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ON THE EVALUATION OF POWERS AND MONOMIALS*

NICHOLAS PIPPENGER"

Abstract. Let Yl, , Yp be monomials over the indeterminates Xl, , xq. For every y (yl, , yp)
there is some minimum number L(y) of multiplications sufficient to compute y 1, , Yo from x 1, , xq and
the identity 1. Let L(p, q, N) denote the maximum of L(y) over all y for which the exponent of any
indeterminate in any monomial is at most N. We show that if p (N+ 1)() and q (N+ 1)(), then
L(p, q, N) min {p, q} log N + H/log H + o(H/log H), where H pq log (N + 1) and all logarithms have
base 2.

Key words, addition chain, computational complexity, monomial, power

1. Introduction. The result described in the abstract generalizes a number of
previous results and solves a number of open problems. In 1937, Scholz [7] raised the
problem of determining L(1, 1, N) (computing one power of one indeterminate) and
observed that

log N <_- L(1, 1, N) _-< 2 log N.

In 1939, Brauer [2] obtained the asymptotic formula

L(1, 1, N) log N,

and in 1960, Erd6s [3] improved this to

[ log(N+l) .)log(N+ 1)
+L(1, 1, N) log N +

log log (N + 1) ,1oo-/ 1)

In 1963, Bellman [1] raised the problem of determining L(1, q, N) (computing one
monomial in several indeterminates), and in 1964, Straus [-8] showed that

L(1, q, N)--- log N

for each fixed q.
In 1969, Knuth [4] (Section 4.6.3, Exercise 32) raised the problem of determining

L(p, 1, N) (computing several powers of one indeterminate), and in 1976, Yao [9]
showed that

L(p, 1, N)-- log N
for each fixed p.

In a preliminary version of this paper [5], the author raised the problem of
determining L(p, q, N) and showed that if p 2( and q 2(", then

L(p, q, 1)pq/log (pq).

In this paper we shall prove the following
THEOREM.

n u((lo_g_gl__og./--/l/2),log S ]
L(p, q, N) v log N +log-- + O(w),

where v min {p, q}, H pq log (N + 1), and w max {p, q}. The expression U(. .)
denotes a factor of the form exp O(. .);/f the quantity represented by the ellipsis tends to
O, U(. .) is equivalent to 1 + 0(. .).
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EVALUATION OF POWERS AND MONOMIALS 231

Since p (N + 1)(q) and q (N +1)(") together imply (in fact, are equivalent to)
w o(H/log H), this theorem implies the result described in the abstract, as well as all
the other asymptotic formulae cited above. The proof of the theorem is in two parts: a
lower bound and an upper bound. The lower bound, presented in 2, owes several ideas
to the paper [3] of Erd6s cited above. The upper bound, presented in 3, would be the
more difficult part of the proof if we had to start from scratch. In another paper[6],
however, the author has given a result (also growing out of the preliminary version [5])
which allows the upper bound to be deduced as a corollary.

1.1. Reformulation of the problem. It is both traditional and convenient to
reformulate the problem at hand in additive rather than multiplicative notation.

Let q => 1 be a integer. A sequence

/=(fl,... ,.)

of nonnegative integers will be called a (q-dimensional) vector, and fl,""", fq will be
called its components. The vector

Xo (0, .,0)

will be called the zero vector, and the vectors

Xl=(1. "’’,0),

xq =(0," ", 1)

will be called unit vectors. If

and

the vector

f=(fl,""" ,f)

g=(gl,""", g,),

f + g (f + gl, f, + g,)

will be called the sum of f and g.
Let p => 1 be an integer. A sequence

Y=(Yl.’’’.Y.)
of (q-dimensional) vectors will be called a (p-by-q) matrix, and y 1, , yp will be called
its rows.

Let _-> 1 be an integer. A sequence

Z --(Zl,""" ,Zl)

of vectors will be called a chain, and Zl, , z will be called its rows, if each vector Zk
(1 --<_ k -<_ l) is (1) the zero vector, (2) one of the unit vectors, or (3) the sum of two of the
vectors z1,’", Zk-1 that precede it in the sequence (these two vectors need not be
distinct). The zero and unit vectors will be called basic vectors; the others will be called
auxiliary vectors. The number of basic vectors will be denoted by m; the number of
auxiliary vectors will be denoted by n and called the length of the chain.

Let N-> 1 be an integer. We shall say that a vector is (N + 1)-ary if all its
components are in the set {0, 1, , N}, and that a matrix is (N + 1)-ary if all its vectors
are (N + 1)-ary.
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We shall say that a chain z computes a matrix y if each vector yi (1 --_< p) appears
as one of the vectors Zk(1 <= k <-l). If y is a matrix, L(y) will denote the minimum
possible length of a chain computing y, and L(p, q, N) will denote the maximum of L(y)
over all p-by-q (N + 1)-ary matrices y.

2. The lower bound. In this section we shall prove the lower bound

H log log H)L(p’q’N)>-vlgN+logHU( -t- +O(w).

2.1. The easy case. Consider first the case

H log log H
v log N <-

(log H)2

In this case the first term, v log N, is absorbed by the U-factor of the second term,

H log log n n o[n log logniogHU( i0gH)= logH
+ \ (logH)2 ]"

Thus it will suffice to show

If

H [loglogH\
L(p, q, N)>= i0g’H u 10gH ] + O(w).

H
log H’

the desired bound is trivial; hence we shall assume

w <__-._----
H

log H"
If

H
L(p, q, N) >-i0g’ ’H’

we are done; hence we shall assume

H
L(p, q, N)<-log H"

It follows that we may also assume

l-m+n

<=q + 1 +L(p, q, N)

O(i0g’HH).
Let us consider a chain and assign to each vector in it a number called its depth. The

basic vectors are assigned the depth 0. For d 1, 2,. , if a vector is the sum of two
preceding vectors that both have depth at most d- 1, but is not the sum of two
preceding vectors that both have depth at most d 2, then it is assigned the depth d. By
induction, this assigns depths uniquely to all the vectors in the chain.
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Let us impose upon the set of all vectors a definite total order, which will be called
the standard order.

We shall say that a chain is standard if its rows are all distinct, rows of lower depth
precede those of higher depth, and rows of equal depth appear in the standard order.

LEMMA 2.1-1. If a matrix is computed by a chain z, then it is also computed by a
standard chain z’ of no greater length.

Proof. Given a chain z, consider the set of all vectors appearing in z. Remove from
this set all the basic vectors and arrange them in the standard order to form a chain.
Then remove from the set all the vectors that are the sum of two vectors currently in the
chain, arrange them in the standard order, and append them to the end of the chain.
Repeat this process until no more vectors can be removed. When the process
terminates, the set must be empty, for if it contains any vectors, at the very least the one
that appears earliest in z can be removed. The process thus yields a chain z’ which is
standard by construction, which contains every vector that appears in z (so that, in
particular, it computes every matrix computed by z), and which contains no other
vectors (so that, in particular, it has no greater length than z). I3

By virtue of this lemma, we may henceforth restrict our attention to standard
chains, and all chains will be assumed to be standard even if this is not explicitly
mentioned.

We shall say that a matrix is standard if its rows are distinct and appear in the
standard order. Henceforth we shall restrict our attention to standard matrices, and all
matrices will be assumed to be standard even if this is not explicitly mentioned.

LEMMA 2.1-2. There are at least

2HU(w log H)

matrices.
Proof. There are (N + 1)q rows that can appear in a matrix, and thus

(N + 1)’)P

ways to choose p distinct rows to form a matrix. Using the bound

(AB) A(A-1) (A-B + I)/B(B -1) 1 >-_(A/B)

we obtain

=> (N + 1)"/p’
+ 1

P /

2HV(p log p)

2nU(w log H)
matrices. [3.

LEMMA 2.1--3. For some value of n <= L(p, q, N), there are at least

2nU(w log H)

chains.
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Proof. Each matrix is computed by some chain of length at most L(p, q, N). Each of
these chains computes at most

U(p log l)

U(w log/-/)

matrices, so there are at least

2U(w log H)/U(w log H) 2U(w log H)

chains of length at most L(p, q, N). Each chain has one of at most

L(p, q, N) U(log/-/)

possible lengths, so for some length n L(p, q, N), there are at least

2HU(w log H)/U(log H) 2HU(w log H)

chains. 1
With each chain z we shall associate an object, which will be called a code,

constructed as follows. Each basic vector in z is xj for some j such that 0 /" q. Let d/
be the subset of {0, 1, , q} that contains the m values of corresponding to the basic
vectors in z. Each auxiliary vector Zk in z is zak + Zbk for some ak and bk such that
1 ak bk k 1. Let W be a subset of {1, , l} {1, , l} that contains n ordered
pairs (ak, bk), one corresponding to each auxiliary vector in z. The ordered pair (d/t, W)
will be the code associated with z.

LEMMA 2.1-4. A chain is uniquely determined by its code.
Proof. Let (, W) be a code. From , determine the set of basic vectors; arrange

these in the standard order to form a chain. Remove from W the pairs (a, b) for which b
is less than or equal to the number of vectors currently in the chain. For each such pair,
compute the vector za / Zb; arrange these vectors in the standard order and append
them to the end of the chain. Repeat this process until no more pairs can be removed.
Clearly only the resulting chain can have the code (d/, W).

LEMMA 2.1-5. For any value of n <--L(p, q, N), there are at most

(HE/n)nU(n)U(w)
chains.

Proof. For any m and n, there are at most

codes, since the two factors bound the number of ways of choosing and W,
respectively. Using the bounds

and

(AB) <--A/B! <-(Ae/B)B
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(where e 2.718 is the base of natural logarithms), we obtain

<-_ 2q/ (l e/n)

=(l/n)U(n)U(q)
=(l/n)U(n)U(w).

There are

q + 1 U(log q)

U(log w)

possible values of m, and for each value of n <-L(p, q, N),

l= O(H)

_-<HU(1).

Thus, for any value of n <-_ L(p, q, N), there are at most

U(log w)(H2U(1)2/n)nU(n)U(w)=(H2/n)nU(n)U(w)
codes.

Each chain is associated with some code, and at most one chain is associated with
each code. Thus the bound just derived applies to chains as well as codes. 7]

We can now complete the proof. By Lemmas 2.1-3 and-5, there is a value of
n <-L(p, q, N) such that

(H2/n)nU(n)U(w) >-_2HU(w logH)

or, by taking logarithms,

2n logH-n logn+O(n)>-H+O(w log H).

Ignoring the n log n term for the moment, this implies

2n log H + O(n) >-_ H + O(w log H)

or

This yields

or, by taking logarithms,

( 1 )>Hu(wlog.H)(2n log H)U
log H H

H w H
2log H U(ioglH)U( log

log n _-> log H + O(log log H)+ Ot, w log H)\H

Multiplication by n yields

n log n => n log H + 0(n log log H)+ O(nw log H’
\ H /

=n log H+ o(H log log H)logH
+O(w).
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With this bound on the n log n term, the original inequality implies

or

Thus

n log H + O(n)>H + O(H log log H)log H
+ 0(w log H)

(n log H)U(io )>HU log log H)H ( --’ + O(w log/4).

L(p, q, N) >- n

H /log logH\
-logH u o-/- ,)+O(w),

which is the desired lower bound.

2.2. The hard case. Consider now the case

v log N =>
H log log H

(log H)2

Since H vw log (N + 1), we have

(log H)2

log log H"
If

H
L(p, q, N) >-_ v log N +

log H

we are done; hence we shall assume

L(p, q, N) <= v log N+
H

log H"

It follows that we may also assume

<--q + 1 +L(p, q, N)

O(H).

For any vector f and any 1 -</" -<_ q, let us define

D(f, j) E fi +f- E fi.
l<=i<j j<i<=q

Thus D(f, f) measures the extent to which the jth component of f exceeds all the other
components combined.

We shall say that a vector f is a f-vector if

D(f, j)>- 1.

Clearly, a vector can be j-vector for at most one value of j.



EVALUATION OF POWERS AND MONOMIALS 237

Let z be a chain and let Zk (m + 1 <= k <--_ I) be an auxiliary j-vector in z. We shall say
that zj is j-immediate if it is equal to 2 times a preceding f-vector. Let

h [(log H)I.

We shall say that Zk is j-short if it is not j-immediate but is the sum of two preceding
f-vectors, between which fewer than h j-vectors intervene. Finally, we shall say that Zk is
f-long if it is neither f-immediate nor/’-short.

Let nj, 5, sj, and t. denote the numbers of f-vectors,/’-immediate vectors, j-short
vectors, and j-long vectors in z. Clearly,

Let

be the golden ratio. Then

Let

Then for h => 2,

n ri + sj + t.

=(1+51/2)/2 1.618.

-2+-1 1.

O h 1/h <_ 31/3 1.442 .

For h 2, this is trivial to check. For h => 3, it follows from

0-h-2= h -1 exp (-2h -1 In h),

4,-1= exp (-h -1 In h),

and

and

exp x _-< 1/(1 x),

lnh=>l.

LEMMA 2.2-1. For any chain z, any vector zk in z, and any 1 <= j <-_ q,

D(zk, j) 2%bsi+tJ

D(zk, /) <= 2rJ+si.
Proof. We shall proceed by induction on nj =ri + si + i. If ni 0, there are no

auxiliary j-vectors. But if Zk is a basic vector or not a f-vector,

D(Zk, ])<= 1,

and the assertions of the lemma are trivial. Suppose then that ni _-> 1 and that zk is an
auxiliary ]-vector. It follows that it must be ]-immediate, ]-short, or f-long.

If Zk is ]-immediate, there exists 1 b _-< k- 1 such that Zk 2Zb. The vector Zb
appears in a chain with at most ri + sj + ti- 1 ]-vectors, of which at most ri- 1 are
]-immediate. By inductive hypothesis,

D(Zb, ]) <= 2rj-b sj+t’
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(since 2 _-> ), and so

D(zk, j)=2D(z,])

<=2+.
If on the other hand z is not ]-immediate, there exist 1 -< a < b -< k 1 such that

z z + zo. The vectors z and z both appear in a chain with at most ri + si + ti- 1
j-vectors, of which at most ri are j-immediate. By inductive hypothesis,

D(z,, j) <_ 2",&s,+’,-1

and

If Zb is not a f-vector,

and

D(zo, ]) <- 2ri si+ti-1

D(zo, ]) -< O

D(Zk, ]) D(z,, ]) + D(zo, ])

<-D(za,])

If on the other hand z0 is a ]-vector, then za appears in a chain with at most ri + s. + ti 2
]-vectors, of which at most r are ]-immediate. By inductive hypothesis,

D(z, ]) 2

and so

D(Zk,]) D(za, ]) + D(zo, ])

-< 2,& s,+,,-2 ..].. 2"i+/’-1

2" si+t’.

This proves the first assertion of the lemma.
If Zk is not i-long, there exist 1 -< a <= b -< k 1 such that zk za + z0. The vectors z

and z0 both appear in a chain with at most rj + s. + ti- 1/’-vectors, of which at most
ri + si- 1 are not i-long. By inductive hypothesis,

D(z,, i) -< 2+,-Id t,

and

(since 2 -> 4’), and so

D(zo, ]) < 2r+s’-l ti

D(Zk, i) D(z,, ]) + D(zo, ])

-<2 2"+’- ti

If on the other hand zk is f-long, there exist 1 -< a < b -<_ k 1 such that zk z +
and at least h f-vectors intervene between za and z0. The vectors z and z0 both appear
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in a chain with at most 5 + s. + tj 1/’-vectors, of which at most rj + s. are not -long. By
inductive hypothesis,

D (z,,, ]) _<_ 2,+*,’,-a

and

If Zb is not a/’-vector,

and

D(Zb, ]) <= 2ri+s’ot-l.

D(Zb,])<--_O

D(Zk, ]) D(z,, ]) + D(zb, ])

__< 2+0"
If on the other hand Zb is a j-vector, then Z appears in a chain with at most
rj + s. + t. h 2 f-vectors, of which at most r. + s. are not j-long. By inductive
hypothesis,

and so

D(z,, j) <- 2rj+s,d/t -h-2

D(Zk, ]) D(z,, ]) + D(Zb, 1)

2ri+sioti-h-2 + 2+sOt,-1
N 2q+sot"

This proves the second assertion of the lemma. !-1
Let z be a standard chain and let Zk (m + 1 <= k =< l) be an auxiliary vector in z. We

shall say that zk is immediate if it is f-immediate for some 1 =< <= q. We shall say that zk
is short if it is/’-short for some 1 =< f =< q. Finally, we shall say that zk is long if it is neither
immediate nor short.

Let r, s, and denote the numbers of immediate, short, and long vectors in z.
Clearly,

n=r+s+t.

that

and

We shall say that a chain is special if, for each 1 <- u <_- v, it contains a vector Zk such

D(zk, u) >=N/2.

LEMMA 2.2-2. For any special chain of length at most L(p, q, N),

0
H

s+t= (log H)

(H log log H’r+s>=v logN+O\ il--g--: ].
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Proof. If z is a special chain, it must contain, for each 1 <= u <= v, a vector Zk such that

D(Zk, U) >=N/2.

Applying the preceding lemma to this vector, we obtain

or, by taking logarithms,

ru + (su + t) log b . log N 1.

Summing this over 1 =< u v and using

, ru r,
<uv

Su "::: S,
luv

we obtain

Subtracting this from

yields

, tu <= t,
lu:v

r + (s + t) log b => v log N- v

O( (log H)2

)v log N + \log i0g-H/"

r+s+t=n

<-_L(p, q, N)

H=< v log N 4-
log H

H O( (log H)2
)(s + t)(1 log 6) =< i0g H +

\log log H/"

Since 1- log 4 > O, this proves the first assertion of the lemma.
Again applying the preceding lemma to z, we obtain

2+’ >=N/2

or, by taking logarithms,

r. + Su + tu log _--> log N- 1.

Summing over 1 _-< u

_
v, we obtain

r + s + log ->_ v log N- v

(log H)2
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Since

and

this yields

t<=l

O(H)

log h -a log h

log log H

H log log H)r +s > v log N + O (logH)Z
which proves the second assertion of the lemma.

We shall say that a matrix is special if, for every 1 <= u v, it contains a vector Zk
such that

D(z,, u) >=N/2.

LEMMA 2.2-3. Them are at least

(log H)4

U log logn)
special matrices.

Proof. Let

L 4q J"
For any 1 -<-< ] ---q, there are at least (K + 1)4 vectors [ such that

D(f, ]) >- N/2,

since if

O--</]-<K for l<--i<-_],

N-K <=[. <=N,

O<-/]=<K for ]<i<-q,

then there are K + 1 possible values for each component and

D(f, ]) N qK

-N-q[N+I|
>-_N/2.

It follows that there are at least

+ 1))P
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special matrices. Estimating this binomial coefficient as before, we obtain

P P

(K + 1)U(w log w)

(N+ 1)P-> 4"q U(w log w)

(N + 1)4U(wE log w

special matrices.
LEMMA 2.2--4. For some value of t, there are at least

2U( (lg__H) .]
\log log

special chains of length at most L(p, q, N).
Pro@ Each special matrix is computed by a special chain of length at most

L(p, q, N). Each of these chains computes at most

U(p log l)

matrices, so there are at least

2HU( (lOg- /-/)4"lOglog n]
0

4

/. [ (log H)3
\ H. [ (1 g H) \

special chains of length at most L(p, q, N). Each chain has one of at most

(p, q, N)= O(H)

U0og H)

possible values of t, so for some value of there are at least

special chains.
With each special chain z we shall associate an object, which will be called a special

code, constructed as follows. Let be the set defined above. Each immediate vector Zk
in z is 2Zb for some bk such that 1 bk k 1. Let be a subset of {1, , l} that
contains r elements bk, one corresponding to each immediate vector in z. Each short
vector Zk in z is a f-vector for some 1 j q and is Za + Zb for some ak and bk such that
1 ak < bk k 1, Za and Zb are both j-vectors, and the number Ak of j-vectors inter-
vening between z and Zb satisfies 0
{1,..., l} that contains s ordered pairs (Ak, bk), one corresponding to each short



EVALUATION OF POWERS AND MONOMIALS 243

vector in z. Each long vector Zk in z is Zak -- Zbk for some ak and bk such that
1 <- ak < bk -< k 1. Let - be a subset of {1, , l} x {1, , l} that contains ordered
pairs (ak, bk), one corresponding to each long vector in z. The ordered quadruple (//, ,, -) will be the special code associated with z.

LEMMA 2.2-5. A special chain is uniquely determined by its special code.
Proof. Let (t/, , , ) be a special code. From ///, determine the set of basic

vectors, arrange these in the standard order to form a chain. Remove from Y all
elements b, from 6 all pairs (A, b), and from all pairs (a, b) for which b is less than or
equal to the number of vectors currently in the chain. For each b removed from ,
compute 2Zb. For each (A, b) removed from 5e, determine j such that Zb is a j-vector,
determine a such that za is a j-vector and exactly A j-vectors intervene between za and
Zb, and compute z + Zb. For each (a, b) removed -, compute Za + Zb. Arrange the
computed vectors in the standard order and append them to the end of the chain.
Repeat this process until no more elements or pairs can be removed. Clearly, only the
resulting chain can have the special code (, , 6e, -). !-1

LEMMA 2.2-6. For any value of t, there are at most

(H2/t)U(t)u(H log log H)log H

special chains o) length at most L(p, q, N).
Proofs. For any m, r, s, and t, there are at most

(q +
special codes, since the four factors bound the number of ways of choosing ///, , 6, and
’, respectively. Since

q + 1 0
\log log HI’

then

Since

q + 1) _< 2,+ ,[ (log H)2
\

m

and

l= O(H)

m+s+t

m+s+t log H
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Since

and

Since

There are

hl O(H(log H)2)

s:

(hsl)<_(hle/s)S U(HlglgH)log H

l= O(H),

(l) <= (12 e/t)t (H2/t)tU(t).

(log H)2,, +
U(log log H)

possible values of m, and at most

L(p, q, N)2 O(H2)
U(log H)

possible combinations of values of r and s. Thus, for any value of t, there are at most

H log log H)(H2/t)U(t)U( log H
special codes.

Each special chain is associated with some special code, and at most one special
chain is associated with each special code. Thus the bound just derived applies to special
chains as well as special codes. Vl

We can now complete the proof. By Lemmas 2.2-4 and-6, there is a value of such
that

H log log H) 2nU( (log H)4

’](H2/t)’U(t)U logH ->
\log log H/’

since these quantities bound the number of special chains of length at most L(p, q, N).
Taking logarithms, we obtain

(H.!0g10g H)2t log H- log + O(t) >-H + O\ log H

Ignoring the log term for the moment, this implies

H log log H)2t log H + O(t) H + 0 i0gn
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or

This yields

or, by taking logarithms,

Multiplication by yields

(1) (1og lor./-/)(2t log H)V i0g H >-- HU o

t>_
H [loglogH\

21ogHU, o-af )

log >= log H + O(log log H).

log log H + O(t log log H).

With this bound on the log term, the original inequality implies

or

Thus

Since for special chains

we obtain

(H log log,H)log H + O(t log log H) >=H + O
\ 10gH

log log H log log H(tlogH)U( -’i ’)>=HU( o--i ’)"

H [loglogH\
t_->

log H uk i0g H" ]"
H (H log log.H

log---- + 0 \ l-’g H)z ]

r+s>-vlgN+O\ (logH)2 )’

L(p, q,N)>-_-r +s +

H /’H log 10gH>=vlgN+iogH+O\ (logH)2 /

H (log log H)log N iog’H U\ o/-

which is the desired lower bound.

3. The upper bound. We shall prove

,ogH ((loglogH1/2)\.logH /q, log s +
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We shall begin with the preliminary upper bound

L(p, q, N) <=
log H \ log H /

which we shall deduce from a theorem on graphs.
Let y be a p-by-q (N + 1)-ary matrix. Let C(y) denote the minimum possible

number of edges in a directed graph in which
(1) there are p distinguished vertices called inputs and q other distinguished

vertices called outputs;
(2) there is no directed path from an input to another input, from an output to

another output, or from an output to an input; and
(3) for all 1 _-< -<_ p and 1 _-< ] _-< q, the number of directed paths from the ith input to

the ]th output is equal the ]th component of the ith row of y.
Let C(p, q, N) denote the maximum of C(y) over all p-by-q (N + 1)-ary matrices

y. In [6] it was shown that

H
C(p,q,N)<_

log H
log log H’X 1/2)o ) + 0( log N)+ O(w).

Thus the preliminary upper bound will follow if we prove L(y)_-< C(y), which implies
L(p, q, N) C(p, q, N).

Consider a graph with at most C(y) edges that meets the conditions enumerated
above. We may assume that this graph has no cycles, since the deletion of all edges
involved in cycles would not affect the number of paths from an input to an output
unless that number were originally infinite. From this graph we can obtain another in
which the degree (the number of edges directed from) each vertex is 0, 1 or 2, which has
at most C(y) vertices with degree 1 or 2, and which also meets the conditions
enumerated above; this is done by replacing each vertex with degree d-> 3 by d- 1
vertices with degree 2. We can then associate with each vertex a vector which, for
1 -<_ ] <= q, has as its ]th component the number of paths from the vertex to the ]th output.
It is easy to verify that these vectors can be arranged to form a chain of length at most
C(y) that computes y. Thus L(y) =< C(y), which completes the proof of the preliminary
upper bound.

3.1. The easy ease. Consider first the case

In this case

v log N "<
H log log H

(log H)2

v log N
H log log H 1/2).

and the desired lower bound follows from

<
H u((log_l_og.Hl/2)L(p, q, N)

log H \ log H ]
+ O(v log N) + O(w),

which has already been proved.
At this point we have proved the case N 1, since in this case v log N 0. In

particular,

<
cd [/log log (cd)\ 1/2L(c, d, 1)=

log (cd-----t --- j ] + O(c) + O(d).
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3.2. The hard case. Consider now the case

which, as before, implies

v log N ->
H log log H

(log H)2

(log H)2

log log H"

Let y be a p-by-q (N + 1)-ary matrix. For 1 =< =< p and 1 =< j -< q, let eg,i denote the

flh component of the ith row of y, so that

Y/= E eidx]

Let

s=[(q log(N+ 1).) /2],P

t=[(p lg (N + 1))1/21.q

Then

st >= log (N + 1),

SO

2st I>=N.

On the other hand

st<__{(q lg (N + 1)) 1/2

P

1/2

log (N + 1)+
/|q log (N + 1)]\ 1/2

\ P /

1/2

SO

Similarly,

pqst <-- H + (p + q)H/2 +pq

o(H1/E(log H)z
=H+ , il-O-H J"

vst v log N + O(H1/2),
ps=O(H1/2),
qt O(H1/2).

We shall consider two cases, according to whether p -> q or p < q.
If p _-> q, we shall compute yl, , yp from Xx,""", xq in three steps as follows.
(1) For 1 _-< j _-< q and 1 <- b _-< t, compute

2s(b-1)XjXt(j-1)+b
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for 1 < <This defines x g g qt. For 1 -< < p and 1 - ] < q, write ei,j as a t-digit number in
base 2s.

ei,i 2s(b-1)
ei,t(]-l)+b

l<b_t

<2where 0 < e i.,(i-1)/b 1. This is possible since 0 ei,i =< N < 2s‘ 1,’ it defines e i,g for
1 < =p< and 1 <= g <= qt. Now write each ei,g’ as an s-digit number in base 2"

a--1
ei, e, )+a,g2es(i-

l<as=

<1 This is possible since 0 <ei,g= -1; it defines e"where 0=< es(i-1)+a,g < 2 t,g for
1 =<f<ps= and l<=g<qt.=

(2) For 1 <- f--- ps, compute

Y= 2 e’/,xr
lgqt

(3) For 1 -< p, compute

yi 2’-ly’s(i- 1)+a.
l<a<s

It is easy to verify that this computes yi correctly:

Y 2- , ei-+,gxg
i<as 1-gqt

2s(b-1Y. 2’- Y’, , e s(i-1)+a,t(i-1)+b )Xj
las _bt ljq

)Xi, Y ei,t(i_l)+b2 (b-1

lbt l]q

E ei,ixi
li_q

Let us now count the number of additions required to perform these steps.
Consider X,(j-,)+b. For b 1, it is xi; for 2-< b -t, it can be computed from
using s additions:

Xt(i-1)+b 2SXt(i-1)+b-1

Thus step (1) requires at most

q(t-1)s<=vst

v log N + O(H/2)
additions. Since 0-e" < 1 for 1 <t, =f< ps and 1 <g < qt, step (2) requires at most

< pqst ((loglog(pqst’\] /2)L(ps, qt, 1)=log(pqst) U \ "(o--(p’ ]
+O(ps)+O(qt)

H u((loglogH]X/z)log-- \ log H ]
+ O(H1/2)
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additions, by taking c ps and d qt in the case N 1. Finally, consider the sum

Ysci-1)+r-- 2"-rY s(i--1)+a

For r= s, it is ysi, for 1 < r<s-= 1, it can be computed from yci-1)+r+l using two
additions:

Y s(i-1)+r Ys(i-1)+r "+"

Since yi y,-1/1, step (3) requires at most

2p(s 1) 2ps

=O(H1/2)
additions. Summing these contributions completes the proof of the upper bound for
p>

If p < q, we shall compute yl, , yp from xl, ’, xq in three steps as follows.
(1) For 1 =< ] =< q and 1 =< b =< t, compute

2b-1X t(i-1)+b

for 1 < < =< p and 1 </" < q, write ei.i as an s-digit number inThis defines x g qt. For 1 _-__
base 2"

,3t(a-1)
ei,i ’, e s(i-1)+a.jZ,

la_s

<2’ 2’where 0<e,,_l)+a.j= -1. This is possible since 0<eia<N<= -1’ it defines eafor,
1 <-[ <= ps and 1 _-< ] -_< q. Now write each er.i as a t-digit number in base 2"

e’ 2b-f,j Z 1)+bef,t(i-
lb_t

" < 1 This is possible since 0 =< e, -< 2’ "where O<=et.t<j_l)+b 1,itdefines et,g for 1 <-_f<-ps
and 1 < <=g =qt.

(2) For 1 =< f-< ps, compute

(3) For 1 -< -< p, compute

y= X e’r’.x’g.
lgqt

Yi Z 2tc-l)Y(i-1)+a.
las

It is again easy to verify that this computes yi correctly:

Yi 2t(a-1)Y s(i-1)+a
las

Z 2’c’-1} Z esci-1)+a,e,Xe,
las _gqt

<=as lbt
es(i-1)+a,,(i-1)+b 2b-lxi

Z ei,ixi
ljq
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Let us again count the number of additions required to perform these steps.
Consider x’ti-1)+b. For b 1, it is xi, for 2 <= b <-t, it can be computed from x tj-l)+b-1

using one addition"

Thus step (1) requires at most

x ,’-l)+b 2X’t0"-l)+b-1.

q(t-1)<-qt

=O(H1/2)
additions. Since 0 _-< e’’,g =< 1 for 1 <= f <= qs and 1 <= g <= qt, step (2) requires at most

L(ps, qs, 1)-<lognU \ o ! +O

additions, as in the case p _>-q. Finally, consider the sum

Ys(i-1)+r
t(a-r)
Z. Ys(i-1)+a.

ra--s

For r=s, it is Ysi; for l_-<r<_-s-1, it can be computed from Ysi-l/r+l using t+l
additions:

Ys(i-)+r Ys(i-1)+r + 2 s(i-1)+r+l.

Since yi Ys(i-1)+l, step (3) requires at most

p(s- 1)(t + 1) vst + ps

v log N + O(H/)
additions. Summing these contributions completes the proof of the upper bound.
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