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Abstract

Mixing In Microchannels

by Dan Beutel

June 2003

This project will investigate mixing in microchannels. Specifically, the advection

and diffusion of a passive scalar, using a split-step Monte Carlo method. Numer-

ically the implementation of this method is well understood. The current experi-

mental geometry is a rectangular pipe with grooves on one wall. Mixing results

with straight walls agree closely with experiment. The velocity field over grooves

is also studied.
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Chapter 1

Introduction

The study and application of fluid flows in micron scale channels is a rapidly

growing area of research. Such channels, which are known as microchannels, have

numerous potential applications in Chemisty and Biochemistry. In conjunction

with various nanotechnology devices microchannels can be built into remarkably

compact, sophisticated systems. Notably, mircofluidic systems can be used to mix

very small, specific quantities of a solution, or even mix together solutions and

allow them to react chemically. The potential applications of mixing in microchan-

nels has inspired a great deal of research, including the work described here.

There are two ways to approach mixing, active and passive. Active mixing

relies on pumping fluids through the system in some time-dependent manner.

A great variety of mixing results can be obtained in this manner. However, ac-

tive mixing is dependent on a complex system of pumps and control mechanisms,

making it often impractical for applications. One example of a active mixing sys-

tem is shown in Figure 1.1. This specific system is currently being used at UC

Santa Barbara [18]. In this system fluid is pumped into multiple side channels in

a time dependent manner. For instance, while fluid continuously flows from the

black arrows, fluid is alternately pumped from all three red arrows, then all three

blue arrows, then red again. Of course, this is only one simple pattern, more com-

plex pumping arrangements are possible. While the depicted graphic shows the

microchannel system where mixing takes place, this system depends upon a large
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Figure 1.1: An active mixer.

external setup to control the various pumps. The complexity and bulk are a sig-

nificant disadvantage of active mixing, as the size negates many of the benefits of

having a micro-scale system.

Passive mixing is mixing that occurs due to the properties of the channel. Com-

plex controllers and pumps are no longer needed, and it is more practical to build

a passive mixer into a micro-scale system. The fluids are pumped or driven by a

pressure gradient at a constant rate. Two or more streams come together and mix

through diffusion, recirculation and other properties of the flow. By controlling

the geometry, it is possible to optimize the mixing for a given pipe shape. One

promising geometry, based on the work of Stroock et. al. [14], [15] is to have peri-

odic grooves on one side of the channel at an angle to the flow, or a set of grooves

in a herringbone pattern. See Figures 1.2 and 1.3, which are from the works just

mentioned. In Figure 1.2 few particle paths which appear to swirl around the pipe

are shown. The cross-section showing the recirculation below the pipe emphasizes

this. If it is present, recirculation will greatly enhance mixing.

I have successfully simulated flow when two streams come together in a straight

sided, rectangular microchannel. With these results in mind, I moved forward to
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Figure 1.2: Simple passive mixer using grooves showing two particle paths.

Figure 1.3: Passive mixer using a herringbone pattern.

develop the velocity field over periodic grooves, such as those in Figure 1.2.

1.1 Organization

This section explains how this report is organized. The first chapter provides some

basic background and context for the problem. Chapter 2 provides a further in-

troduction to the specific experimental geometries and the relevant equations of

motion for the straight walled channel. Results for this geometry are also summa-

rized in Chapter 2. The setup and analysis of the grooved pipe are in Chapter 3.

Chapter 4 describes the numerical solution and results for the grooved pipe. Chap-

ter 5 explains and gives some justification for the numerical methods used. The

appendices contain a selection of the source code used.



Chapter 2

Flow in a Straight Microchannel

This research begins with a rectangular microchannel with straight walls and

constant cross section. Specifically, I hope to reproduce the experimental results

obtained by Ismagilov et. al. [7]. The experimental geometry is shown in Figure 2.1

and is described in more detail in Section 2.1.

This chapter also introduces several equations for the fluid motion and explains

the results is Section 2.3

2.1 Geometry and Fluid Mechanics

One of the simplest channels to work with is straight channel with a constant rect-

angular cross section. The objective of starting with this system is to establish

the validity of the code and the method comparison with experimental results ob-

tained elsewhere. The velocity field in this setup is well known. Figure 2.1 shows

the setup: y and z are the distance from the center axis of the pipe and x is the

distance downstream. The velocity field ~u =< u(x, y, z), v(x, y, z), w(x, y, z) > can

be found by understanding a bit about fluid mechanics.

2.1.1 Reynolds Number of a Microfluidic System

Since this problem is concerned with microfluidic systems, a number of simplify-

ing assumptions can be made. First, the characteristic length scale is something

like 10−3 − 10−4m and the characteristic speeds are of roughly similar magnitudes,
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Figure 2.1: Geometry of the rectangular, straight walled pipe.

10−3 − 10−4m/s. For any fluid the Reynolds number is given by

Re =
Length× Speed

ν
(2.1)

where the Length is a characteristic length scale of the problem and the Speed is

a characteristic speed of the flow. Thus, even for a fluid with ν = 10−6m2/s in a

microfluidic system, Re < 1 and for more realistic (larger) values of ν, Re � 1.

This guarantees a laminar flow.

2.1.2 Velocity Field

Given a laminar flow, the velocity in a rectangular pipe can be solved exactly. The

velocity ~u has only a downstream component which is solely dependent on y and

z, i.e. ~u =< u(y, z), 0, 0 >. The downstream speed u(y, z) is

u(y, z) = C

(
L2 − y2 − 4

L

∞∑
n=0

(−1)n cosh(Nnx)

N3
ncosh(Nna)

cos(Nny)

)
(2.2)

where Nn is given by

Nn =
(2n+ 1) π

2L
.
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The velocity is zero on the edges of the pipe and maximum in the center, with a

symmetric distribution. This flow field is developed in Ward-Smith [20].

2.1.3 Experimental Results

Ismagilov et. al. [7] built a similar system and studied the mixing experimentally.

They used two fluids which form a fluorescent complex when fluid A mixed into

fluid B (but not vice-versa). Figure 2.2 shows how fluid A spreads into fluid B. The

significant feature is the distinctive “C” shape of the mixed region when viewed in

cross-section. This occurs because the fluid near the edges of the pipe is moving

more slowly than the fluid in the center. Thus, the fluid on the edges has more time

to diffuse before reaching a given cross-section.

Figure 2.2: Diffusive broadening of two streams in a microfluidic system.
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2.2 Advection and Diffusion

We can use this flow field, in combination with the advection diffusion equation:

∂c

∂t
+ ~u · ∇c = D∇2c (2.3)

to obtain a numerical approximation for the concentration c(x, y, z, t) as a function

of location and time. The concentration of one fluid mixing into another tells how

“mixed” the fluids are. To understand (2.3) physically, separate advection and

diffusion. Advection is movement with the velocity field of the fluid which is

determined by the geometry of the pipe and nature of the fluid. Diffusion is a

random spreading related to the random oscillation of the molecules. The method

to simulate the advection and diffusion of a fluid is explained in more detail in

Sections 5.1 and 5.2.

2.3 Results

Working with this channel, I have developed a program to simulate the flow by

the method described in Chapter 5. The results, as expected, indicate that there

is no mixing per-se, but just a diffusive broadening with a distinctive shape as

seen in the figures below. The “C” shape mentioned above as an experimental

result is seen again in my results. A series of Figures, 2.3, 2.4, 2.5 show my results

at sequentially farther downstream points. A bit of explanation of the plots is in

order: the red represents maximum concentration of fluid A, blue a minimum. As

the fluid spreads out across the pipe, the difference between the maximum and

minimum decreases and the colors blend together as in Figure 2.5 My results agree

with—and provide more detail to—the experimental results of Ismagilov et. al. [7],

who obtained the result shown in Figure 2.6.
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Figure 2.3: Numerical results of diffusive broadening, cross-section 1.

Figure 2.4: Cross-section 2.
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Figure 2.5: Cross-section 3.

Figure 2.6: Experimental picture of diffusive broadening from Ismagilov et. al. [7].



Chapter 3

Velocity Over Periodic Grooves

To move beyond simple spreading and into passive mixing induced by periodic

grooves, it is necessary to understand the manner in which the grooves alter the

velocity field. Specifically, grooves along the bottom of the channel, perpendicular

to the flow. From simple physical intuition, it seems that such grooves will cause

the fluid to flow up, away from the grooved edge and will alter the horizontal

speed, possibly even causing some bit of fluid to flow “backwards”, against the

main flow. This chapter will setup the problem and solve it as far as analytical

techniques can be applied.

Figure 3.1: Coordinate system for the periodic boundary pipe.
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3.1 Grooved Problem Setup

To simplify the problem, I worked in two dimensions in a deep pipe. The setup is

shown in Figure 3.1. The pipe has a sinusoidal bottom boundary, defined by the

function z = h(x) = ε cos(2πx/L)+h0, which has period L and average value of h0.

At the “top” of the pipe, the fluid flows with horizontal velocity U at z = H and

no vertical velocity.

3.2 Solving for the Velocity

Given these coordinates, I can begin to solve for the velocity. First, I start with the

Navier-Stokes Equations,

∂~u

∂t
+ (~u · ∇)~u = −1

ρ
∇p+ ν∇2~u+ ~g (3.1)

∇ · ~u = 0 (3.2)

for a fluid with velocity ~u, density ρ and viscosity ν under pressure p and grav-

ity ~g. In addition, no-slip condition—the “standard” boundary condition of fluid

mechanics—is applied along the bottom boundary of the pipe. At H , there is hor-

izontal velocity U and no vertical velocity, i.e. ~u =< U, 0, 0 >. Since the system is

two-dimensional, there is no y component to the velocity. Thus, if ~u =< u, v, w >

the boundary conditions on the velocity can be succintly stated as

u(x,H) = 0

w(x,H) = 0

u(x, h(x)) = 0

w(x, h(x)) = 0.

For a suitably small boundary edge, there are two components of the solution: a

linear shear over the equivalent flat bottom and a perturbation term associated
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with the wavy bottom. Thus, it becomes convenient to write the velocity as ~u =<

Uz/H, 0, 0 > + < ũ, 0, w̃ >. The boundary conditions are now

ũ(x,H) = 0 (3.3)

w̃(x,H) = 0 (3.4)

ũ(x, h(x)) = −U h(x)
H

(3.5)

w̃(x, h(x)) = 0. (3.6)

With these boundary conditions and the Navier-Stokes Equations 3.2 it is possible

to attempt to find a solution.

3.2.1 Simplifying the Navier-Stokes Equations

The Navier-Stokes equations, as written above, are highly nonlinear and very dif-

ficult to work with, even numerically. As discussed in Section 2.1.1, the Reynolds

number is small because this is a microfluidic system. Since the system is in a

small Reynolds number regime the viscosity term ν∇2~u dominates the inertia term

(~u · ∇)~u. Furthermore, assuming a time-independent system means that ∂~u/∂t = 0

and if the system is horizontal, then gravity has no effect. Thus, the Navier-Stokes

equations (3.2) reduce to

ν∇2~u = ∇p (3.7)

∇ · ~u = 0 (3.8)

for some pressure gradient p. With these physical assumptions, and the mathemat-

ical manipulations to follow, it is possible to solve for the velocity.

3.2.2 The Stream Function

Mathematical simplification begins by using Equation 3.8 to rewrite the perturba-

tion velocity ~̃u =< ũ, w̃ > (where I have omitted the y component since it must be
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0):

~̃u =< ψ̃z,−ψ̃x > (3.9)

where ψ̃(x, z) is the stream function and the subscripts denote partial derivatives.

Introducing the stream function turns the vector problem into a scalar and al-

lows a great simplification of the equations of motion. Taking the divergence of

< ψ̃z,−ψ̃x > confirms that it is zero:

∇· < ψ̃z,−ψ̃x >= ψ̃zx − ψ̃xz = 0

as required by Equation 3.8.

At this point I should note that the stream function ψ̃ given here is the perturba-

tion stream function - that is, the portion of the stream function associated with the

non-flat boundary. The total stream function of the system ψ is given by

~u =< ψz,−ψx >=< ψ̃z + U
z

H
,−ψ̃x > (3.10)

and is related to the perturbation stream function by ψ = ψ̃ + Uz2/(2H). From

this point forward I do deal with (unless stated otherwise) the perturbation stream

function, so I drop the ˜ and just refer to the perturbation stream function as ψ.

Substituting Equation 3.9 into Equation 3.7 and breaking out the vector compo-

nents gives

ν∂xx(ψz) = px (3.11)

ν∂zz(−ψx) = pz (3.12)

and taking ∂/∂z of Equation 3.11 and ∂/∂x of Equation 3.12 gives

ν∂xx(ψzz) = pxz

ν∂zz(ψxx) = −pxz



14

by dividing out ν and equating the expressions for pxz

∂xx(ψzz) = −∂zz(ψxx) =⇒

∇2(ψxx + ψzz) = 0 =⇒

∇4ψ = 0. (3.13)

Thus, Equation 3.13 is the only equation of motion needed and it has analytical

solutions (biharmonic functions).

3.2.3 Boundary Conditions

Now it is necessary to substitute ~̃u =< ψz,−ψx > into the boundary conditions,

Equations 3.6 to find the boundary conditions to solve for ψ. This substitution

gives

ψ̃z(x,H) = 0 (3.14)

ψ̃x(x,H) = 0 (3.15)

ψ̃z(x, h(x)) = −U h(x)
H

(3.16)

ψ̃x(x, h(x)) = 0 (3.17)

as the boundary conditions.

3.3 Analytical Solution

Proceeding with an analytical solution for ψ, start by writing

ψ(x, z) = a0(z) +
∞∑

n=1

(
an(z) cos(knx) + bn(z) sin(knx)

)
where kn = 2πn

L
, the Fourier series in x. Thus the Laplacian is

∇2

(
an(z) cos(knx)+bn(z) sin(knx)

)
= cos(knx)(∂zz−k2

n)an(z)+sin(knx)(∂zz−k2
n)bn(z)
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so the BiLaplacian is

∇4

(
an(z) cos(knx)+bn(z) sin(knx)

)
= cos(knx)(∂zz−k2

n)2an(z)+sin(knx)(∂zz−k2
n)2bn(z).

The equation of motion (Equation 3.13) is therefore

∇4

(
a0(z) +

∞∑
n=1

(
an(z) cos(knx) + bn(z) sin(knx)

))
=

∇4a0(z) +
∞∑

n=1

(
cos(knx)(∂zz − k2

n)2an(z) + sin(knx)(∂zz − k2
n)2bn(z)

)
= 0

but cos(knx) and sin(knx) are orthogonal, so each term can be broken out of the

sum:

∇4a0(z) = 0

cos(knx)(∂zz − k2
n)2an(z) = 0

sin(knx)(∂zz − k2
n)2bn(z) = 0

for all integer values of n. Thus, the equations of motion can be written as:

∇4a0(z) = 0 (3.18)

(∂xx − k2
n)2an(z) = 0 (3.19)

(∂xx − k2
n)2bn(z) = 0 (3.20)

again, for all integer values of n.

3.3.1 Finding a0(z)

Starting with Equation 3.18, the solution is a polynomial in z:

a0(z) = A0 +B0z + C0z
2 +D3

0. (3.21)

Clearly the x derivative of Equation 3.21 is always zero so Equation 3.15 is guaran-

teed to be satisfied. By rewriting the polynomial as

a0(z) =

(
1− z

H

)2(
α0 + β0z

)
(3.22)

Equation 3.14 will be satisfied as well.
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3.3.2 Finding an(z) and bn(z)

Equation 3.19 has solutions

an(z) = (An +Bnz)e
knz + (Cn +Dnz)e

−knz.

However, the positive exponential terms go to infinity for large z which means that

the coefficients of these terms must be zero to satisfy the boundary conditions at

H . Therefore, the solution becomes

an(z) = (αn + βnz)e
−knz (3.23)

and, similarly

bn(z) = (γn + δnz)e
−knz. (3.24)

3.3.3 Solution for ψ(x, z)

One solution for the perturbation stream function which satisfies the boundary

conditions at H is thus given by

ψ(x, z) =

(
1− z

H

)2(
α0+β0z

)
+
∞∑

n=1

e−knz

(
(αn+βnz) cos(knx)+(γn+δnz) sin(knx)

)
.

(3.25)

This is the limit of analytical solutions. To proceed with finding the coefficients,

and it is now necessary to obtain a numerical solution to Equations 3.16 and 3.17.

This will be the topic of Chapter 4



Chapter 4

Numerical Solution and Results for Periodic Grooves

Going from the equations arrived at analytically to a numerical solution re-

quires some revisions to the equations, which can then be solved numerically. The

results can then be studied. This chapter will explain how I modify and solve the

equations and the results obtained.

4.1 Numerical Solution

With the expression for ψ determined up to the constants α and β, and two bound-

ary conditions still remaining unused, the obvious next step is to solve for α and

β using these boundary conditions. The infinite sum must be truncated to N

modes—more modes will increase accuracy—but since there is an e−n term, higher

order modes will contribute little to the sum. The truncated sum can then be sub-

stituted into Equations 3.16 and 3.17 which will be solved simultaneously at M

points along h(x). There are two equations to apply at each of the M points and

there are 2N + 2 unknowns, so M = N + 1 points will completely determine the

system. Figure 4.1 shows the M points, equally spaced along the x-axis ranging

from x0 = 0 to xM = L − (M/L), as xi, for i = 0, 1, 2, . . . ,M − 1 and located at

< xi, h(xi) >. At each of these points, apply the boundary conditions on ψz and ψx.

The result is a system of 2M equations in 2M unknowns, which can be solved by a

packaged linear equation solver.
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Figure 4.1: Points to apply the boundary conditions at.

4.1.1 Mass Flux Due to α0 and β0

There is one additional boundary condition that is imposed: the polynomial terms—

the modes α0 and β0—must not carry any mass down the pipe. This condition can

be satisfied by requiring that there is no mass flux due to these modes at x = 0.

Mathematically speaking,∫ H

h0

(
1− z

H

)(
α0 + β0z

)
dz = 0.

Doing this integral gives

α0 +
H + 3h0

4
β0 = 0. (4.1)

This equation will replace the ψx condition at x = 0 in the system of equations to

be solved.

4.2 Numerically Motivated Revision of the Equations

Before beginning a discussion of the numerical solution I am going to rewrite the

equations of motion in a form that proved more amenable to numerical solution.
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First, I can drop the γn and δn terms since the remaining terms also solve the differ-

ential equation. I can also redefine the constants αn and βn such that the expression

for ψ is

ψ(x, z) =

(
1− z

H

)2(
α0 + β0z

)
+

∞∑
n=1

e−knz cos(knx)

(
αn(1 + knz) + βn

)
(4.2)

the expression for ψ which I will proceed to solve numerically for α and β.

For this expression, the velocity components are

ũ(x, z) = ψz(x, z)

= − 2

H

(
1− z

H

)
α0 +

(
1− 3z

H

)(
1− z

H

)
β0

+
N∑

n=1

e−knz cos(knx)

(
− k2

nzαn + (1− knz)βn

)
(4.3)

w̃(x, z) = −ψx(x, z)

=
N∑

n=1

−kne
−knz sin(knx)

(
αn(1 + knz) + βnz

)
. (4.4)

(4.5)

These expressions will now be substituted into the boundary conditions to proceed

towards numerical solution of α and β.

4.2.1 Revised Boundary Conditions

However, it also proved necessary to alter the boundary conditions by integrating

them against cos(knx) so that the two boundary conditions which will be solved

numerically at each of several points along the boundary are:

2

L

∫ L

x=0

ũ(x, h(x)) cos(knx)dx =
2

L

∫ L

x=0

−Uh(x)
H

dx

2

L

∫ L

x=0

w̃(x, h(x)) cos(knx)dx =
2

L

∫ L

x=0

0dx
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or, performing the integrals on the right hand side,

2

L

∫ L

x=0

ũ(x, h(x)) cos(knx)dx =


−2Uh0

LH
n = 0

−−Uε
H

n = 1

0 n 6= 0, 1

(4.6)

2

L

∫ L

x=0

w̃(x, h(x)) cos(knx)dx = 0. (4.7)

Substituting Equations 4.3 and 4.4 into Equations 4.6 and 4.7 shows the obvious

benefit of this strategy: because cos terms are orthogonal, the integrals eliminate

all but one term of the sums. The equations are now:

− 4

L

∫ L

x=0

(
1− h(x)

H

)
α0 cos(knx)dx+

2

L

∫ L

x=0

(
1− h(x)

H

)(
1− 3h(x)

H

)
β0 cos(knx)dx

+
2

L

N∑
m=1

∫ L

x=0

cos(knx) cos(kmx)e
−kmh(x)

(
− k2

nh(x)αm + (1− kmh(x))βm

)
dx

=


−2Uh0

LH
n = 0

−−Uε
H

n = 1

0 n 6= 0, 1

(4.8)

− 2

L

N∑
m=1

∫ L

x=0

cos(knx) sin(kmx)e
−kmh(x)

(
αn(1 + knh(x)) + βnh(x)

)
dx = 0. (4.9)

Each value of n gives two equations so n = 0..N gives 2N + 2 = M equations

to solve for the 2N + 2 unknowns. Each of the integrals is performed numerically

with p intervals between xi and xi+1—see Figure 4.2 where the xi are as originally

shown in Figure 4.1.

There still should not be mass flux due to the polynomial terms, so a modified

version of Equation 4.1 still holds. This equation is now imposed in place of the

n = 0 version of Equation 4.9 and is altered to read

α0 = 0. (4.10)

Together, N + 1 versions of Equation 4.8, N versions of Equation 4.9 and Equa-

tion 4.10 form the complete system of equations to solve. I wrote a Matlab program
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Figure 4.2: The points numerically integrated over.

to setup and solve these equations, and, using the solutions, calculate and plot the

velocities and stream function. Section 5.4 describes the program and important

portions of the code are listed in Appendix B.

4.3 Flow Over a Periodic Boundary - Results

To start with, it is necessary to select values for U , L, H and other constants. For

a variety of reasons, L = 2π was convenient. To keep the pipe dimensions at a

uniform scale, I set H = 2π as well. Finally, a slope of 1 for the velocity shear

seemed reasonable, so I used U = 2π. These are all dimensionless parameters

which can then be converted to a reasonable units system to compare with the

results of an experimental setup. Furthermore, I used h0 = 0. Keeping these fixed, I

varied the size of the perturbation, with the following effects on the velocity fields.

4.3.1 Small Perturbations

Using ε = .01 =⇒ h = .01 cos(2πx/L)—a fairly small perturbation—the horizontal

velocity is almost entirely dominated by the linear shear which would be present

in the absence of the grooves, as can be seen in Figure 4.3. The vertical velocity w

clearly shows the perturbation in Figure 4.4, with fluid moving upwards in some

areas and downwards in others. Before proceeding further, a bit of explanation of

these surface plots is in order: the horizontal axes represent the x, z coordinates
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within the pipe, the vertical axis and the shading show the value of the velocity

(or stream function). Reds are the largest values on the surface, blues, the lowest

values. For most plots, contours are also shown below the surface.

Figure 4.3: Horizontal velocity u for ε = .01.
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Figure 4.4: Vertical velocity w for ε = .01.
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A more abstract view of the flow is the stream function. The perturbation

stream function ψ is plotted in Figure 4.5.

Figure 4.5: Perturbation stream function ψ for ε = .01.

4.3.2 Larger Perturbations

Moving to ε = .1 gives only a slightly more interesting result. The vertical velocity

looks much the same but with larger magnitude (more on that later), and the hor-

izontal velocity does seem a bit altered. Figures 4.6 and 4.7 illustrate. Looking at

the perturbation stream function again, it also changes little qualitatively, but the

magnitude increases. I didn’t include another figure because the differences are

slight.
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Figure 4.6: Horizontal velocity u for ε = .10.

Figure 4.7: Vertical velocity w for ε = .10.
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4.3.3 Numerical Breakdown

At this point, it seems that larger values of ε would give especially interesting flow

with lots of recriculation. Unfortunately, the numerical solution of the system of

equations begins to break down and becomes unstable, especially along the peri-

odic boundary. Wild oscillations along this boundary quickly dominate the actual

velocity values away from the boundary. For instance, with ε = .9, the z-velocity is

shown in Figure 4.8. This clearly shows wild oscillations where the velocity should

be constant at 0 along this edge.

Figure 4.8: Vertical velocity w for ε = .9, showing the numerical instability along the edge.

These wild oscillations combined with the apparently correct results at low val-

ues of the perturbation magnitude suggest some form of numerical instability. In-

deed a great deal of time and energy were invested in trying to remove the instabil-

ity. Some progress was made (mostly as a result of the work detailed in Section 4.2),

and successful solution of the problem for moderate perturbations was achieved.

At the largest, ε ≈ .5 gave stable results with L = 2π, so the magnitude of the per-

turbation was about 1/6 the period. Section 4.5 further analyzes how the numerics
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failed. These results have significant recirculation as shown above and analyzed

below.

4.4 Analysis of the Flow Over Periodic Ridges

With the calculated values for the velocity, at least in the limit of small ridges, an

understanding of the effect ridge size has on the flow is in order. This section will

mainly look at the vertical velocityw and the perturbation stream function ψ which

are the most clearly affected by the changes in ε since u tends to be dominated by

the linear shear.

4.4.1 Maximum Vertical Velocity

As noted previously, the location of the maximum vertical velocity increases in

magnitude and moves farther from the pipe bottom as ε increases. To study this, I

looked at the maximum vertical velocity for ε = .01, .02, . . . , .20. Figure 4.9 shows

the dependence of the maximum vertical velocity as a function of ε, for ε =.01–.20.

There is clearly a linear relationship, which turns out to be max(w) = .3605ε+9.5×

10−5.

The location of the maximum vertical velocity also moves as ε increases. Specif-

ically, the maximum (and minimum) move vertically away from the boundary re-

maining centered over the minima (maxima) of the ridge. The vertical movement

is also linearly dependent upon ε according to z(max(w)) = 1.0259 + .0626ε. The

data are shown in Figure 4.10.

4.5 Analyzing the Numerical Breakdown

The results of the numerical solution are the coefficients α and β of the stream

function ψ. Analyzing the individual coefficients (or modes) provides insight into

how the solution fails as ε increases. A reasonable solution should have modes of
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Figure 4.9: Maximum vertical velocity max(w) as a function of ε.

Figure 4.10: z coordinate of max(w) as a function of ε.

decreasing magnitude as n increases. The exception is that the n = 0 and n = 1

modes may be smaller than the n = 2 mode. For values of ε that give a correct

solution, this is the behavior observed. When ε is too large, this is not the case
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Figure 4.11: The stream function modes β0, β1 and β7 as a function of ε, the groove height.

however. Figure 4.11 shows β0, β1 and β7 as a function of ε. At low values of

epsilon, β0 and β1 are indeed much larger (in magnitude) than β7. Around ε = .4,

β7 begins to grow rapidly and quickly overwhelms β0 and β1

A different way to look at the result is to look at all the modes for a given

value of ε. Figure 4.12 presents α’s for ε = .01, .3 and 1.0. At ε = .01, the n = 1

mode dominates, as expected. With the larger perturbation, there should be some

increase in the higher modes, as seen for ε = .3. Once ε = 1.0 however, there is a

serious breakdown and the modes increase all the way out to n = 5.
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Figure 4.12: Stream function modes α for ε = .01, .3 and 1.0.



Chapter 5

Numerical Methods

This chapter is devoted to explaining the numerical methods and computer

programs used in the research described in the previous chapters. The details of the

split-step Monte Carlo method to simulate mixing, velocity field approximation by

interpolation and the solution of the periodic boundary velocity are described.

5.1 Particle Method

To simulate mixing, I am using a particle method—a method that releases a lot of

particles (about a million) in the velocity field and tracks their progress through

the pipe being studied. The particles move according to the advection-diffusion

equation as discussed in Section 2.2.

To simulate the simultaneous processes of advection and diffusion, separate ad-

vection and diffusion so that each time step for each particle consists of three sub-

steps, which combine the advection and diffusion that would physically take place

all at once. This division of labor presents an alternative more traditional grid-

based simulations of fluid and the associated complexities in developing the sim-

ulation. The method has been used by a number of researchers, notably Ghoniem

and Sherman [5]. This section describes how one particle moves for one time step,

of length ∆t, which is presumably a short time. Section 5.2 describes how it is

applied to many particles for many time steps each. The method works as follows:

1. Take a random walk whose length is a Gaussian random variable in a random

direction for one half time step to simulate diffusion.
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2. Move with the velocity field from for one time step to simulate advection.

3. Take another random walk, again for one half time step.

Together, these steps simulate the advection diffusion equation, (2.3). A graphical

illustration of the split step method is shown in Figure 5.1 which is modified from

Marco Latini’s thesis [8]. Lingevitch and Bernoff [9] show that the error of the

method scales as the square of the time step (error ∝ ∆t2).

Figure 5.1: Graphical explanation of the split-step Monte Carlo method.

5.2 Mixing Code

To simulate mixing, I wrote a program which implements the particle method de-

scribed in Section 5.1. The basic outline of the program is as follows:

1. Read an input file to determine the number of particles, velocity, diffusion

constant and other parameters.

2. Start one particle at a random location in the x = 0 plane, in one half of the

pipe.

3. Repeatedly apply the split-step Monte Carlo method described in Section 5.1

until the particle has moved sufficiently far downstream (as determined in

Step 1). Keep track of the particle’s trajectory through the pipe.
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4. Figure out where that particle has crossed each of several cross-sections and

store this data. Discard the trajectory data as it is no longer needed and re-

quires an immense amount of disk space to save.

5. Repeat Steps 2–4 for many particles (how many is determined in Step 1).

The output of the program is data for a series of cross-sections. At each cross-

section, the number of particles passing through a given point on a grid is recorded.

Particles passing between points are weighted accordingly. The number of parti-

cles passing through a given point is proprotional to the concentration at that point.

Thus, a contour plot showing the concentration at any desired cross-section can be

created. This is how Figures 2.3, 2.4 and 2.5 were created. Additionally, it is easy

to track how rapidly the concentration of fluid starting in the left half of the pipe

moves to the right. Now this data can be analyzed as in Section 2.3.

5.3 Velocity Interpolation

Even in the “simple” square pipe the velocity field is very complex—an infinite

expansion. This takes a long time to compute, even to compute just a few terms.

Calculating the exact velocity every step for every particle takes up a significant

amount of the program run time. One obvious potential speed-up is to tabulate

velocity values in advance and interpolate to find the velocity at a given point.

Specifically, calculate the velocity field at a grid of regularly spaced points before

beginning the mixing simulation. I typically divided the pipe into a 50 × 50 grid,

but any grid size that gives suitable accuracy could be used.

When the mixing program performs the advection step and requests the ve-

locity at a given point < x, y, z >, which is presumably not on the grid, bilinear

interpolation is used to find an approximate value for the velocity. Bilinear interpo-

lation is the combination of linear interpolation in two variables. This explanation
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Figure 5.2: Graphical explanation of bilinear interpolation.

assumes that the velocity field is only two dimensional—the rectangular pipe for

example—though it is easy to go from two to three dimensions. Bilinear interpola-

tion is illustrated in Figure 5.2 and defined in (5.1).

f(x, y) = (1− α)(1− β)f(xj, yk) + (1− α)βf(xj, yk+1)

+ α(1− β)f(xj+1, yk) + αβf(xj+1, yk+1) (5.1)

where

α =
x− xj

xj+1 − xj

and β =
y − yk

yk+1 − yk

.

This has the desired effect of emphasizing the nearby values and de-emphasizing

the points of the grid square which are farther away.

I compared the results of exact calculation of the velocity to the results of bi-

linear interpolation and found them to be consistent, allowing for the randomness

inherent in this method. To quantify this, I plotted fraction of the fluid mixed ver-

sus distance downstream. The results for exact calculation and interpolation are

shown in Figure 5.3. It is fairly obvious that the differences are random, and the
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Figure 5.3: Fraction of fluid mixed due to diffusive broadening in a rectangular pipe as a function
of distance downstream. Note the two lines, one each for interpolation and exact calculation, give
essentially the same results.

magnitudes of the differences are small for the number of particles counted so the

interpolation is valid.

5.4 Solution of Flow over Grooves

The development of the equations to be solved in Chapter 3 along with various nu-

merically motivated revisions of Section 4.2 provide a completely determined lin-

ear system which can be solved numerically. To solve the system, I used Matlab’s

built-in linear equation solver. The code to solve this problem requires extensive

setup to ensure that the large system of equations is correctly constructed. The sys-

tem is then solved and the returned results are ready to be used to calculate the ve-

locity components or the stream function. The Matlab function coeff=calculate_coeffs()

which is included in Appendix B.1 sets up the equations and solves them.
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The surface plots of the velocity components and stream function are generated

by calculating the coefficients and using those coefficients to calculate the relevant

velocity component at a regular grid of points in the x−z plane. This calculation is

performed by a series of functions such as pert_str=calc_perturbation_str()

which is in Section B.2.



Appendix A

Mixing Code

There are about 2000 lines of code for the mixing program, so I have only in-

cluded a small fraction of the program here. The code is written in C++ in a heavily

object-oriented manner and compiled using g++ 3.1. Note that I took out most of

the declarations, #include ’s and other code that doesn’t add to understanding, so

don’t be too surprised if something just shows up in the code. The main function

for the basic mixing program follows.

// Function declarations:

// Reads the command line input to find the conditions

Pipe* readIn( int argc, char* argv[] );

// Save the contours to file.

void saveContours( Pipe* thePipe );

// Save the data and quit upon reciept of signal TERM.

void termHandler( int signalNumber );

// Global data:

// Pipe to work in - global to allow signal handler

// to recover data before exiting.

Pipe* thePipe;
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// Main function for mixing program. Read the input,

// setup the pipe, send a bunch of particles through

// the pipe, and save the resulting contours. Most

// of the heavy lifting, including the advection and

// diffusion, is done in the Pipe class.

int main( int argc, char* argv[] ) {

// Allow interupts without losing data.

signal( SIGTERM, termHandler );

// Read the input into a usable form and use it

// to create the pipe.

thePipe = readIn( argc, argv );

// Move the numParts particles through the pipe,

// saving data as we go.

unsigned long i = 0;

for( i = 0; i < numParts; ++i ) {

// Make a new particle.

Particle* part = thePipe->generateParticle();

// Send that particle through the pipe

thePipe->moveThroughPipe( *part );

// Calculate the contour data for that

// particle’s trajectory.

thePipe->updateContours( *part );
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// Save the contours to disk every so often.

// Note that this time consuming but if not

// done risks losing data to a mid-run crash.

if( i % saveAfter == 0 && i != 0 ) {

saveContours( thePipe );

}

// Get rid of the particle data that

// is no longer needed.

delete part;

}

// Save the contours one last time.

saveContours( thePipe );

delete thePipe;

return 0;

}
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Periodic Boundary Solution Code

This appendix contains select portions of the source code used to calculate the

coefficients of the perturbation stream function over periodic grooves. The code

was written in Matlab 6.5 and is also compatible with GNU Octave 2.1.40.

B.1 Calculate the Coefficients of the Stream Function

Function to calculate the coefficients of the perturbation stream function and ve-

locity components.

function [coeff,error] = \

calculate_coeffs( x, h, h0, eps, N, H, U, L );

% [ coeff, error ] = calculate_coeffs( x, h, N, H, U, L ) -

% solve for the coefficients of the perturbation stream

% function for a pipe with a periodic bottom boundary

% specified at h( x ) = h0 + eps * cos( 2 pi x / L )

% where h0, eps > 0. x is a vector of x-values to solve

% at, h is a vector of the values h( x ) at these x’s

% over a period L. The total height of the pipe is H

% and the velocity at H is U. N is the number of terms

% in the expansion, and x is assumed to have length p * N.

% The return value is a 2 x N + 1 matrix of coefficients,

% with rows alpha and beta; columns 0 to N corresponding
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% to the subscript.

% Number of points to do integrals at

pN = length( x );

% Integral step

dx = x( 2 ) - x( 1 );

% x_m varies with column of xmat...col i => x_i, i = 1..pN

xmat = ones( N, 1 ) * x;

% k_n, which varies with row of k...row n => k_n, n=1..N

k = ( ( 2 * pi / L ) * (1:N) )’ * ones( 1, pN );

% z_m, which varies with column of z...col i => z_i = h(x_i).

z = ones( N, 1 ) * h;

% precalculate some parts of the coefficients...note that k

% varies by row, x and z=h(x) vary by column.

kx = xmat .* k;

coskx = cos( kx );

sinkx = sin( kx );

% Setup the matrix A, the coefficients of alpha and beta in

% the linear system to solve.

A = zeros( 2 * N + 2, 2 * N + 2 );

% Setup the "solutions" vector so that we are solving
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% A * coeff = b.

b = zeros( 2 * N + 2, 1 );

%

% Boundary condition that there is no mass flux due

% to the alpha_0 and beta_0 terms at x = 0.

%

A( 1, 1 ) = 1; % alpha_0

A( 1, N + 2 ) = 0; % beta_0

b( 1 ) = 0;

%

% (2/L) int( Psi_x * cos( k x ) ) = 0

%

for m = 1:N

km = k( m, 1 );

integrand = -km * sinkx .* sin( km * xmat ) \

.* exp( -km * z );

% alpha_m

A( 2:(N+1), m + 1 ) = (2/L) * \

integral( integrand .* ( 1 + km * z ), dx );

% beta_m

A( 2:(N+1), m + N + 2 ) = (2/L) * \

integral( integrand .* z, dx );

end

b( 2:(N+1) ) = 0;
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%

% (2/L) int( Psi_z cos( k x ), x=0..L ) =

% -(2/L) int( U h(x) /H cos( k x ), % x=0..L )

%

% alpha_0, n = 0

A( N + 2, 1 ) = -(4/(H*L)) * integral( 1 - h / H, dx );

% beta_0, n = 0

A( N + 2, N + 2 ) = (2/L) * \

integral( 1 - ( 4 * h / H ) + ( 3 * h .ˆ 2 / H ), dx);

% alpha_0

A( (N+3):(2*N+2), 1 ) = -(4/(H*L)) * \

integral( (-z/H) .* coskx, dx );

% beta_0

integrand = coskx .* \

( 1 - ( 4 * z / H ) + ( 3 * z .ˆ2 / Hˆ2 ) );

A( (N+3):(2*N+2), N + 2 ) = (2/L) * \

integral( integrand, dx );

for m = 1:N

km = k( m, 1 );

integrand = coskx .* cos( km * xmat ) .* exp( -km * z );

intn0 = cos( km * x ) .* exp( -km * h );

% alpha_m, n = 0
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A( N + 2, m + 1 ) = -(2/L) * km ˆ 2 * \

integral( intn0 .* h, dx );

% beta_m, n = 0

A( N + 2, m + N + 2 ) = (2/L) * \

integral( intn0 .* ( 1 - km * h ), dx );

% alpha_m

A( (N+3):(2*N+2), m + 1 ) = -(2/L) * km ˆ 2 * \

integral( integrand .* z, dx);

% beta_m

integrand_beta = integrand .* ( 1 - km * z );

A( (N+3):(2*N+2), m + N + 2 ) = (2/L) * \

integral( integrand_beta, dx );

end

% n = 0

b( N + 2 ) = -2 * U * h0 / ( L * H );

% n = 1

b( N + 3 ) = -U * eps / H;

% n > 1

b( (N+4):(2*N+2) ) = 0;

%

% Solve the system and translate into a

% more readable form.

%
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coe = A \ b;

error = A * coe - b;

coeff = zeros( 2, N + 1 );

coeff( 1, : ) = coe( 1:(N+1) )’; % alphas

coeff( 2, : ) = coe( (N+2):(2*N+2) )’; % betas

%

% Independently reconstruct psi_x on boundary z = h(x)

%

alpha = coeff( 1, 2:(N+1) )’;

beta = coeff( 2, 2:(N+1) )’;

kn = k( :, 1 );

psi_x = zeros( 1, pN );

psi_xsinkx = zeros( 1, pN );

km = kn( 1 );

% Double check that the integral of psi_x = 0 along

% the boundary. Should be 0 to machine precision.

% Note that a zero value does _not_ guarantee a

% constant edge (it should be constant), but it does

% prove that the bc has been satisfied and give some

% idea of the rounding error associated with the

% integration.

for i = 1:pN

xi = x( i );

zi = h( i );

psi_x( i ) = sum( -kn .* exp( -kn * zi ) .* sin( kn * xi ) .* \

( alpha .* ( 1 + kn * zi ) + beta .* zi ) );
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psi_xsinkx( i ) = psi_x( i ) * sin( km * xi );

end

int_psi_x = (2/L) * integral( psi_xsinkx , x(2) - x(1) )

B.2 Calculate the Stream Function

Calculate the perturbation stream function at a grid of points. This differs only in

a few places from the functions to calculate the velocity components.

function pert_str = \

calc_perturbation_str( x, z, A0, B0, A, B, k, U, H )

% pert_str =

% calculate_perturbation_str( x, z, A0, B0, A, B, k, U, H ) -

% Calculate the perturbation stream function at the points x,z

% given coefficients A0, B0, A, B, wavenumbers k and total pipe

% height H. The max speed U isn’t needed here and is ignored.

% Number of points

M = max( size( x ) );

% Matrix to hold the solutions.

pert_str = zeros( M, M );

% Calculate the z polynomial terms first:

pert_str = ( 1 - ( z / H ) ) .ˆ 2 .* ( A0 + B0 * z );

% Calculate the sum at each x,z pair.
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for i = 1:M

for j = 1:M

xij = x( i, j );

zij = z( i, j );

% a few precalculations:

coskx = cos( k * xij );

expkz = exp( -k * zij );

abz = A .* ( 1 + k * zij ) + B * zij;

% First, find a vector of each term of the sum

stemp = expkz .* abz .* coskx;

% Then add the sum to get the velocity

pert_str( i, j ) = pert_str( i, j ) + sum( stemp );

end

end
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