Claremont Colleges

Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2002

Representations and the Symmetric Group

Elizabeth Norton
Harvey Mudd College

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

Recommended Citation

Norton, Elizabeth, "Representations and the Symmetric Group" (2002). HMC Senior Theses. 139.
https://scholarship.claremont.edu/hmc_theses/139

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu.


https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/139?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu

Data Compression on the Symmetric Group

by
Elizabeth Norton
Michael Orrison, Advisor

Advisor:

Second Reader:

(Shahriar Shahriari)

May 2002

Department of Mathematics

HARVEY MUDD

C O L L E G E



Abstract

Data Compression on the Symmetric Group
by Elizabeth Norton

May 2002

The regular representation of the symmetric group S,, is a vector space of dimen-
sion n! with many interesting invariant subspaces. The projections of a vector onto
these subspaces may be computed by first considering projections onto certain basis
elements in the subspace and then recombining later. If all of these projections are
kept, it creates an explosion in the size of the data, making it difficult to store and
work with. This is a study of techniques to compress this computed data such that

it is of the same dimension as the original vector.
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Chapter 1

Introduction

The study of representation theory is one way to merge the disciplines of abstract
and linear algebra. It is the study of representation theory, briefly outlined in Chap-
ter 2, that fueled the current research. The concepts expressed there, such as the
construct of a module in Section 2.1, form one of the many areas of algebra.

Research, however, does not exist in a vacuum. It is only through the study of
previous work on such things as the Jucys-Murphy elements of Section 3.3 and the
seminormal basis defined in Section 3.4 that the current project crystallized.

At its heart, the work here is on data compression. The question addressed is “Is
there redundancy? Can the data be stored without redundancy?” But knowing the
question is not enough. There are also constraints on what the data actually is.

In this, the concern is not about where the data comes from. The assumption
is that it exists and that there is enough of it to warrant the extra expenditure of
the fixed cost to improve the efficiency of the computation before analysis. Building
on the concepts in Chapter 2, the material in Chapter 3 gives the restraints on the
structure of the data.

Between Chapter 3 and Chapter 4 the focus shifts. The space being examined
is not original, but the study of it beginning in Chapter 4 is my own. Here the
focus is on how I look at the concepts that have been presented prior in a way which
illuminates them more clearly. My work has, unfortunately, lacked focus and there

are two distinct ways in which I have turned my attention, the first being explored in



Sections 4.2 and 4.3 and the second, which seems to be more fruitful in the interests
of understanding, appearing only in Section 4.4.

What I have found is presented in Chapter 5. To summarize, I have worked
through some examples in Sections 5.1 to 5.3 and presented some conjectures in
Section 5.4. Since my results are examples, the conclusion in Chapter 6 is rather

short, but it summarizes where I think research should go from here.



Chapter 2

Background

Before presenting my research, I present this compact introduction to representa-
tion theory to help smooth the way. Section 2.1 is the heart of representation theory
as it is presented here. Section 2.2 gives the construct within representation theory
which is used the most in subsequent chapters. Section 2.3 and 2.4 present some
definitions of terms which prove extremely useful in this study. Each of these will be

used in the following chapter. For more information about representation theory, see

[3].
2.1 Representation of a Group

Recall that a group G consists of a base set and an operation for combining two
elements in the set to form a third. There are some constraints on the operation, to see
these please see [3] or your favorite Abstract Algebra textbook. For a representation
of a group, there is the additional requirement of a vector space V over a field F. This
field is frequently the complex numbers, C, and this is the field that I used throughout

my research.

Definition 2.1.1 Let V be a n-dimensional vector space over a field F'. A represen-
tation of a group G is a function p: G — GL(n, F), where GL(n, F) is the group of
nxn invertible matrices over the field F', such that, for all g, h in G, p(gh) = p(g)p(h)
and p(1) = I,,, the identity matriz.

This associates each element of the group with a n X n matrix, which may be

thought of as an automorphism of V. For simplicity, we denote vp(g) by vg when



veV,geqd.

Definition 2.1.2 A wvector space V' over a field F' with an associated representation

of the group G is called a module or an FG-module.

Modules are important because they are the basic units of representation theory,

and one such module is the group algebra.

2.2 Group Algebra

The group algebra is the set of all linear combinations of the group elements. A

precise definition follows.

Definition 2.2.1 The group algebra of a group G over a field F' is a vector space
V' over F with dimension |G| and basis elements {by} indexed by the elements of the
group, along with rules for addition and multiplication in the vector space. For

and Ag in the field F', addition of two vectors is given by

(Z Agbg) + (Z ,Ugbg) = Z(/\g + 1g)bg (2.1)

geG geG 9€eG

and multiplication of the same two elements would be

(Z Agbg> (Z ,uhbh> = (Z Aguhbgh) : (2.2)

geq heG 9,heq

It is often easier to look at the basis elements as if they were the group elements
themselves, but it is more accurate to think of them as symbols referencing the ele-
ments of the group. Since the group is not necessarily abelian, order does matter in
multiplication in the group algebra. The group algebra for a group G over a field F' is
denoted F'G. I have been working with CS,,, where the C is the field of complex num-
bers and the group S, is the symmetric group on n elements. For more information

on the symmetric group S, and the notation I am using, please see Section 3.1.



To illustrate this algebra better, consider the elements v = (1+ 2¢)[123] 4 (3)[213]
and w = 1[321] in CS;. In this case, v + w = (1 + 2)[123] + (3)[213] + 1[321] and
vw = (1 + 24)[321] + (3)[312]. Note that when an element in the group algebra is
multiplied by an element in the group from the right, it simply switches the ordering
by permuting the positions of the members of the original set {1,2,...,n}, rather

than permuting the members themselves. (cf. Section 3.1)

2.3 Submodules and Reducibility

As an FG-module, the group algebra F'G has some subspaces which are invariant
with respect to the representation of the group. For example the one-dimensional
subspace which is the span of the element of the group algebra which is the sum of
one (the multiplicative identity in the field) times each of the basis elements, i.e.,

V= span(z 9) (2.3)

geG

is invariant. It is invariant because multiplication by any element of the group re-
sults in merely a permutation of the group elements, and addition is commutative.
This particular subspace is often referred to as the trivial subspace or the trivial

representation. Formally,

Definition 2.3.1 A subspace W of a module V is called a submodule if, for all
geGuweW,wgeW.

Definition 2.3.2 We say that an FG-module V' 1is irreducible if the only invariant

subspaces it contains are itself and the trivial space, {0}.

Thus, the trivial subspace above is actually an irreducible submodule of the group
algebra CS,,. As another example, consider the group algebra of the symmetric group
Sy. In this, there are two proper non-trivial submodules, V' = span{[12] + [21]} and
W = span{[12] — [21]}. Each of these is irreducible. Again, for notation, please see
Section 3.1.



2.4 Isomorphisms and Isotypics

Definition 2.4.1 Two FG-modules V and W are isomorphic if there exists a bi-
jection o: V- — W such that o(vg) = (o(v))g for allv € V.

The two submodules of CS; give in Section 2.3 are non-isomorphic. In CSs, there
are three different non-isomorphic irreducible spaces.
Consider a set of two orthogonal irreducible submodules of CS3 which are isomor-

phic. One such set is

span{[123] + [213] — [321] — [231], [123] — [213] 4 [321] — [231]} and
span{[132] + [312] — [321] — [231], [132] — [312] — [321] + [321]}.

While another such set is

span{[123] + [213] — [321] — [231], [132] — [312] — [321] 4 [321]} and
span{[132] + [312] — [321] — [231], [123] — [213] + [321] — [231]}

which are also isomorphic to the first two submodules. There are, in fact, an infinite
number of isomorphic submodules in the smallest module that contains all of these.
Although the irreducible submodules themselves are not unique, this larger submod-
ule, which could be considered as the sum of all irreducible submodules which are
isomorphic (such as the two examples above) is always the same. Thus, it is more

useful to look at this sum when the multiplicity of the irreducible is more than one.

Definition 2.4.2 The smallest submodule of a module V' which contains all submod-

ules isomorphic to a given irreducible submodule is called an isotypic subspace.

Since there can be many nonisomorphic submodules, there are many isotypic sub-
spaces, but for a single irreducible submodule the isotypic subspace containing it can

be shown to be well-defined. See [3] for more information.



Chapter 3

Applications to the Symmetric Group

Building on the previous chapter, here we explore the specific applications to the
symmetric group. Section 3.1 is a quick introduction to the symmetric group itself,
including the notation used in this thesis. Section 3.2 is not obviously an application
of representation theory to the symmetric group, but from the tableaux there defined
some of the concepts of Sections 3.3 and 3.4 become more clear. The Jucys-Murphy
elements in Section 3.3 have been at the heart of the research throughout, helping

with computation regarding the seminormal basis in Section 3.4.

3.1 Symmetric Group

One fundamental group in group theory is the symmetric group on n elements.

Definition 3.1.1 The symmetric group, denoted S, is the set of all permutations
of the set {1,2,... ,n}. Two permutations a1, e are multiplied to form the element

a1ag which is the permutation obtained by performing «y followed by as.

There are n! elements in this group, corresponding to the different orderings of the
set 1,...,n. There are many different notations for the elements in this group. For
example, consider S3. One way to permute the set 1,2,3 is to map 1 to 2 and 2 back

to 1. This can be denoted by the 2 X 3 matrix
1 2 3
213

or in cycle notation as (12). In the matrix representation, the elements in the set are

listed (in some order) in the top row, and each one is mapped to the element listed



directly underneath it. For general S,,, this becomes a 2 X n matrix. Cycle notation is
a much more compact form for writing the elements. In cycle notation, each element
is mapped to the next element to the right, unless there is a right parenthesis. In this
case, it gets mapped back to the first element in the parenthetical grouping. If an
element is not listed, as 3 is not in the permutation (12), it is mapped to itself. Take

the element (13)(264) in Sg. This could also be written as

1 23 456
361 2 5 4

The problem with cycle notation is that the elements are not read in the original
order. The problem with the matrix notation is that it’s too large. In this report, I
used a different notation, which assumes the first row of the matrix is simply 1...n
and writes the second row. This way, the elements above would be [213] and [361254],
respectively. The elements of S3 would then be [123], [213], [132], [312], [321], [231].

3.2 Standard Tableaux

Before seeing standard tableaux, it is necessary to understand the partition of an

integer and the Ferrers diagram of that partition.

Definition 3.2.1 A partition of the integer n > 0 is a non-increasing list (A1, A, . .. , Ag)

of positive integers with Zle i = n.

Definition 3.2.2 For a partition (A1, A,...,A\x) of n the Ferrers diagram is a

table of n left-aligned bozes with \; boxes in the i row and a total of k rows.

Definition 3.2.3 A standard tableaux of shape A is a filling of the Ferrers diagram
of the partition A\ with the numbers in the set {1,2,... ,n} such that there is an

increasing sequence across each row and down each column.



To illustrate, consider A\ = (4, 3, 3,2). The Ferrers diagram would be

while a standard tableau would be

1 (3 (4 |7
2 1519

6 |8 |11

10 | 12

It is easy to see that there are many standard tableaux of shape A. For example,
another standard tableaux of the same shape above could be obtained by switching

the numbers 7 and 5.

Definition 3.2.4 The content of a box b in a given standard tableau is defined as

ct(b) = j — i if the box b is in the i row and the j™ column of the tableau.

For example, ct(5) = 0 in the standard tableaux above. Content is useful when
dealing with multiple standard tableaux of the same shape. Applications of standard

tableaux and their content will be explored in Sections 3.3 and 3.4.

3.3 Jucys-Murphy Elements

The Jucys-Murphy(JM) elements are specific elements of the group algebra CS,.

Definition 3.3.1 The Jucys-Murphy(JM) element R, € CS,, n > j > 2, is

given by

Ri=(1,5)+(2.4)+ -+ —1,5) (3.1)
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where (i,7) represents the transposition in which i is mapped to j and vice versa,

written in the cycle notation described in Section 3.1. [7]

In an algebra V, the mapping o: V' — V defined by o(v) = vw for any v € V
and a given w € V gives a linear transformation of V. One way to write linear
transformations is as matrices by picking a basis, then writing the image of the 7**
basis element as a column vector in the i"* column of the matrix. For example,
the image of [132] under the JM-element R, is [312]. One way to order S; is as
[123],[213],[132],[312], [321],[231]. In this ordering, [132] is the 3"¢ element and [312]
is the 4" element, so the third column of the matrix representation of R, should be
the column vector (0,0,0,1,0,0)T.

For S3, the JM-elements are

01 00O0°TO 0010160
1 0 00 00 0 001O0T1
00 01O0O0 1 00 001
Ry = , Ry = (3.2)
001 0O0°O0 01 00T1°FP0
00 0O0O0OT1 1 001 00
00 0O0T1FPO0 011000

If a subspace is invariant with respect to the representation of the group, it must
be invariant under transformation by any of these elements. If a subspace is invariant
under transformation by all JM-elements, then it must be invariant under transfor-
mation by any linear combination of these elements.

Since I have defined a real, symmetric matrix, it is diagonalizable, and thus helpful

to find the eigenvalues of the matrix.

Theorem 3.3.2 (See [7], although this was not first proved there) For the JM-element
Ry in CS,, the eigenvalues are all possible contents of the box k in standard tableauz

of any partition A of n.
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3.4 Seminormal Basis

The group S,, has, as a subgroup, the group S,,_; which are the elements that keep n
fixed and only permute the first » — 1 numbers. In this way, we can make the chain
{1} =85, <85, <---<8S,_1 <8, For any given irreducible module V" of the group
Sy, this module can be decomposed into irreducible submodules when restricted to

S,_1. This process of restriction can be continued until the trivial group is reached.

Definition 3.4.1 A seminormal basis of a module V' of the group S, is a basis in
which, if V' is decomposed into irreducible submodules as an Sg, k < n module, there
18 a partition of the basis such that each of the blocks forms a basis for one of the

irreducibles.

What does this mean? Recall from abstract algebra that the conjugacy class of an
element g € G is the set {h 'ghlh € G}. In [3], it is shown that there are the same
number of non-isomorphic irreducible CS,-modules as there are conjugacy classes in
Sn. Also, the conjugacy classes of the symmetric group would be elements of the
same cycle shape. A given cycle shape can be considered a partition of the integer n.
Thus, there is a correspondence between the unique (up to isomorphism) irreducible
CS,-modules and partitions A of n.

If the right correspondence is chosen, the irreducible module has a basis that can
be indexed by the standard tableaux of shape A. This can be shown to lead to a
seminormal basis. Moreover, each of these basis vectors is an eigenvector for each Ry.

Specifically,
Rib = ct(k)b (3.3)

ct(k) is the content of the box k in the standard tableaux associated with the basis
vector b. This is an application of Theorem 3.3.2 above.
By projecting onto the eigenspaces of the JM-elements, the process of restriction

in Definition 3.4.1 gives rise to a method of computing projections onto the smallest
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members, the basis elements themselves. Unfortunately, since the irreducible modules
can only be identified with the partitions up to isomorphism, the projection ends up
being a projection onto equivalence classes of the basis vectors, which is why in
Appendix A there are vectors with more than one independent variable. Fortunately,
I am concerned with the projections onto the isotypic subspaces (see Section 2.4),

which include all copies of all the isomorphic irreducibles.



Chapter 4

Methods

Up to this point, I have focused on the mathematical concepts which I used in my
research. Pulling together concepts from Chapters 2 and 3, here is the actual work

that I have done.

4.1 Data Compression

My goal with my research is, as stated in Chapter 1, to attempt to store data without
redundancy. The data I want to store are the projections onto the isotypic sub-
spaces. Thus, knowledge of the structure of the isotypic subspace would allow for
that compression. The projections I have actually computed are the projections onto
equivalence classes of seminormal basis elements. Since the projection onto an iso-
typic subspace is the sum of the projections onto the corresponding seminormal basis
elements, storing these projections is just as good.

For CS3, these projections are listed in Table 5.1. For CSy, these projections are
in Appendix A.

4.2 FElement Order

When there isn’t a truly natural ordering, mathematicians tend to pick one. One
ordering for the elements of 5,,, especially because of the way I have chosen to notate
them, is lexicographic. Yet, in lexicographic order, there is very little structure on
the elements of which I can take advantage. For example, in lexicographic order the

element Ry of Sy looks like Figure 4.1(nz represents the number of nonzero elements),
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Figure 4.1: Lexicographic Ordering of R3 in Sy

0 T T T T
° °
° °
° °
° °
5F ° ° E
° °
° °
° °
° °
10 ° ° -
° °
° °
° °

° °

15 e ° i
° °
° °
° °
° °
20 [ ] ) -
° °
° °
° °
° °
25 : : : :
0 5 10 15 20 25
nz =48

but I would prefer to see it in the order which gives Figure 4.2. Note that, in these
figures, the black dots represent where there are non-zero entries in the matrix.

In Section 3.4, I noted that there is a natural way in which {1} =5; < S, <--- <
S,. To create the ordering for Figure 4.2, I took advantage of this structure in the
group. Beginning with the identity permutation, I focused first on the permutations
that fixed the last n — 1 elements, which is just the identity, and then the ones where
the last n — 2 elements are fixed. Other than the identity, there is one with this



Figure 4.2: R3 in Sy with my ordering

15

0 T T
° °
°
°
° °
51 e °
o o
°
°
°
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15
20
25 : :
0 5 10

nz =48

15

25

property, the transposition (12), so this transposition is the second element in my

ordering.

When transferring to elements that exist in S3, I had to bring in four more el-

ements. To choose the ordering of these, I began by looking at the ones where 3

gets mapped to 2 and then where 3 gets mapped to 1. In this way, I create blocks

within the list of basis elements. As illustrated in Figure 4.2, which has 4 blocks,

the interaction within one block is exactly the same as the interaction in another.
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Table 4.1: Ordering on Sy

w

I e O VS U RIS RS R JU R U JUY T G NG SO N N

N W WhER N R WWHFE AR RN R R RN WWFND -
WN PR W R NWERE R WRHE RBRIRAENRFE AR EDNDWN - WRH DN

R NN W W R R WWHEFEF NN R R EDNDNW

Interaction between blocks, which occurs in Figure 4.2 if the blocks considered are of
two elements rather than six, is not as constrained and must be computed

For example, since the ordering on Sy is [12] followed by [21], the second block of
the ordering on S3 would be [132] followed by [312]. This generates the ordering of
S5 I have been using since Section 3.1 and the ordering of S4 as given in Table 4.2.
To generate this example, I used the MatLab program in Appendix B.1.

With this ordering, I need only compute the structure of the JM-element Ry in the
group algebra CSj in order to know it’s structure in the group algebra CS,, n > k.

n!

Specifically, Ry is a block diagonal matrix with 77 blocks of size k! x k!, each of which
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is the k! x k! matrix of Ry in CSg. This is the specific attribute of the ordering that

I wanted to have, so I generated my order from it.

4.3 Eigenspaces

Recall from Theorem 3.3.2 that the eigenvalues of the JM-elements are all integers.
Specifically, the values which can be obtained are dictated by the standard tableaux
for the integer n. From Section 3.4, if a seminormal basis is chosen, subsets of the
basis will form a basis for irreducible submodules when the group algebra CS,, is
viewed as a CSi-module. Although when dealing with action from the right it is not
possible to break down the space to the seminormal basis, it is possible to break it
into subspaces which are acted on by the JM-elements in the same manner. This
is done by identifying the eigenvectors which form a single standard tableau. For

example, if the standard tableau is

1 12 |4
3

then I wish to find an eigenvector with eigenvalue 1 for Ry, —1 for R3 and 2 for
R;. The structure of these vectors (for there will be three independent vectors of
these sort) is given in the second column on page 31.

In computing the structure of the seminormal basis elements, it is my hope to im-
prove the computational efficiency of algorithms (see [6]) to calculate the projections
onto the isotypic subspaces, specifically algorithms that use the seminormal basis, by

only having to compute certain components of the projection of the vector.

4.4 Compressing Matrices

R, can act as a linear transformation in CSg, with the only difference being the
dimension of the algebra. The eigenvalues of Ry remain {—1,1}, but the multiplicity

of each eigenvalue increases. Once the eigenspaces of R, are identified, repeating that
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work to identify that these eigenspaces are superspaces of the eigenspaces of Rj3 is
rather pointless, so it is useful to identify the redundancy introduced by the knowledge
that the isotypic we are looking for, at least part of it, lives in an eigenspace of which
the structure is known. This can be used to eliminate unnecessary parts of the matrix
representation of R;.

To make this elimination, because the matrices R; are simultaneously diagonaliz-
able, use the eigenvectors of R;_;, with vectors corresponding to the same eigenvalue
grouped together, as a change of basis on ;. For examples, see Section 5.3, specifi-
cally (5.2).

Also, because of the block structure of the imposed ordering of the basis elements,
when j7 < n we know that the JM-element R; will only act within the blocks, as can
be seen by the block diagonal structure of R3 in Figure 4.2. Once it is known how R;
acts in CS, this can be extended to each of the blocks of size j! of the basis elements

of CS,,. In this way, only the action of R, need be considered.



Chapter 5

Results

Much of what I have obtained cannot be easily shown in a chart, but some can. I
have summarized here what I can. This is presented in chronological order, beginning
with my first attempts at identifying a pattern, computing by hand everything in
Section 5.1. The patterns I did see have been summarized in Section 5.2. Results
from the more recent study as described in Section 4.4 are given in Section 5.3.

Conjectures, which are possible future areas of research, are given in Section 5.4.

5.1 Early Examples: S;

For Ry, the possible eigenvalues are plus and minus one. For R3, the possible eigen-
values are {—2, —1,1,2}, but none of these are possible with both of the eigenvalues
for Ry. Table 5.1 summarizes the compression obtained by projecting onto the semi-
normal basis elements of CSs.

Similar to these results, those for CS; are included as Appendix A. These are the

major results of this research.

5.2 Observations

Before even considering the compressed matrices discussed in Section 4.4, there are
some observations that can be made. One observation is that, because of the chosen
ordering on the elements, once I have reduced S,,_1, this reduction carries through to
each of the n blocks of S,,. For example, note the compression in CS5 corresponding

to the eigenvalues 1 and 2 of Ry and Rj, respectively. This same compression occurs
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Table 5.1: Compression in the Projections of S3

Eigenvalue for Ry: 1 -1

Eigenvalue for Rj: 2 -1 1 -2

Compression of vector: T Lo T4 Te
1 ) —T4 —Ts
1 X3 X5 Ze
X T3 —Zs5 —ZTg
T —(z9 + z3) Ty — Ts —Z6
T —(z2 + x3) — (x4 — x5) Tg

in each of the 4 blocks in the compression of CS; corresponding to these same eigen-
values. This can be seen on page 29 in the first column and on page 31 in the first
column. Also, the first block of (n — 1)! basis elements is easily seen to be entirely
redundant. Note that, since Ry,...,R,_; each only act on the elements in the 1%
through (n — 1)* positions, they can only permute within blocks, as evidenced by
the block diagonal structure of the matrices representing these elements. Thus, only
R,, can now compress the data. R, is the sum of n — 1 transpositions, so multiplying
a basis element in the module CS,, by R, results in the sum of n — 1 new elements.
But the structure of the ordering helps to identify these elements, because each trans-
position exchanges the number 4 with another number. Because of the structure of
the ordering chosen, the elements to which an element in the first block maps are the
elements in the other blocks in exactly the same position as the element being acted
upon.

For example, the element [1324] Ry = [4321] 4 [1423] + [1342] in CS,. [1324] is the
374 element in the first block, and each of the new elements is the 3" element in its

respective block. Note that in Table 4.2 the blocks are divided by horizontal lines.
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5.3 Reduced Matrices

The matrices representing the JM-elements up to 24 have been reduced as explained

in Section 4.4. Rj is in progress.

5.3.1 Ry

It is always useful to start with the most basic cases, just to make sure that one knows
what is going on. Thus, the first matrix is for the linear transformation defined by

p: CSy — €S, where p(x) = Ryx and Rs is the transposition (21). This matrix is

Since this is the first element, I have no additional information, so it cannot be
reduced, but it provides information that will be used in the later matrices. The
eigenvalues of this matrix are {1, —1} corresponding to the eigenvectors (1) and (_11)
Knowing that Ry in S, is going to be a block diagonal matrix with (n!)/2 copies of
(5.1) as the blocks along the diagonal, shows that these eigenvectors will be similar
to the previous eigenvectors. Specifically, these eigenvectors are one of the above
eigenvectors in a position corresponding to one of the blocks and zeros everywhere else.
For example, refer to (3.2) to see the matrix representation of Ry acting on CS3. The

eigenvalues of this matrix are {—1,—1,—1,1,1,1} with corresponding eigenvectors

(o) (o) (o) () (o) (o)
Vo) Vo) \=a) Vo) Vo) A1)
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5.8.2 R

The matrix representation of R3 acting on CSj is given in (3.2). This matrix has eigen-
values {—2,—1,—1,1,1,2}. But when we only look at how it acts in the eigenspaces
of Ry, we know more about the action. Considering the eigenvectors above, it is easy
to see that we only need to know where the first, third, and fifth basis vectors map in
order to have complete information, but that these may map to different places de-
pending upon which eigenspace we look at. So, when in the eigenspace corresponding

to the eigenvalue —1, the reduced matrix Rj is

0 1 1
Ri[-1]=1]1 0 -1
1 -1 0

and the reduced matrix corresponding to the eigenvalue 1 is

01 1
Ri1]=1]1 0 1
110

These matrices were obtained by using the eigenvectors above as a new basis for the
matrix. To see this, note that they are obtained as the blocks of the block diagonal

matrix R3 after the change of basis by the eigenvectors of R, as follows:

0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0

0 0 0 1 0 1 1 0 0 -1 0 0 1 0 1 0 0 0 1 0 0 -1 0

1 0 0 0 0 1 _ 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1

0 1 0 0 1 0 - 0 1 0 0 -1 0 0 0 0 0 1 1 0 1 0 0 -1

1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 —1 0 0 1 0 0

0 1 1 0 0 0 0 0 1 0 0 -1 0 0 0 1 -1 0 0 0 1 0 0
(5.2)

Since these are smaller matrices, they have fewer eigenvalues. These are, for

Rs[-1], {—2,1,1} and for Rs[1], {—1,—1,2}. The multiplicity of the eigenvalue 1

= O C© © ©



23

means that the eigenvectors will not be unique. One choice of eigenvectors is

1 1 1
_1 b] _]_ b] O
-1 0 -1
for R3[—1] and, for R3[1],
1 0 1
0 9 1 9 1
-1 -1 1

5.83.8 Ry

In R4, the matrices start getting larger, so I will only list the matrices themselves and
their eigenvalues. The original, 24 x 24 matrix, appears in Figure 5.1

A final note before I present the matrices: labelling these turned somewhat diffi-
cult, so I have opted for the label format of R,[)s, ... , A\,_1] where this is the reduction

of the matrix representation of R, living in the eigenspaces for R; corresponding to

the eigenvalue \; where j =2,... ,n — 1.
01 11
1 011
R4[1,2] = , eigenvalues: {—1,—1,—1,3}

1 101

1 110
0 1 1 1
1 0 -1 -1

R,-1,-2] = , eigenvalues: {—3,1,1,1}

1 -1 0 —1
1 -1 -1 0
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10

nz=72

20

25

24



Ry[1,-1] =

Ry[-1,1] =

o = O = O = O O

= o = O = O O

0

_ O = o O O - o = O = O O o

]

o H OB OO O O O =

= o O o O =

1
0

- = O = O O = o

]

o = O O

-1
-1
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-1
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- o O O O = = O
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_ o O O O =
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, eigenvalues: {—2,—-2,-2,0,0,2, 2,2}

, eigenvalues: {—2,—-2,-2,0,0,2,2,2}

Proving that these are the correct matrices would involve a similar change of basis

as in (5.2) performed on the matrix representation of R, followed by a similar change

of basis corresponding to the eigenvectors of R3. After these two basis changes, the

above matrices would be blocks along the diagonal.

5.4 Conjectures

Examination of these matrices has led to three conjectures, one about the size of the

compressed matrix, which is not obvious, and two about the actually matrices.

Conjecture 1 The compressed matriz R,[Ao, . ..

is the multiplicity of the eigenvalue \,_, in the compressed matriz R,_1[Ag, . . .

y An—1] is an nkxnk matriz, where k

) /\n—2]-
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I would recommend induction as an attempt to prove this.

Conjecture 2 The compressed matriz R,[1,2,... ,n — 2] ezists, and is the n x n
matriz corresponding to the adjacency matriz on the complete graph on n wvertices,

i.e., the matrizc A = [a;;] where

aii=0

a; = 1, 1#]

Given a proof of the previous conjecture, to prove the size of this matrix would in-
volve a proof that the multiplicity of the eigenvalue n—2 in the matrix R,,_1[1,2,... ,n—
3] is 1. Again, if this is done by induction, this can be assumed to be the adjacency of
the complete graph on n — 1 vertices, and results have been obtained for such graphs.

After this, the same basis change as in (5.2) would justify the result.

Conjecture 3 The compressed matriz R;[—1,—2,...,—(j — 2)] ezists, and is the

n x n matriz A = [a;;] where

Ay = 0
a1; = 1a ] 7& 1
a;1 = 1, 1 ?é 1

;5 = _13 Za]?’élﬂ’#]

This could be proved much like Conjecture 2, but would involve more leaps of

logic.
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Conclusion

The next step in the work is to prove the three conjectures and find the compressed

matrices for R5. If Conjecture 1 is true, then the sizes of these matrices will be

Rs[1,2,3] 5x5b

Rs[1,2,—1] 15 x 15
Rs[1,-1,2] 15 x 15
Rs[1,-1,0] 10 x 10
Rs[1,-1,-2] 15x15
Rs[—1,1,2] 15 x 15
Rs[—1,1,0] 10 x 10
Rs[-1,1,-2] 15x15
Rs[-1,-2,1] 15x 15
Rs[-1,-2,-3] 5x5

So far, compression seems to be very possible.
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Ss Compression

Using the ordering showed in Table 4.2, this is the compression for the group
algebra CS, in each of the eigenspaces for the JM-elements Ry, R3, R4. In each case
the intersection of the eigenspaces is listed, and the eigenvalues are listed in the order
corresponding to Ry, R3, Ry, respectively. Eigenspaces corresponding to the same
isotypic subspaces are listed on the same page, but the two spaces on the first page
are in different isotypic subspaces.

At the bottom of each column, I’ve placed the succinct version of the results,
showing which coefficients need to be calculated and stored, as well as which elements

they correspond to. The notation for the elements is defined in Section 3.1.



s:
eigenvalue

vector:

index):
ical in
tore (numeric
to sto
Need

nts:
i leme
ponding e

es

corr

3,2,1
[
T
T
T
T
Z1
T
T
x1
x1
x1
x1
x1
X1
X1
Z1
Z1
Z1
Z1
T
T

T

_3, _2,

—1
—1
X2
—
)
—I
)
)
—Z
)
—Iy
—Iy
X2
X2
_—
)
—Iy
—Iy
)

X2

29



1,-2,-1 \
xs3
( -
—23
Z3
—Z3
xs3
Ty
—Z4
—Z4
Ty
— T4
Ty
Ts
—x5
—x5
Ty
—Z5
Ts
— X4 — Ts
x33 + T4 + Ty
_zg + x4+ x5
T3 — T4 — Ty

Ty
+ x4 +

— — Iy )
\ T4
I3

1,7,13
1342)
3), (
e, (1243)

\

—2,-1,1
Ze
—Zg
L7
—T7
g — X7
—Ze + T7
—Zg
Te
T7 — Tg
X7+ Tg
Tg + X7+ g
Tg — X7 — XTg
7+ Ty
7 — I8
—x7
X7
2x7 + x3g
—2$7 — Tg
6 — L7 — Tg
_.Tt + T7 + T3
T
—Ig
Te — X7
Tg + Ty

1,3,21

(1324), (4321)

-2,1,-1
Ty
( , T11
—2x9 + 37109 — ixn
+ 3x19
_2:69— 3x10 + 3711
) — 3x10 + 3z11 |
X1
J:159 + 4z — 2x11
+ 4z
o T10
T10
— 5%19 + 6211
. — bxy9 + 6211
. — T10 + 2211
. — T10 + 2211
. T11
—iﬂ?g + 5119 — ;m
+ 9Z10
o 4x10 + 5711
. 410 + 5211
o — 3z + 4211
o — 3x0 + 4711
3xg -
Z11

ST11
+ 3%10 —
—3$9

ST11 )
+ 3%10 —
\ —3$9

1,9,21
4321)

3), (

e, (1423)

30



~1,2,1 2,—1,1 2,1,—1

/ T12 \ ( 217 + 2216 — T15 \ ( Z18 \

T12 2217 + 2216 — X315 —T18

T12 5716 + 2117 — 4715 —T90

Z12 9T16 + 2117 — 4T 15 T20

T12 —Tw16 — 4217 + 5715 T18 + T

T12 —Tw16 — 4217 + 5715 —Z18 — T20

T13 T15 Z1g

Z13 T15 —T18

Z13 3717 + 6216 — 5%15 Z19

Z13 3717 + 6216 — 5%15 —T1g

Z13 —6216 — 3117 + 4715 18 — T19

Z13 —621 — 3117 + 4715 —Z18 T T19

ZT14 4216 + 3217 — 3215 T19

T14 4716 + 3217 — 3215 —T19

T14 T16 —Z20

T14 T16 T20

T4 =516 — 3217 + 3115 T19 + T20

T4 =516 — 3217 + 315 —T19 — Tao
— (212 + 213 + 214) Z17 T18 — T19
— (212 + 213 + 214) Z17 —Z18 + Z19
—(z12 + 213 + Z14) —3x15 + 3x16 + T17 —T19 — a0
—(z12 + 213 + Z14) —3x15 + 3x16 + T17 T19 + T
— (212 + 213 + 214) —2x17 — 3%16 + 3%15 Z18 + Tao

\ —(712 + 713 + 714) \ —2x17 — 316 + 3215 / \ —T18 — T20 /
1,7,13 8,195,20 1,13,16

e, (1243), (1342) (2143), (1342), (2431) e, (1432), (3142)



0,-1,1

T21

T21

T22

T22
—(w21 + 22)
—(w21 + 22)

T2

T2
— (w21 + 22)
— (w21 + 22)

T22

T22
— (@21 + 22)
— (w21 + 22)

T22

T22

T21

T21

T22

T22

T21

T21

—(%91 + T22)

\ —(w21 + 22) /

1,3
e, (1324)

0,1,-1
Z23
—T23
To3 + T2
— (293 + %24)
—T24
T4
—T23
T23
T4
—T24
— (293 + %24)
T3 + T2
—T24
T4
— (293 + 224)
Tog + To4
T23
—Z23
To3 + T2
— (293 + 224)
T23
—Z23
T4
—T24
1,6
e, (2314)

32



Appendix B

MatLab Programs

B.1 Generating the Group Elements

This is the MatLab code for generating the elements of the group in the ordering
defined in Section 4.2.

function e = element(numb, dim)
%» ELEMENT produces the ordering of the
%» numb th element of a specific ordering of S(dim).

if dim <= 1,

e = [11;

% if the dimension is 1, then this must be the only element, ie, [1].
else

fact = factorial(dim-1);
if numb > dim*fact,

error(’Sorry, I cannot compute with that input.’);

end
newnumb = mod(numb, fact); % the recursive call
last = dim - floor((numb-1)/fact);
if newnumb == 0,
newnumb = fact;
end

prelim = element(newnumb, dim-1);

if last == dim, % the easy case
e = [prelim dim];
else % the case in which an element has to be changed.
e = [(prelim + ismember(prelim, last).*(dim-last)) last];
end
end
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B.2 Identifying the Group Elements

This is the MatLab code for taking the elements of the group algebra as computed in
the previous code and generating where it is in the ordering.

function i = basisnumb(element)
% BASISNUMB takes as input an element from the basis of S(n) and
% computes the number i, which is where the element lies in my
% specific ordering of S(n)
% also see element.

if element == [1],
% base case, in order to establish the start of the order.
i=1;

else

% here is the real knitty gritty.

length = size(element,?2);

% I need to get the last entry in element
last = element(length);

% I need to truncate element,
newelement = element(1:(length-1));

% replace the correct entry with the last entry
newelement = [(newelement + ismember(newelement, length).*(last-length))];

% and give the recursive call
interior = basisnumb(newelement) ;

% I need to add the results of the recursive call to the product of
% the size of the blocks and the last entry
i = interior + (length - last)*factorial(length-1);

end

B.3 JM-elements

This is the MatLab code to generate the JM-elements (see Section 3.3) in matrix

form.



function JM = JMs(i, n)
% For the JM-element R(i) in S(n)

% initialization
sparsegen = [];
fact = factorial(n);
for j = 1:fact,
current = element(j,n);
for k = 1:i-1,
temp = action(current, [k i]);
sparsegen = [sparsegen; j basisnumb(temp) 1];
end
end

JM = sparse(sparsegen(:,1),sparsegen(:,2),sparsegen(
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:,3),fact,fact);
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