear case), but providing a not a number (NaN) value for instrumen-

tal variable models or those that do not include an intercept. Similarly, the software will

promote terms to full rank as required and inform of the behavior.

Software analysis should always include diagnostics and tools to make it easier for dis-

semination. Many tests and diagnostics are applicable to a wide set of implementations.

The best manner to make these available and for these to “play nicely” with one another is

to have an effective API. Sadly, the Julia ecosystem has yet to experience wide adoption of

this pattern. For example, packages might need to access components for computing a test

or providing some estimates such as variance covariance estimates. The test might include

components such as the residual degrees of freedom, the information matrix, residuals, and

score. Many implementations might access internals of one particular implementation and

compute these such as obtaining the model matrix, response and coefficients to compute the

residuals. This behavior would produce incorrect estimates in cases of instrumental variable

as the fitted / linear projection should not use the model matrix, but replace the projection

of endogenous features with their actual values. A better approach would be to request the

response and fitted values to compute the residuals. This approach is less prone to errors,

but it can be more robust by calling residuals directly. Specifying precise components can al-

leviate risk of errors or relying on assumptions such as whether the components are weighted

or should be weighted for the procedure.

Various decisions are software specific with asymptotic justification, but significant finite-

sample consequences. Software may differ on whether to report statistics using finite-sample

statistics (t-distribution, F-distribution) or asymptotic equivalent counterparts (Normal, Chi

squared). These tend to have negligible effect in most applications, but other decisions such
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as degrees of freedom may have larger consequences. For example, software may differs on

how it computes the degrees of freedom for instrumental variables or absorbed variables

depending on the context (e.g., main regression or auxiliary regression for estimating error

components). Refinements and robustness checks can also contribute to a better analysis

such as verifying gaps for time variant operations such as first-difference or purging singletons

and other degree of freedom adjustments à la Correia (2015).

3.4.3 Best Practices

Econometrics.jl adopts the best practices standards for open-source statistical software.

These include adhering to semantic versioning (semver) for descriptive versioning, continuous

integration for development, software validation through a comprehensive code coverage and

test suite, and lastly online hosted documentation for the public API.

3.5 Conclusion

Econometrics.jl is a new addition to the Julia ecosystem that brings highly demanded

functionality concerning longitudinal estimators and discrete choice models. This study

serves as a complement to the software documentation providing context to the develop-

ment, design considerations, and roadmap of the project. A philosophical motivation for the

project is to make econometrics accessible to practitioners not only through functionality,

but transparency in the code readability, replicability, and correctness. For example, trans-

parent well-written code is easier to maintain, inspect / audit, and can be useful for learning

and teaching.

Community contributions and feedback are highly encouraged in order to best continue

developing the project. The release will be available at the Github repository and licensed

under a permissive license.
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