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Abstract

Associative 3-manifolds in R7

by Ian Weiner

May 2001

We determine several families of so-called associative 3-dimensional manifolds

in R7. Such manifolds are of interest because associative 3-cycles in G2 holonomy

manifolds such as R6 × S1, whose universal cover is R7, are candidates for repre-

sentations of fundamental particles in String Theory.

We apply the classic results of Harvey and Lawson to find 3-manifolds which

are graphs of functions f : Im H → H and which are invariant under a particular

1-parameter subgroup of G2, the automorphism group of the Cayley numbers, O.

Systems of PDEs are derived and solved, some special cases of a classic theorem of

Harvey and Lawson are investigated, and theorems aiding in the classification of

all such manifolds described here are proven. It is found that in most of the cases

examined, the resulting manifold must be of the form of the graph of a holomor-

phic function crossed with R. However, some examples of other types of graphs

are also found.
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Chapter 1

Introduction and Background

1.1 The Problem

The objective of this paper is to investigate a problem which is of some importance

to theoretical physics. We would ultimately like to find supersymmetrc three cycles

in the G2 holonomy manifold R6 × S1. These cycles are characterized by being

volume minimizing in their homology class.

The problem was first posed by Edward Witten in [3]. Witten suggests that a

three cycle as mentioned above could represent a BPS saturated domain wall in

string theory, and the identification of such cycles is important to the development

and understanding of the physical theory. He does not, however, prove the exis-

tence of such a cycle which obeys the appropriate boundary conditions, and has

no concrete examples of such cycles.

In this paper we make a first step towards this goal, by investigating super-

symmetric 3-manifolds in R7, which is the universal cover of R6 × S1. We apply

the classic results of Harvey and Lawson to find 3-manifolds which are graphs of

functions f : Im H → H and which are invariant under the 1-parameter subgroup

of G2 whose elements are of the form

ht(a+ be) = eitae−it + eqtbe−ite (1.1)

for a fixed q ∈ Im H and for all t ∈ R. We find the special case systems of PDEs
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which result from Harvey and Lawson’s classic PDE

Df = σf (1.2)

and solve them. When our function f is real-valued on the {i, j} plane, we find

that the general form for f is that of a complex power/root function in x2 and x3

coordinates, and is independent of the x1 coordinate. We prove that graphs of f ,

where f is a complex function satisfying the Cauchy-Riemann equations, crossed

with a line, are always associative. We then investigate the cases when f is not

necessarily real valued on the {i, j} plane. The PDEs for some special forms for f

are investigated. In most of the cases examined we find that the resulting manifold

must be the graph of a function satisfying Cauchy-Riemann equations crossed with

R. However, some examples of other types of graphs are also found. In particular,

a graph of a function satisfying Cauchy-Riemann equations and a particular set of

its rotations are found to form an associative manifold.

1.2 The Method of Calibrations

We will use the method of calibrations to identify our manifolds, a method pio-

neered by Harvey and Lawson in their ground breaking paper [1]. The basic idea

behind calibrations is as follows. Suppose we are given a Riemannian manifoldM .

A calibration on M is a closed p-form φ such that

φ(e1, . . . , ep) ≤ 1 (1.3)

on all orthonormal p-tuples of tangent vectors at all points of M , i.e. on all tangent

p-planes e1∧e2∧· · ·∧ep with |e1∧e2∧· · ·∧ep| = 1. A tangent plane is called calibrated

if φ achieves 1 on it. A p-dimensional submanifold of M is called calibrated if all

of its oriented tangent planes are calibrated. The fundamental result is that any

calibrated closed oriented p-dimensional cycle N ⊂ M is of absolutely minimal

volume in its homology class. This is easily demonstrated:
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If N ′ is another p-cycle of M in the same homology class as N , then there is

some oriented (p+1)-cycle C such that ∂C = N ′ −N . Now

Vol(N ′) ≥
∫

N ′
φ =

∫
N

φ+

∫
C

dφ = Vol(N) (1.4)

where we have used the calibration property of φ, Stokes’ theorem, and the fact

that dφ = 0, in that order. Thus N is absolutely minimal in its homology class. If

Vol(N ′) = Vol(N ) then N ′ must also be calibrated by φ.

The so-called associative calibration on R7 described below leads to a particularly

elegant algebraic characterization of the manifolds we seek.

1.3 The Associative Calibration on R7

We will consider a calibration on the imaginary Cayley numbers (isomorphic to

R7). The Cayley numbers and Quaternion numbers are discussed at length in Ap-

pendix A. Most of the results stated in this section can be found in [1].

Consider the 3-form

φ(x, y, z) = 〈x, yz〉 (1.5)

where x, y, z ∈ ImO. φ is alternating:

φ(x, x, z) = 〈x, xz〉 = 〈x̄x, z〉 = |x|2〈1, z〉 = 0 (1.6)

since z ∈ ImO, and similarly φ(x, y, x) = 0. Also,

φ(x, y, y) = 〈x, y2〉 = −〈x, yȳ〉 = −|y|2〈x, 1〉 = 0 (1.7)

Since φ is alternating we can take x, y, z orthogonal. On any orthonormal triple

u1, u2, u3 we have

φ(u1, u2, u3) = 〈u1, u2u3〉 ≤ |u1||u2u3| = |u1||u2||u3| = 1 (1.8)

by the Schwartz inequality and the norm preserving property of Cayley multipli-

cation. It is easy to verify that φ is closed. Thus φ is a calibration on ImO, and so φ
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must achieve 1 on the tangent spaces on homologically minimizing 3-dimensional

subvarieties of ImO.

Note that φ achieves its maximum of 1 only when u1 = u2u3. It follows easily

from Theorem A.2.2 that this equality holds iff u1, u2, u3 span a 3-plane isomorphic

to the canonically oriented imaginary part of the quaternion algebra. Because these

are exactly the associative subalgebras of O we call φ the associative calibration on

ImO. Tangent planes and submanifolds calibrated by φ will be called associative.

Later in the paper when we search for associative manifolds invariant under

groups of automorphisms of O we will need the following theorem:

Theorem 1.3.1. For all γ ∈ G2,

γ∗φ = φ (1.9)

Proof. Since γ is linear we only need to show that

〈γx, (γy)(γz)〉 = 〈x, yz〉 (1.10)

But γ is an automorphism, so

(γy)(γz) = γ(yz) (1.11)

and automorphisms of O are rotations by Theorem A.2.5, so the inner product is

preserved, and the theorem is proven.

1.4 The Partial Differential Equations of Associative Manifolds

One special type of associative submanifold we can look for is a graph of a function

f : Ω ⊂ Im H → H. That is, manifolds parameterized as (x, f(x)) ∈ Im H ⊕ H =

ImO.

Definition 1.4.1. If points in Im H are denoted by x = x1i + x2j + x3k then the Dirac

operator D is defined on f as

Df = − ∂f

∂x1

i− ∂f

∂x2

j − ∂f

∂x3

k (1.12)
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The first order Monge-Ampere operator on f is defined as

σf =
∂f

∂x1

× ∂f

∂x2

× ∂f

∂x3

(1.13)

where we employ the triple cross product of Cayley numbers, defined by (A.53).

Theorem 1.4.1. Suppose f : Ω ⊂ Im H → H is C1. The graph of f is an associative

manifold iff f satisfies the differential equation

Df = σf (1.14)

Proof. We need only prove the theorem when f is linear. In this case the graph of

f is spanned by

x = i+ f(i)e (1.15)

y = j + f(j)e (1.16)

z = k + f(k)e, (1.17)

and one can verify using properties of Cayley multiplication that

Imx× y × z =

= Im {i (f(j)× f(k)) + j (f(k)× f(i)) + k (f(i)× f(j))}+ (σ(f)−D(f)) e (1.18)

By Theorem A.3.2 we see that the graph of f is associative iff Imx×y×z = 0. Thus

if the graph of f is associative then each component vanishes, and in particular,

we have (1.14). Now assume (1.14) holds. By Theorem A.3.3 we must have that

[x, y, z] is orthogonal to x, y, and z. But [x, y, z] ∈ Im H and this, together with

(1.15), shows that [x, y, z] = 0. Thus, given the proper orientation, the graph of f is

associative.

Although we now have a 1st order PDE that completely characterizes which f

have associative manifolds as their graphs, the PDE is highly non-linear because

of the σf term. No one has been able to solve it. Therefore we must search for

solutions which exhibit certain symmetries in order to make the problem more

tractable.



Chapter 2

Examples of Associative 3-Manifolds in R7

2.1 A Family of Associative Manifolds

In this section we will identify a set of associative manifolds in R7 ∼= ImO using a

technique inspired by Harvey and Lawson [1].

Theorem 2.1.1. For any z0 ∈ C, the graph

Mz0 =

{
x+

(
z0√
rx

e−
1
2
iθx

)
e

∣∣∣ x = x1i+ rx cos θxj + rx sin θxk

}
(2.1)

is an associative manifold in R7.

Note that (x1, rx, θx) are the cylindrical coordinates of x taking cylinder’s axis to

be the i axis. If we take rx and θx to vary continuously we get a graph of a branch of

the complex square root function crossed with a line. See Figures 2.1–2.1 for some

plots of M .

Proof. It can be checked by direct computation that the tangent 3-plane at every

point of Mz0 is associative. Parameterize the graph by the coordinates of x:

S(x1, x2, x3) = x1i+ x2j + x3k +

(
z0√
rx

e−
1
2
iθx

)
e (2.2)

The change of coordinate derivatives for cylindrical coordinates are

∂rx

∂x2

= cos θx
∂rx

∂x3

= sin θx (2.3)

∂θx

∂x2

= −sin θx

rx

∂θx

∂x3

=
cos θx

rx
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To take the derivatives with respect to the rectangular coordinates we differentiate

using the product rule. Our calculations are simplified by Lemma A.2.2 for the e

and ie components, since it allows us to commute and associate products such as

(ab)(ce) = (abc)e = (bac)e, etc, for a, b, c ∈ C.

∂S

∂x1

= i (2.4)

∂S

∂x2

= j − z0

2r
3/2
x

(cos θx − i sin θx) e
− 1

2
iθxe (2.5)

∂S

∂x3

= k − z0

2r
3/2
x

(sin θx + i cos θx) e
− 1

2
iθxe (2.6)

From this it is very clear that
∂S

∂x1

∂S

∂x2

=
∂S

∂x3

(2.7)

at every x ∈ ImH, which shows that the tangent planes are associative, hence Mz0

is associative for each z0 ∈ C.

Although this proof is valid, it offers no insight into how we obtained such a

manifold. We will now demonstrate how to obtain the manifold by solving the

differential equation Df = σf , using symmetry constraints to simplify our task.

In particular, we will impose the restriction that our graph be invariant under a

1-parameter subgroup of the exceptional Lie group G2. Recall that G2 is the auto-

morphism group of O, that is,

G2 = { g ∈ GL8(R) | g(xy) = g(x)g(y), ∀x, y ∈ O } (2.8)

For more details on the structure of G2, see Appendix A, page 37.

Lemma 2.1.1. The following is an automorphism of O for every t ∈ [0, 2π):

ht(a+ be) = eitae−it + be−ite (2.9)

where a, b ∈ H. The set {ht | t ∈ R} forms a 1-parameter subgroup of G2.



8

Figure 2.1: A slice of the associative manifold of Thm 2.1.1 in {j, k, e} space
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Figure 2.2: A slice of the associative manifold of Thm 2.1.1 in {i, j, e} space
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Figure 2.3: A slice of the associative manifold of Thm 2.1.1 in {j, e, ie} space
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Proof. From the definition of the Cayley number product, and using xy = ȳx̄,

h(a, b)h(c, d) = (eitae−it, be−it)(eitce−it, de−it)

= (eitae−iteitce−it − de−itbe−it, de−iteitae−it + be−iteitce−it)

= (eitace−it − eitd̄be−it, dae−it + bc̄e−it)

= (eit(ac− d̄b)e−it, (da+ bc̄)e−it) = h ((a, b)(c, d))

(2.10)

We will sometimes refer to this subgroup as the circle group or the circle action

on ImO.

The basic idea is as follows: we may use the action defined above to rotate any

x ∈ H into the plane spanned by i and j (this follows from the geometric inter-

pretation of quaternion conjugation, as in Theorem A.4.1). We will seek functions

f : Im H → H whose graph is invariant under the circle action defined above. In

this case the function’s value on the {i, j} plane is sufficient to determine all of f .

Applying the requirement thatDf = σf will yield a much simplified partial differ-

ential equation whose solution gives us f on the {i, j} plane. Because we are using

a subgroup of G2 to generate the full 3-manifold from this, and by Theorem 1.3.1,

γ∗φ = φ for all γ ∈ G2, we are assured that the associative calibration is preserved

and hence we need only worry about solving our PDE at points in the {i, j} plane.

Lemma 2.1.2. A graph of f : ImH → H is invariant under the circle action iff

f(x) = f(x1i+ rxj)e
− 1

2
iθx (2.11)

Here x1, rx, and θx are the standard cylindrical coordinates for x taking the axis about i.

Proof. First assume the graph of f is invariant under the circle action. Then given

any x ∈ Im H we can take t = −1
2
θx and apply the automorphism. Invariance

implies that there is a y ∈ ImH such that

e−
1
2
θxxe

1
2
θx + f(x)e

1
2
θxe = y + f(y)e (2.12)
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Equating the quaternion parts of the equation and applying the geometric meaning

of quaternion conjugation gives us that y = x1i+ rxj. Equating the remaining part

of the equation gives

f(x) = f(x1i+ rxj)e
− 1

2
iθx (2.13)

Now suppose (2.11) holds. Apply any circle action. We need to find a y ∈ ImH

such that

eitxe−it + f(x1i+ rxj)e
− 1

2
iθxe−ite = y + f(y1i+ ryj)e

− 1
2
iθy (2.14)

It is clear we need to take y = eitxe−it. Thus y is just x rotated about the i axis

by some angle 2t radians. Hence y1 = x1 and ry = rx. So we need only show that

e−
1
2
iθxe−it = e−

1
2
iθy . That is, we need θx+2t = θy. But this is precisely how θ changes

from the rotation which takes x to y, so indeed this relation holds.

We can now prove a slightly better version of Theorem 2.1.1:

Theorem 2.1.2. A manifold invariant under the circle action defined above and obtained

as the graph of an f : ImH → C is associative iff it is of the form (2.1).

Proof. We will consider graphs of the form

M =
{
x+ g(x1i+ rxj)e

− 1
2
iθxe | x = x1i+ rx cos θxj + rx sin θxk

}
(2.15)

for some function g(x1, rx) : {i, j} plane → C to be determined, whose choice

makes M into an associative manifold. Note that we are assuming g complex-

valued here. We require Df = σf to hold for M . It is not difficult to calculate the

partials of f . Making use of (2.3), we find

∂f

∂x1

=
∂g

∂x1

e−
1
2
iθx (2.16)

∂f

∂x2

=

(
∂g

∂rx

cos θx +
1

2
g
sin θx

rx

i

)
e−

1
2
iθx (2.17)

∂f

∂x3

=

(
∂g

∂rx

sin θx −
1

2
g
cos θx

rx

i

)
e−

1
2
iθx (2.18)
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Now, we calculate from this

Df = −

[
∂g

∂x1

e−iθxi+

(
∂g

∂rx

cos θx +
1

2
g
cos θx

rx

)
j+

+

(
∂g

∂xr

sin θx +
1

2
g
sin θx

rx

)
k

]
e

1
2
iθx

(2.19)

Since each of the partials of f lie in the complex plane, their triple cross product

vanishes, and so

σf = 0 (2.20)

So we get that M is associative iff Df = 0. We could, at this point, restrict our

attention to the {i, j} plane, i.e. set θ = 0 and solve. But we can see that regardless

of the value of θ we get the two equations

∂g

∂x1

= 0 (2.21)

∂g

∂rx

+
1

2rx

g = 0 (2.22)

The solution for g is readily obtained by solving the first order differential equation

for its second parameter. The general solution is

g(x1, rx) =
z0√
rx

(2.23)

for any z0 ∈ C. Substituting this back into (2.15) yields (2.1).

Remark 2.1.1. We note that applying any automorphism of O to this manifold gives an-

other associative manifold, although the resultant manifold may not be a graph of some

f : ImH → C.

2.2 Examples of Associative Manifolds Obtained by a More General Action in

G2

We can extend the method above further by considering more general actions of

automorphisms. If we wish to use a subset of G2 to impose symmetries on our
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graph in order to reduce the number of dimensions on which we solve the dif-

ferential equations, we must use a subgroup of G2. Because we are dealing with

graphs of functions from ImH to H, for simplicity we would like to consider auto-

morphisms that fix ImH and He as sets. Finally, our experience in proving Lemma

2.1.2 suggests that the set of automorphisms should at least be closed under com-

position. Hence, we consider 1-parameter subgroups of G2.

Lemma 2.2.1. If G is a 1-parameter subgroup of G2 that fixes Im H and He. Then the

elements of G are of the form

ht(a+ be) = eptae−pt + eqtbe−pte (2.24)

for fixed p, q ∈ ImH and ∀t ∈ R.

Proof. It is proven in the appendix (Lemma A.4.1) that all automorphisms of O

fixing ImH are of the form

h(a+ be) = epae−p + eqbe−pe (2.25)

for p, q ∈ ImH. By a countability argument, we can find some h1 ∈ G with |p|
π

or |q|
π

irrational. Thus, by the closure property of G, we get that hn ∈ G for all n ∈ N. By

our choice of h1 and the periodicity of exponentials, the hn’s form a dense subset

of the set of all ht for t ∈ R. By continuity of ht as a function of t, we must have

(2.24).

Although our most general 1-parameter subgroup involves arbitrary imaginary

quaternions p and q, we restrict our attention to the p = i case. Analogous results

of everything that follows hold for the general case.

Consider the more generalized circle action, for any q ∈ ImH:

ht(a+ be) = eitae−it + eqtbe−ite (2.26)
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A note on the meaning of eqt: q is an arbitrary imaginary quaternion, so q =

|q|q̂ where q̂ is a unit imaginary quaternion. The algebra generated by 1 and q̂ is

isomorphic to C, thus

eqt = cos(|q|t) + q̂ sin(|q|t) (2.27)

Of course, since quaternion multiplication does not commute in general, we cannot

decompose eqt into a product, that is,

eqt 6= eq1iteq2jteq3kt (2.28)

for q = q1i+ q2j + q3k, unless all but one of the qi is zero.

Lemma 2.2.2. The action above is an automorphism for any q ∈ ImH and any t ∈ R. A

graph f : ImH → H is invariant under this automorphism group iff

f(x) = e
1
2
qθxg(x1, rx)e

− 1
2
iθx (2.29)

Here, again, we make use of cylindrical coordinates using the i axis as the axis

of cylindrical symmetry, and g(x1, rx) is a function from the {i, j} plane to H. We

forgo a proof of the lemma since it is so similar to the proof of Lemma 2.1.2.

Now let us again assume g is real valued. We again solve Df = σf at points

where θx = 0. Taking partials we get

∂f

∂x1

= e
1
2
qθx

∂g

∂x1

e−
1
2
iθx (2.30)

∂f

∂x2

= e
1
2
qθx

[
−1

2

sin θx

rx

g(x1, rx)q̂ +
∂g

∂rx

cos θx +
1

2

sin θx

rx

g(x1, rx)i

]
e−

1
2
iθx (2.31)

∂f

∂x3

= e
1
2
qθx

[
1

2

cos θx

rx

g(x1, rx)q̂ +
∂g

∂rx

sin θx −
1

2

cos θx

rx

g(x1, rx)i

]
e−

1
2
iθx (2.32)
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At θx = 0 we get the much simpler equations:

∂f

∂x1

(x1, rx, 0) =
∂g

∂x1

(2.33)

∂f

∂x2

(x1, rx, 0) =
∂g

∂rx

(2.34)

∂f

∂x3

(x1, rx, 0) =
g(x1, rx)

2rx

(q̂ − i) (2.35)

We only need to solve for Df = σf for these simpler partials. Since two of

these are real valued, again we get σf = 0 so we need to solve Df = 0. Now, if

q = q1i+ q2j + q3k,

Df(x1, r, 0) =

[
1

2
q3
g(x1, rx)

rx

]
−[

∂g

∂x1

+
1

2
q2
g(x1, rx)

rx

]
i−

[
∂g

∂rx

+
1

2
(1− q1)

g(x1, rx)

rx

]
j (2.36)

We get three PDEs to solve for g(x1, rx):

1

2
q3
g(x1, rx)

rx

= 0 (2.37)

∂g

∂x1

+
1

2
q2
g(x1, rx)

rx

= 0 (2.38)

∂g

∂rx

+
1

2
(1− q1)

g(x1, rx)

rx

= 0 (2.39)

If we want non-trivial solutions the first equation shows that q3 must be zero.

For any value of q1 we have the general solution to the third equation

g(x1, rx) = K(x1)r
1
2
(q1−1)

x (2.40)

where K(x1) is any function of just x1. We assume for non-trivial solutions that

K(x1) is not identically zero. Plugging this into the second equation, we get

K ′(x1)r
1
2
(q1−1)

x = −1

2
q2K(x1)

r
1
2
(q1−1)

x

rx

(2.41)

or, rearranging and canceling terms,

K ′(x1)

K(x1)
= − q2

2rx

(2.42)
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which can only happen if q2 = 0 and K(x1) = K ∈ R is a constant function.

Thus, the general form for g(x1, rx) is

g(x1, rx) = Kr
1
2
(q1−1)

x (2.43)

Plugging this back into our original form for f we get that the following is an

associative manifold for any K, q1 ∈ R:{
x+

(
Kr

1
2
(q1−1)

x e
1
2
iq1θxe−

1
2
iθx

)
e

∣∣∣ x = x1i+ rx cos θxj + rx sin θxk
}

(2.44)

To simplify, we write C = 1
2
(q1 − 1). We have just proven the following:

Theorem 2.2.1.

MK,C =
{
x+K

(
rxe

iθx
)C

e
∣∣∣ x = x1i+ rx cos θxj + rx sin θxk

}
(2.45)

is associative for all real K and C, where we take a holomorphic branch of the complex

power/root function.

Remark 2.2.1. Taking C = −1
2

yields as a special case our original family of manifolds.

We note that again, the image of the MK,C ’s under any automorphism of O gives other

associative manifolds which are rotations of these.

2.3 The Relation to the Cauchy-Riemann Equations

The results obtained here are special cases of the following more general theorem:

Theorem 2.3.1. Suppose f(x) = f0(x)+if1(x) for real-valued f0, f1. Then the graph of f

in ImO is associative iff ∂f
∂x1

= 0 and f satisfies the Cauchy-Riemann equations in x2, x3:

∂f0

∂x2

=
∂f1

∂x3

(2.46)

∂f0

∂x3

= −∂f1

∂x2

(2.47)
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Since the graphs examined so far have been graphs of holomorphic functions

from the {x2,x3} plane into C, crossed with the x1 axis, this theorem shows that

they are associative.

Proof. Since the image of f is entirely in the complex plane, it is easy to see that

σf = 0. Thus f is associative iff Df = 0. Now,

−Df =
∂f

∂x1

i+
∂f

∂x2

j +
∂f

∂x3

k = 0 (2.48)

Since the partials are all complex-valued, the first term in this sum is entirely com-

plex valued, while the second two terms are entirely within the {j, k} plane. Thus

they vanish separately:

∂f

∂x1

= 0 (2.49)

∂f

∂x2

j +
∂f

∂x3

k =

(
∂f0

∂x2

− ∂f1

∂x3

)
j +

(
∂f1

∂x2

+
∂f0

∂x3

)
k = 0 (2.50)

Requiring components to vanish separately in the second equation gives the Cauchy-

Riemann equations.

Another result of the same flavor is also possible:

Theorem 2.3.2. Suppose f : ImH → H with f = f0+f1i+f2j+f3k where fi : ImH → R

for each i = 0, 1, 2, 3, and ∂f
∂x1

= 0. Then the graph of f is associative iff the projections of

f , f0 + f1i and f3k + f2j, satisfy the following Cauchy-Riemann equations:

∂f0

∂x2

=
∂f1

∂x3

(2.51)

∂f0

∂x3

= −∂f1

∂x2

(2.52)

and

∂f3

∂x2

=
∂f2

∂x3

(2.53)

∂f3

∂x3

= −∂f2

∂x2

(2.54)
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Note that the in the second set of Cauchy-Riemann equations, f3 plays the role

of the real variable and f2 plays the role of the imaginary variable.

Proof. The graph of f is associative iff Df = σf . Since ∂f
∂x1

= 0, σf = 0 and we get

that the graph of f is associative iff

∂f

∂x2

j +
∂f

∂x3

k = 0 (2.55)

Writing out the components of f and multiplying through using the rules of quater-

nion multiplication, we get(
−∂f2

∂x2

− ∂f3

∂x3

)
+

(
−∂f3

∂x2

+
∂f2

∂x3

)
i +

(
∂f0

∂x2

− ∂f1

∂x3

)
j +

(
∂f1

∂x2

+
∂f0

∂x3

)
k = 0

(2.56)

Requiring components to vanish separately gives the desired result.

Theorem 2.3.2 allows us to construct a number of new associative manifolds.

For example,

{
x1i+ x2j + x3k+

(x2
2 − x2

3)e + 2x2x3ie + ex2 sin x3je + ex2 cosx3ke
∣∣∣ x1, x2, x3 ∈ R

}
(2.57)

is associative since it is a graph of complex square and exponential functions,

which are holomorphic, and hence satisfy the C-R equations. For another example,

we can note that{
x+K1

(
rxe

iθx
)C1

e + kK2

(
rxe

iθx
)C2

e
∣∣∣ x = x1i+ rx cos θxj + rx sin θxk

}
(2.58)

is associative.

On the other hand, the theorem shows that if a function is independent of x1

then it must be of a very specific form. In order to obtain more interesting examples

of associative manifolds with this technique we must examine the cases where g is

not necessarily real-valued. We will investigate this in the next chapter.



Chapter 3

Further Investigation of the PDEs of Associative Manifolds

3.1 A Result on the Symmetries of the Problem

In the previous chapter we considered only real-valued functions g : R2 → R which

give rise to functions f defined by (2.29). This greatly simplified the PDEs because

σf vanished at θx = 0, eliminating the non-linear part of the PDE system. We will

now consider the more general case of g : Im H → H not necessarily real-valued.

In order to more systematically study the solutions to the PDEs for arbitrary g and

q, we first study the invariance properties of the solutions:

Theorem 3.1.1. Let q ∈ ImH be fixed. Suppose

M = {x+ e
1
2
qθxg(x1i+ rxj)e

− 1
2
iθxe | x = x1i+ rx cos θxj + rx sin θxk } (3.1)

is associative for some g : ImH → H. Then we also get an associative graph if we replace

g with eqφg for some φ ∈ R.

Proof. We’ve shown that

h(a+ be) = a+ eqφbe (3.2)

is a linear automorphism of O. Thus, it takes associative manifolds to associative

manifolds in ImH. Applying h to M gives

h(M) = x+ eqφe
1
2
qθxg(x1i+ rxj)e

− 1
2
iθxe = (3.3)

= x+ e
1
2
qθx

[
eqφg(x1i+ rxj)

]
e−

1
2
iθxe (3.4)

where we use the commutativity of quaternions in the {1, q} plane.
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This result is a useful tool in characterizing symmetric solutions to Df = σf .

For example, it tells us that the graphs obtained from g = g1i + g2j and q = ai

satisfy the same differential equations as (3.8) below with g0 replaced by g1 and g3

replaced by −g2, by taking φ = π
2
.

3.2 Some Solutions for Quaternion-Valued g

We will now examine the equations derived from our method for various special

cases of g and q. Because for these cases σf no longer vanishes even at θx = 0, the

PDE system is especially complicated, and so we employ the commercial mathe-

matics package Maple to aid in our calculations of the PDEs. See Appendix B for

the code used to generate the equations.

In all of the following we assume g = g0 +g1i+g2j+g3k where gi : Span{i, j} →

R. First, we show that the more general quaternion-valued g does indeed give us

new associative manifolds.

Theorem 3.2.1. Let g = g0 + g3k satisfy the Cauchy-Riemann equations:

∂g0

∂x1

=
∂g3

∂r
(3.5)

∂g0

∂r
= −∂g3

∂x1

(3.6)

Then the graph

M = {x+ e
1
2
iθxg(x1i+ rxj)e

− 1
2
iθxe | x = x1i+ rx cos θxj + rx sin θxk } (3.7)

is associative.

Note that this is a manifold obtained by suitable rotations of a the graph of a

function satisfying the C-R equations, not from a translation, and so it does not fall

under the conditions of Theorem 2.3.2.
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Proof. The differential equations obtained from setting Df = σf at θx = 0 when g

maps entirely into the {1, k} plane and when q = ai are

∂g3

∂r
− ∂g0

∂x1

+

(
1− a

2

)
g3

r

(
1 +

∂g0

∂x1

∂g3

∂r
− ∂g3

∂x1

∂g0

∂r

)
= 0 (3.8)

∂g0

∂r
+
∂g3

∂x1

+

(
1− a

2

)
g0

r

(
1 +

∂g0

∂x1

∂g3

∂r
− ∂g3

∂x1

∂g0

∂r

)
= 0 (3.9)

Taking a = 1 yields the Cauchy-Riemann equations required, and M is simply the

graph corresponding to this particular g.

Thus, consideration of arbitrary g gives us more interesting results. Indeed, the

graph of any g satisfying (3.8), suitably rotated, is associative.

Although we get some new results from these considerations, many choices

for the form of g give only trivial solutions to the PDEs, or solutions covered by

Theorems 2.3.1 or 2.3.2. Directly from Theorem 2.3.1 we get that a complex-valued

g with a complex q can only be the graph of a function satisfying the Cauchy-

Riemann equations crossed with the real line, but we can show similar results for

other forms of g as well.

Lemma 3.2.1. g = g0 + g2j and q = ai only admits solutions of the form covered by

Theorem 2.3.2.

Proof. The equations obtained by setting Df = σf at θx = 0 are

∂g2

∂r
+

(
1− a

2

)
g2

r
= 0 (3.10)

∂g0

∂r
+

(
1− a

2

)
g0

r
= 0 (3.11)

∂g0

∂x1

+

(
1− a

2

)
g2

r

[
∂g2

∂x1

∂g0

∂r
− ∂g0

∂x1

∂g2

∂r

]
= 0 (3.12)

∂g2

∂x1

+

(
1− a

2

)
g0

r

[
∂g0

∂x1

∂g2

∂r
− ∂g2

∂x1

∂g0

∂r

]
= 0 (3.13)
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From the first two equations, we must have

g0(x1, r) = K0(x1)r
a−1
2 (3.14)

g2(x1, r) = K2(x1)r
a−1
2 (3.15)

for some differentiable K0, K2 : R → R dependent only upon x1. It is readily

verified that constant K0 and K2 give solutions. We will now show that there are

no non-constantK0 orK2 satisfying the other two equations. Plugging our form for

g0 and g2 into the second two equations, rearranging terms, and canceling common

factors of r (we assume r 6= 0 here)gives us

K ′
0 = −

(
1− a

2

)2

K2 (K ′
0K2 −K0K

′
2) r

a−3 (3.16)

K ′
2 = −

(
1− a

2

)2

K0 (K ′
2K0 −K2K

′
0) r

a−3 (3.17)

If a 6= 3 then we must have K ′
0 = K ′

2 = 0, otherwise there would be an r depen-

dence in K0 and K2. We now examine the case a = 3. The remaining equations to

be satisfied reduce to

K ′
0 +K2

2K
′
0 −K2K

′
2K0 = 0 (3.18)

K ′
2 +K2

0K
′
2 −K0K

′
0K2 = 0 (3.19)

Rearranging terms, we can solve the first of these equations for K0 in terms of K2:

K0 = c1 exp

(∫
K ′

2K2

1 +K2
2

dx

)
(3.20)

where c1 ∈ R. Substituting this into the second equation, canceling K ′
2 (we seek

solutions in which K ′
2 is not identically zero), and rearranging terms,

1 +K2
2

c21K
2
2

= exp

(
2

∫
K ′

2K2

1 +K2
2

dx

)
(3.21)

Taking logs and derivatives gives, after some manipulation and cancellation,

K2
2 = −1 (3.22)
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which is a contradiction. Hence, all solutions to the original set of equations satisfy
∂g
∂x1

= 0.

Lemma 3.2.2. g = g0 + g2j and q = bj only admits solutions of the form covered by

Theorem 2.3.2.

Proof. The equations are

∂g2

∂r
+

1

2

g2

r
= 0 (3.23)

∂g0

∂r
+

1

2

g0

r
= 0 (3.24)

∂g0

∂x1

+
1

2

g2

r

[
∂g2

∂x1

∂g0

∂r
− ∂g0

∂x1

∂g2

∂r

]
+

1

2
b
g0

r
= 0 (3.25)

∂g2

∂x1

+
1

2

g0

r

[
∂g0

∂x1

∂g2

∂r
− ∂g2

∂x1

∂g0

∂r

]
+

1

2
b
g2

r
= 0 (3.26)

By a similar technique as the previous lemma, we can prove that there are no so-

lutions to these equations with an x1 dependence. Solving the first two equations

gives

g2 = K2(x1)r
− 1

2 (3.27)

g0 = K0(x1)r
− 1

2 (3.28)

Plugging these into the last two equations gives, after some manipulation and the

cancellation of common factors of r,

(K ′
0)r

3 +

(
bK0

2r

)
r2−

[
1

4
K2 (K ′

2K0 −K2K
′
0)

]
= 0 (3.29)

(K ′
2)r

3 +

(
bK2

2r

)
r2−

[
1

4
K0 (K ′

0K2 −K0K
′
2)

]
= 0 (3.30)

The linear independence of the functions {r3, r2, 1} over coefficients depending

only on x1 then implies that each coefficient vanishes, and this implies that both

K0 and K2 vanish.

Lemma 3.2.3. g = g0 + g2j and q = ck only admits solutions of the form covered by

Theorem 2.3.2.
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Proof. The equations are

∂g2

∂r
+

1

2

g2 + cg0

r
= 0 (3.31)

∂g0

∂r
+

1

2

g0 − cg2

r
= 0 (3.32)

∂g0

∂x1

+
1

2

g2 + cg0

r

[
∂g2

∂x1

∂g0

∂r
− ∂g2

∂r

∂g0

∂x1

]
= 0 (3.33)

∂g2

∂x1

− 1

2

g0 − cg2

r

[
∂g2

∂x1

∂g0

∂r
− ∂g2

∂r

∂g0

∂x1

]
= 0 (3.34)

First note that if g0 = cg2 then the equations force ∂g2

∂x1
= 0 and hence ∂g0

∂x1
= 0 as well,

giving us the hypotheses of Theorem 2.3.2 (actually, we can see that this forces g

to be constant). We therefore consider the case where g0 − cg2 is not identically

zero. We can assume that ∂g2

∂x1

∂g0

∂r
− ∂g2

∂r
∂g0

∂x1
is also not identically zero; otherwise, we

would certainly have ∂g
∂x1

= 0. Now, taking ratios of the equations gives

∂g2

∂r
/
∂g0

∂r
=
g2 + cg0

g0 − cg2

(3.35)

∂g0

∂x1

/
∂g2

∂x1

= −g2 + cg0

g0 − cg2

(3.36)

from which we get
∂g0

∂r

∂g0

∂x1

+
∂g2

∂r

∂g2

∂x1

= 0 (3.37)

which implies that the partials are linearly dependent, and so either

∂g0

∂x1

= −ψ∂g2

∂r
(3.38)

∂g2

∂x1

= ψ
∂g0

∂r
(3.39)

or

∂g0

∂r
= −ψ ∂g2

∂x1

(3.40)

∂g2

∂r
= ψ

∂g0

∂x1

(3.41)

for some real-valued function ψ which we assume is not identically zero. Since we

assumed g0 − cg2 is not identically zero, by our second original equation we have
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that ∂g0

∂r
is not identically zero, thus we can always use (3.38). Substituting (3.38)

into our original third equation and canceling terms gives

∂g2

∂r
=

1

2

g2 + cg0

r

[(
∂g0

∂r

)2

+

(
∂g2

∂r

)2
]

(3.42)

Now, using our first original equation, we get

g2 + cg0

2r

[(
∂g0

∂r

)2

+

(
∂g2

∂r

)2
]

= −g2 + cg0

2r
(3.43)

which implies that g2 = −cg0. But this also implies g is constant by the form of the

original equations.

Lemma 3.2.4. g = g0 + g1i and q = bj only admits solutions of the form covered by

Theorem 2.3.2.

Proof. The equations are

∂g1

∂x1

+
b

2

g1

r
= 0 (3.44)

∂g0

∂x1

+
b

2

g0

r
= 0 (3.45)

∂g1

∂r
+

1

2

g1

r
+
b

2

g0

r

(
∂g0

∂r

∂g1

∂x1

− ∂g0

∂x1

∂g1

∂r

)
= 0 (3.46)

∂g0

∂r
+

1

2

g0

r
+
b

2

g1

r

(
∂g1

∂r

∂g0

∂x1

− ∂g1

∂x1

∂g0

∂r

)
= 0 (3.47)

Solving the first two gives

g1 = K1(r)e
− bx1

2r (3.48)

g0 = K0(r)e
− bx1

2r (3.49)

for differentiable K0, K1 functions only of r. Plugging these into the last two equa-

tions and rearranging terms gives(
b

2r2

)
x1 +

[(
b

2r

)2

K1 (K ′
0K1 −K ′

1K0)

]
e−

bx1
r +[(

b

2r

)3
K1

r
(K1 −K0)

]
x1e

− bx1
r +

K0 +K ′
0

2r
= 0 (3.50)
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By the linear independence of the functions {1, x1, e
− bx1

r , x1e
− bx1

2r } we must have

each coefficient function vanish. Thus b = 0, and it is evident from the form of the

original equations that this implies ∂g
∂x1

= 0.



Chapter 4

Conclusion and Future Work

We have found several families of associative manifolds in R7 which are math-

ematically interesting. By requiring our manifolds to be graphs of functions f :

Im H → H that are also invariant under 1-parameter subgroups of G2 we greatly

simplified the PDEs involved and found tractable special cases. We found that

when our function f is real-valued on the {i, j} plane, the general form for f is that

of a complex power/root function in x2 and x3 coordinates, and is independent

of the x1 coordinate, a special case of Theorem 2.3.1. Together with Theorem 2.3.2

these allow us to prove that a large class of manifolds are indeed associative. When

f is not necessarily real-valued on the {i, j} plane, we’ve shown that a number of

the PDEs derived only admit solutions already covered by these two theorems. We

did, however, find a new example of an associative manifold not covered by The-

orems 2.3.1 or 2.3.2. This manifold also involves the graph of a function satisfying

the Cauchy-Riemann equations, but while the previous manifolds were formed as

a set of translations of this graph, this new manifold is formed by a particular set

of rotations of the graph in seven-dimensional space.

Our results are all mathematically interesting in their own right, but we would

also like to determine which of these may prove useful to theoretical physicists in

the future. Therefore one important area of future work is the application of the

results here to finding homologically volume-minimizing 3-cycles in R6 × S1, and

identifying which, if any, of these resulting cycles are useful in String Theory.

Another potentially useful area of research is the complete characterization of

which forms of g : R2 → H give rise to “interesting” associative manifolds as dis-
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cussed in chapter 3. Ideally, we would like to know all possible manifolds achieved

by solving Df = σf for f invariant under our circle actions.



Appendix A

Cayley Numbers and Quaternion Numbers

A.1 Definitions and Overview

In this appendix we will define and derive basic properties of the Cayley numbers

and Quaternion numbers. Most of the results here can be found in either [1] and [2];

a few are original variations on the presentations offered there. The presentation

in [1] begins with a general normed algebra rather than Cayley numbers, and goes

on to prove that Cayley numbers and its subalgebras are the only normed algebras

over R.

The Cayley numbers, denoted O, comprise an eight dimensional algebra over

R, meaning it is a vector space over R isomorphic to R8, furnished with a vec-

tor multiplication rule (from O × O → O) with unit, which associates with scalar

multiplication. That is, if x, y ∈ O and k ∈ R then

k(xy) = (kx)y (A.1)

Moreover, we shall prove that O is normed, meaning that if x, y ∈ O then

|xy| = |x||y| (A.2)

where | · | is the standard Euclidean norm on R8.

The canonical basis for O as a vector space is denoted {1, i, j, k, e, ie, je, ke}. Any

x ∈ O can be written as

x = x1 + x2i+ x3j + x4k + x5e+ x6ie+ x7je+ x8ke (A.3)
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where the xi ∈ R. We also have an inner product 〈·, ·〉 on O which is identical to

the standard Euclidean inner product on R8:

〈x, y〉 = Σ8
i=1xiyi (A.4)

The subalgebra spanned by {1, i, j, k} is called H, the Quaternion numbers. The

subalgebra spanned by {1, i} is the complex numbers C. It can be proven that

R,C,H, and O are the only normed algebras over R.

The multiplication rule is intimately tied to the geometry of Euclidean space. In

addition to preserving norm, left and right multiplication by Cayley numbers has

an additional geometric interpretation as a rotation of R8, as will be demonstrated

below.

Definition A.1.1. The real part of a Cayley number x as in (A.3) is denoted Rex = x1.

The imaginary part of x is Im x = x2i + x3j + x4k + x5e + x6ie + x7je + x8ke. The

conjugate of x is x̄ = Rex− Imx.

Note that according to our definition, the imaginary part of a+ bi is bi, not b, as

is commonly defined in Complex Analysis. We will now define multiplication on

H and O. Associate to each x = x1 + x2i + x3j + x4k a pair of complex numbers

a = x1 + x2i and b = x3 + x4i. Then if x, y ∈ H have representations in C⊕C given

by (a, b) and (c, d) respectively, then

(a, b)(c, d) = (ac− d̄b, da+ bc̄) (A.5)

We say that H was obtained by applying the Cayley-Dickson process to C. It is not

hard to verify that this definition yields a 4 dimensional algebra over R. Note that

if we break C into R⊕R a similar definition gives the multiplication rule for C; that

is, we obtain C by applying the Cayley-Dickson process to R. Also note that this
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definition of multiplication is equivalent to defining

ij = −ji = k (A.6)

jk = −kj = i (A.7)

ki = −ik = j (A.8)

i2 = j2 = k2 = −1 (A.9)

and requiring multiplication to distribute over addition. From this is it clear that

quaternion multiplication is not commutative in general. It can be directly verified,

however, that it is associative. We will show it is normed when we show O is.

To define multiplication on Cayley numbers we break x ∈ O into a = x1 +x2i+

x3j+x4k and b = x5 +x6i+x7j+x8k and again apply the Cayley-Dickson process,

this time to H:

(a, b)(c, d) = (ac− d̄b, da+ bc̄) (A.10)

Again, this can be seen to yield a valid 8 dimensional algebra over R. Note that

this rule satisfies

(i)(e) = ie (A.11)

(j)(e) = je (A.12)

(k)(e) = ke (A.13)

where we denote multiplication on the left and the basis vectors on the right. Note

also that since quaternion multiplication is not commutative, the order of the prod-

uct defined here is important. We can verify also that Cayley multiplication is

not associative in general, since by our rule, i(je) = −ke, while (ij)e = ke. How-

ever, there is a weak associativity rule that Cayley numbers satisfy, which we will

demonstrate below.



33

A.2 Some Algebraic Properties

Lemma A.2.1. For x, y ∈ O, 〈x, y〉 = Re x̄y and xy = ȳx̄. Also, |x|2 = x̄x.

Proof. We will actually prove the result for any algebra over R obtained from

repeated application of Cayley-Dickson. We induct on n, the number of times

Cayley-Dickson was applied. Thus for R, n = 0, for C, n = 1, for H, n = 2,

and for O, n = 3. The lemma holds for higher n as well, although these are no

longer normed algebras.

The lemma clearly holds for the case n = 0. Now, suppose it holds for k. We’ll

show it for k + 1. By the definition of multiplication in Cayley-Dickson and using

the fact that (a, b) = (ā,−b),

Re(a, b)(c, d) = Re(ā,−b)(c, d) = (A.14)

= Re(āc+ d̄b, dā− bc̄) = (A.15)

= Re(āc) + Re(d̄b) = (A.16)

= 〈a, c〉+ 〈b, d〉 = 〈(a, b), (c, d)〉 (A.17)

which proves the first assertion. Similarly, applying the induction hypothesis and

the linearity of conjugation,

(a, b)(c, d) = (ac− d̄b, da+ bc̄) = (A.18)

= (ac− d̄b,−da− bc̄) = (A.19)

= (c̄ā− b̄d,−bc̄)− da = (A.20)

= (c̄,−d)(ā,−b) = (c, d) (a, b) (A.21)

which proves the second assertion. The final assertion follows from the previous

two:

|x| = Re x̄x =
1

2
(x̄x+ x̄x) =

1

2
(x̄x+ x̄x) = x̄x (A.22)
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Definition A.2.1. The associator is defined as

[x, y, z] = (xy)z − x(yz) (A.23)

Lemma A.2.2. The associator on O is alternating.

Proof. Directly from the Cayley-Dickson definition of multiplication we may verify

that if

x = a+ αe (A.24)

y = b+ βe (A.25)

z = c+ γe (A.26)

for a, b, c, α, β, γ ∈ H, then

[x, x̄, y] = [a, β̄, α] + [α, b̄, a]e (A.27)

Since H is associative, both parts vanish. Since the associator is trilinear and clearly

vanishes when one of its arguments is real, this shows that

[x, x, y] = 0 (A.28)

Similarly we can show the other required equations

[x, y, y] = 0 (A.29)

[x, y, x] = 0 (A.30)

Note that our proof also shows that [x, x̄, y] = 0 and similar identities. We can

now show that O is normed.

Theorem A.2.1. O is normed.
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Proof. From Lemmas A.2.1 and A.2.2,

|xy|2 = (xy)(xy) = xyȳx̄ = x|y|2x̄ = xx̄|y|2 = |x|2|y|2 (A.31)

We can say more about the structure of O, its subalgebras, and its automor-

phisms, but we must first prove a few lemmas.

Lemma A.2.3. For x, y, z ∈ O,

〈x,wy〉 = 〈w̄x, y〉 (A.32)

〈x, yw〉 = 〈xw̄, y〉 (A.33)

Proof. First note that

〈xw, yw〉 = 〈x, y〉|w|2 (A.34)

〈wx,wy〉 = 〈x, y〉|w|2 (A.35)

The first equation follows from

|(x+ y)w|2 = |x+ y|2|w|2 (A.36)

since it is easily shown by expanding the inner product and using Theorem A.2.1

that

|(x+ y)w|2 = |x|2|w|2 + |y|2|w|2 + 2〈xw, yw〉|w|2 (A.37)

and

|x+ y|2 = |x|2 + |y|2 + 2〈x, y〉 (A.38)

Similarly we can prove the other assertion, using left multiplication by w.

Now, to prove our original lemma, note that we can assume x, y, z ∈ Im O

since the inner product is trilinear and clearly the equalities hold when one of the
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arguments is real (by Lemma A.2.1). Assuming imaginary w, and using the claim

just established and linearity of the inner product, we have

〈x, y〉(1 + |w|2) = 〈x(1 + w), y(1 + w)〉 = (A.39)

= 〈x+ xw, y + yw〉 = 〈x, y〉
(
1 + |w|2

)
+ 〈x, yw〉+ 〈xw, y〉 (A.40)

from which, using w̄ = −w, we deduce the required relation. A similar procedure

establishes the result for left multiplication.

Lemma A.2.4. If x, y, w ∈ O and 〈x, y〉 = 0 then

x(ȳw) = −y(x̄w) (A.41)

Proof. Note that in general,

2〈x, y〉 = x̄y + xȳ (A.42)

from which we get

2〈x, y〉w − x(ȳw)− y(x̄w) = [x, ȳ, w] + [y, x̄, w] (A.43)

Now, the right hand side of this equation vanishes since

0 = [x+ y, x+ y, w] = [x, x̄, w] + [x, ȳ, w] + [y, x̄, w] + [y, ȳ, w] (A.44)

and the first and last terms vanish again by Lemma A.2.2. Thus, setting 〈x, y〉 = 0

gives the result.

Theorem A.2.2. Let A be a subalgebra of O, let ε ∈ A⊥ with |ε| = 1. Then Aε ⊥ A and

(a+ bε)(c+ dε) = (ac− d̄b) + (da+ bc̄)ε (A.45)

Proof. Since A is a subalgebra it contains 1 and ā for each a ∈ A. Now, if a, b ∈ A,

by Lemma A.2.3,

〈a, bε〉 = 〈b̄a, ε〉 = 0 (A.46)
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since b̄a ∈ A, thus Aε ⊥ A. Now ε must be imaginary since 1 ∈ A, and hence by

Lemma A.2.1, ε2 = −1. Now,

(a+ bε)(c+ dε) = ac+ (bε)(dε) + a(dε) + (bε)c (A.47)

and, using Lemmas A.2.1 and A.2.4,

(bε)(dε) = −d̄((bε)ε) = d̄((εb̄)ε) = −d̄((εε̄)b) = −d̄b (A.48)

a(dε) = a(εd̄) = ε(ād) = (ād̄)ε = (da)ε (A.49)

(bε)c = (bc̄)ε (A.50)

and so the result is proven.

Theorem A.2.3. If A is a subalgebra of O it is isomorphic to either R,C,H, or O.

Proof. Clearly R ⊂ A. If R = A we’re done. Otherwise take some ε1 ∈ ImA. By the

previous theorem, R+Rε1 ∼= C. If R+Rε1 = Awe’re done. If not, take ε2 ⊥ R+Rε1,

etc. We repeat this process until we get all of A. It must stop by the time we get O

since A is a subalgebra, hence its dimension is no more than 8.

Theorem A.2.4. Given the orthonormal triple e1, e2, e3 ∈ Im O satisfying e3 ⊥ e1e2,

there is a unique automorphism g of O such that g(i) = e1, g(j) = e2, g(k) = e3.

Proof. The uniqueness of the automorphism is clear, since the algebra homomor-

phism property determines g on all of O once we know g(i), g(j) and g(k). To show

existence, note that by Theorem A.2.2, C ∼= R + Re1 = A1, H ∼= A1 + A1e2 = A2,

and, O ∼= A2+A2e3 = A3. The automorphism sending O toA3 satisfies the required

properties.

We denote the group of automorphisms of O by G2.

Theorem A.2.5. G2 is a subgroup of O(7).

Here we interpret O(7) as acting on ImO.
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Proof. An automorphism of g must be a non-degenerate linear transformation that

fixes R ⊂ O. Now, it is easily checked that if x /∈ R then x ∈ Im O iff x2 ∈ R, and

so g must send imaginary Cayley numbers to imaginary Cayley numbers. These

observations show that g(x̄) = g(x). Thus

|g(x)|2 = g(x)g(x) = g(x)g(x̄) = g(xx̄) = g(|x|2) = |x|2 (A.51)

which shows that g is an isometry of R8. Since g fixes R we can conclude the

result.

A.3 The Cross Products of Cayley Numbers

In this section we define the cross product of two and three Cayley numbers. The

cross product of three Cayley numbers is used to define the Monge-Ampere oper-

ator in Chapter 1. In the interest of saving space, and because the cross products

only play a peripheral role in the paper, we offer only the results directly relevant

to our paper, and we offer them here without proof. For further information, please

consult [1].

Definition A.3.1. The cross product of x, y ∈ O is defined as

x× y = −1

2
(x̄y − ȳx) (A.52)

The triple cross product of x, y, z ∈ O is defined as

x× y × z =
1

2
(x(ȳx)− z(ȳx)) (A.53)

The following results are easily proven using Cayley number identities already

established, and justify the use of the term “cross product”:

Theorem A.3.1. x× y and x× y × z are alternating. Furthermore,

|x× y| = |x ∧ y| (A.54)
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and

|x× y × z| = |x ∧ y ∧ z| (A.55)

The alternating property of the cross products is often useful in proving theo-

rems since we can assume the arguments are pairwise orthogonal. Further calcu-

lations using properties of Cayley numbers yield:

Theorem A.3.2.

Imx× y =
1

2
[x, y] (A.56)

Imx× y × z =
1

2
[x, y, z] (A.57)

We note one final related theorem we will need later.

Theorem A.3.3. [x, y] is orthogonal to x and y. [x, y, z] is orthogonal to x, y, z, and each

commutator [x, y], [y, z], [z, x].

A.4 The Geometric Interpretation of Quaternion Multiplication

We have already seen that the algebra of Cayley numbers is geometric in nature;

it is norm-preserving and its multiplication rules may be used to formulate geo-

metric notions such as cross products. Here we discuss further the tie between the

Cayley algebra and geometry. We focus on the subalgebra of Quaternion num-

bers because these are elegant and most directly relevant to the rest of the paper.

Many of the results described here may be extended to Cayley numbers. See [2]

for details.

We begin our discussion with a geometric definition of quaternion multiplica-

tion. If p, q ∈ H, it can be checked directly that we can define

pq = (Rep)(Req)− (Imp) · (Imq) + (Rep)Imq + (Req)Imp+ (Imp)× (Imq) (A.58)

where · and × denote the standard three dimensional vector dot product and cross

product, respectively, in R3 ∼= ImH.
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Quaternions may be expressed in a polar form, much like complex numbers. If

p = pr + pii+ pjj + pkk, we may pull out an overall magnitude of |p|, define a unit

vector in {i, j, k} space by

up =
pii+ pjj + pkk√
p2

i + p2
j + p2

k

(A.59)

and an angle θp by

θp = cos−1

(
pr

|p|

)
(A.60)

so that we may write p as

p = |p|(cos θp + up sin θp) (A.61)

The polar form allows us to describe an elegant geometric interpretation for the

multiplication of quaternions, much like in the complex case. Given a particular

unit length quaternion

p0 = cos θ + up0 sin θ, (A.62)

multiplying an arbitrary quaternion q on the left by p0 performs a 4-D rotation on

q (we are treating H as R4 here, which, of course, it is isomorphic to as a vector

space). Like all 4-D rotations, this quaternion induced rotation consists of simul-

taneous rotations of two completely orthogonal planes of basis vectors. The plane

spanned by 1 and up0 is rotated counterclockwise by the angle θ, and the plane

orthogonal to this (the plane in {i, j, k} space that is perpendicular to up0) is also

rotated counterclockwise by θ. The orientation of the planes (and hence which di-

rection is clockwise and which is counterclockwise) is as follows: in the first case,

counterclockwise brings 1 towards up. In the second, the “right hand rule” point-

ing one’s thumb in the direction of up0 determines the counterclockwise direction.

If we multiply on the right side of q instead, we get counterclockwise rotation in

the 1, up plane, but clockwise rotations in the u⊥p0
plane.

Theorem A.4.1. Let p0 ∈ H be given. Then, for any q ∈ H, left and right multiplication

of q by p0 is as described above.
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Proof. We need a convenient basis in which to express arbitrary q. Take any purely

imaginary, unit quaternion v such that v ⊥ up0 . Note that, by our definition of

quaternion multiplication,

up0v = up0 × v (A.63)

where we have quaternion multiplication on the left side of the equation, and on

the right side we treat the purely imaginary quaternions as vectors in R3. This

shows that an orthonormal basis for H is {1, up0 , v, (up0v)}. Now then, suppose

q = a+ bup0 + cv + d(up0v). (A.64)

Then a straightforward calculation (using the fact that quaternion multiplication

distributes over addition) gives

p0q = (a cos θ − b sin θ) + (a sin θ + b cos θ)up0+

+(c cos θ − d sin θ)v + (c sin θ + d cos θ)up0v
(A.65)

We used the identity

u2
p0

= −1 (A.66)

which is true of any purely imaginary unit quaternion (or Cayley number), as dis-

cussed earlier. The resultant vector is exactly what we would get from multiplying

q by an appropriate rotation matrix in SO(4). The proof for right multiplication

is identical, except we use the basis vector vup0 in place of up0v, which gives the

opposite orientation to the rotations in the u⊥p0
plane.

Corollary A.4.1. Any 3-D rotation of vectors in {i, j, k} space may be achieved by con-

jugation by a unit quaternion. Up to sign, the quaternion we choose to conjugate by is

uniquely determined.

Proof. From the previous result, if p0 = cos θ + up0sinθ then for any q ∈ H, the

conjugation p0qp
−1
0 results in the rotation of the imaginary part of q by an angle 2θ
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about the axis up0 . The real part is held fixed. It is clear that our choice is unique

up to sign, since if

p0qp
−1
0 = p1qp

−1
1 (A.67)

for all q ∈ H then

(p−1
1 p0)q = q(p−1

1 p0) (A.68)

for all q ∈ H, and so p−1
1 p0 ∈ R, so they differ by at most a multiplicative constant.

If they are both unit quaternions, they differ by at most sign.

Corollary A.4.2. Aut(H) = SO(3)

Here we regard SO(3) as acting on ImH.

Proof. Our earlier theorems on G2 shows that Aut(H) is a subgroup of SO(3). Fur-

thermore, it follows from the previous theorem that any rotation of Im H is an

automorphism of H, since it may be expressed as a map

q 7→ pqp−1 (A.69)

for appropriately chosen p ∈ H. We need only show that orientation reversing

members of O(3) are not automorphisms. Suppose one were. Through composi-

tion with a rotation we could get an automorphism g such that g(i) = −i, g(j) = j,

and g(k) = k. But this cannot be an automorphism, since

−1 = g(−1) = g(ijk) = g(i)g(j)g(k) = −ijk = 1, (A.70)

a contradiction.

Our theorem may be extended to another fundamental result regarding quater-

nion multiplications.

Theorem A.4.2. Any four dimensional rotation may be achieved by a combination of left

and right quaternion multiplications by unit length quaternions. The representing left and

right multiplying quaternions are unique up to sign.
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When we say “unique up to sign” here, we mean that we could multiply both

the left and the right multiplied quaternion by −1 and get the same result.

Proof. We will freely intermix interpretations as quaternions and as members of

R4. Given any A ∈ SO(4), let a = A(1), the quaternion to which A sends the unit

vector along the real axis. Since rotations preserve length, we know |a| = 1. The

mapping

B(q) = a−1A(q) (A.71)

clearly is a composition of rotations, and hence a rotation itself. Also, it fixes the

real axis, so B ∈ SO(3) acting on the space of purely imaginary quaternions. But

then from our previous theorem,

B(q) = pqp−1 (A.72)

for some unit quaternion p. Therefore,

A(q) = (ap)qp−1 (A.73)

and our construction shows that the quaternions are unique up to sign, since the

representations of B is unique up to sign.

Finally, we note a lemma we will use in Chapter 2:

Lemma A.4.1. For each pair of non-zero quaternions q1, q2, the map g : O → O given by

g(a, b) = (q1aq
−1
1 , q2bq

−1
1 ) (A.74)

is an automorphism. Moreover, these are the only automorphisms of O which fix H set-

wise.

Proof. It can be directly verified by the definitions that each g defined above is

indeed an automorphism. Now suppose h ∈ G2 fixes H. Since h ∈ O(7), h fixes H⊥

too, and so we may regard h as a pair (h1, h2) where h1 ∈ SO(3) and h2 ∈O(4). Now,
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from our discussion thus far, it is clear that we can find q1 such that the resulting

automorphism g satisfies g|H = h|H and taking q2 = h2(1)q1 insures that g(e) = h(e).

Then g−1 ◦ h is an automorphism that fixes i, j, and e. But this forces it to be the

identity automorphism. Thus g = h.



Appendix B

Maple Code

To aid in the calculations of the more complicated PDEs in Chapter 3

we wrote a short Maple program. The code relies on a package that im-

plements Cayley Number multiplication written by W. D. Joyner available at

http://web.usna.navy.mil/ w̃dj/cayley.mpl . We have suppressed most

of the longer outputs in the interest of saving space.

> restart;read ‘cayley.mpl‘;

> octonian_to_list := proc(w::list)

> RETURN([Re(op(1,op(1,w))), Im(op(1,op(1,w))),

> Re(op(2,op(1,w))), Im(op(2,op(1,w))),

> Re(op(1,op(2,w))), Im(op(1,op(2,w))),

> Re(op(2,op(2,w))), Im(op(2,op(2,w)))]);

> end:

> get_eqns := proc(v::list)

> RETURN(op(1,v)=0,op(2,v)=0,op(3,v)=0,op(4,v)=0,

> op(5,v)=0,op(6,v)=0,op(7,v)=0,op(8,v)=0);

> end:

> assume(a,real);assume(b,real);assume(c,real);

> additionally(aˆ2+bˆ2+cˆ2>0);

> nq:=sqrt(aˆ2+bˆ2+cˆ2):

> q:=[[a*I,b+I*c],[0,0]]:

> assume(t,real);expq:=expand([[cos(nq*t/2),0],[0,0]]+sin(nq*t/2)*q/nq):

> expi := [[cos(t/2)-I*sin(t/2),0],[0,0]]:
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> g0 := ’g0’: g1 := ’g1’: g2 := ’g2’: g3 := ’g3’:

> assume(g0,real);assume(g1,real);assume(g2,real);assume(g3,real);

> assume(x1,real);assume(r,real);

> g := [[g0 + I*g1, g2 + I*g3],[0,0]]:

> assume(x1,real);assume(r,real);f(x1,r,t) :=

evalc(multiply_octonian(g(x1,r),multiply_octonian(expq,expi))):

> _dfdx1:=diff(f(x1,r,t),x1):

> drdx2 := cos(t): dtdx2 := -sin(t)/r:

> _dfdx2:=expand(diff(f(x1,r,t),r)*drdx2 +

diff(f(x1,r,t),t)*dtdx2):

> drdx3 := sin(t): dtdx3 := cos(t)/r:

> _dfdx3:=expand(diff(f(x1,r,t),r)*drdx3 +

diff(f(x1,r,t),t)*dtdx3 ):

> dfdx1:=expand(eval(_dfdx1,t=0));

dfdx1 := [[(
∂

∂x1˜
g0˜(x1˜, r˜)) + I (

∂

∂x1˜
g1˜(x1˜, r˜)),

(
∂

∂x1˜
g2˜(x1˜, r˜)) + I (

∂

∂x1˜
g3˜(x1˜, r˜))], [0, 0]]

> dfdx2:=expand(eval(_dfdx2,t=0));

dfdx2 := [[(
∂

∂r˜
g0˜(x1˜, r˜)) + I (

∂

∂r˜
g1˜(x1˜, r˜)),

(
∂

∂r˜
g2˜(x1˜, r˜)) + I (

∂

∂r˜
g3˜(x1˜, r˜))], [0, 0]]

> dfdx3:=expand(eval(_dfdx3,t=0));
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dfdx3 := [[−1

2

g1˜(x1˜, r˜) a˜

r˜
− 1

2

g2˜(x1˜, r˜) b˜

r˜
+

1

2

I g0˜(x1˜, r˜) a˜

r˜

− 1

2

g3˜(x1˜, r˜) c˜

r˜
− 1

2

I g0˜(x1˜, r˜)

r˜
− 1

2

I g3˜(x1˜, r˜) b˜

r˜

+
1

2

I g2˜(x1˜, r˜) c˜

r˜
+

1

2

g1˜(x1˜, r˜)

r˜
,
1

2

a˜ g3˜(x1˜, r˜)

r˜
+

1

2

b˜ g0˜(x1˜, r˜)

r˜

− 1

2

c˜ g1˜(x1˜, r˜)

r˜
− 1

2

I a˜ g2˜(x1˜, r˜)

r˜
+

1

2

I g2˜(x1˜, r˜)

r˜

+
1

2

I c˜ g0˜(x1˜, r˜)

r˜
− 1

2

g3˜(x1˜, r˜)

r˜
+

1

2

I b˜ g1˜(x1˜, r˜)

r˜
], [0, 0]]

> Df := -multiply_octonian(dfdx1,[[I,0],[0,0]])-

multiply_octonian( dfdx2,[[0,1],[0,0]])-

multiply_octonian(dfdx3,[[0,I],[0,0]]);

Df := [[−I (
∂

∂x1˜
g0˜(x1˜, r˜)) + (

∂

∂x1˜
g1˜(x1˜, r˜)) + (

∂

∂r˜
g2˜(x1˜, r˜))

+ I (
∂

∂r˜
g3˜(x1˜, r˜))− 1

2

a˜ g2˜(x1˜, r˜)

r˜
+

1

2

g2˜(x1˜, r˜)

r˜

+
1

2

c˜ g0˜(x1˜, r˜)

r˜
+

1

2

b˜ g1˜(x1˜, r˜)

r˜
−

I (
1

2

a˜ g3˜(x1˜, r˜)

r˜
+

1

2

b˜ g0˜(x1˜, r˜)

r˜
− 1

2

c˜ g1˜(x1˜, r˜)

r˜
− 1

2

g3˜(x1˜, r˜)

r˜
),

I (
∂

∂x1˜
g2˜(x1˜, r˜))− (

∂

∂x1˜
g3˜(x1˜, r˜))− (

∂

∂r˜
g0˜(x1˜, r˜))

− I (
∂

∂r˜
g1˜(x1˜, r˜)) +

1

2

g0˜(x1˜, r˜) a˜

r˜
− 1

2

g0˜(x1˜, r˜)

r˜

− 1

2

g3˜(x1˜, r˜) b˜

r˜
+

1

2

g2˜(x1˜, r˜) c˜

r˜
− I

(−1

2

g1˜(x1˜, r˜) a˜

r˜
− 1

2

g2˜(x1˜, r˜) b˜

r˜
− 1

2

g3˜(x1˜, r˜) c˜

r˜
+

1

2

g1˜(x1˜, r˜)

r˜
)]

, [0, 0]]

> Sigmaf := expand(multiply_octonian(dfdx1,multiply_octonian(

conjugate_octonian(df dx2),dfdx3)) - multiply_octonian(

dfdx3,multiply_octonian(conjugate_octonian(dfdx2),df

dx1)))/2:

> theScore := evalc(octonian_to_list(expand(Df - Sig-

maf))):

> eval(theScore,[g2=0,g3=0,b=0,c=0]);
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[
∂

∂x1˜
g1˜(x1˜, r˜), −(

∂

∂x1˜
g0˜(x1˜, r˜)),

−(
∂

∂r˜
g0˜(x1˜, r˜)) +

1

2

g0˜(x1˜, r˜) a˜

r˜
− 1

2

g0˜(x1˜, r˜)

r˜
,

−(
∂

∂r˜
g1˜(x1˜, r˜)) +

1

2

g1˜(x1˜, r˜) a˜

r˜
− 1

2

g1˜(x1˜, r˜)

r˜
, 0, 0, 0, 0]
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