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GENERALIZED CONNECTORS*

NICHOLAS PIPPENGER

Abstract. An n-connector is an acyclic directed graph having n inputs and n outputs and satisfying
the following condition: given any one-to-one correspondence between inputs and distinct outputs, there
exists a set of vertex-disjoint paths that join each input to the corresponding output. It is known that the
minimum possible number of edges in an n-connector lies between lower and upper bounds that are

asymptotic to 3n log3 n and 6n log3 n respectively. A generalized n-connector satisfies the following
stronger condition: given any one-to-many correspondence between inputs and disjoint sets of outputs,
there exists a set of vertex-disjoint trees that join each input to the corresponding set of outputs. It is shown
that the minimum number of edges in a generalized n-connector is asymptotic to the minimum number in an
n-connector.

Imagine an information transmission network intended to mediate between n
sources of information and n users of this information. At any time, any of the users
may wish to be connected with any of the sources; a user can be connected with only
one source at a time, but many users may wish to be connected with the same source.
This paper deals with an idealized version of the problem of designing a network
capable of providing any such pattern of simultaneous connections.

An (n, m)-graph is an acyclic directed graph with a set of n distinguished vertices
called inputs and a disjoint set of m distinguished vertices called outputs. An n-graph
is an (n, n)-graph.

An n-connector is an n-graph satisfying the following condition: given any one-
to-one correspondence between inputs and distinct outputs, there exists a set of
vertex-disjoint paths that join each input to the corresponding output. (A path joining
an input to an output is a directed path whose origin is the input and whose destination
is the output.) Let c(n) denote the minimum possible number of edges in an n-
connector; it is known that

3n log3 n c(n)<= 6n log3 n + O(n)

(see Pippenger and Valiant [4, Remark 2.2.6]).
A generalized n-connector is an n-graph satisfying the following stronger condi-

tion: given any one-to-many correspondence between inputs and disjoint sets of
outputs, there exists a set of vertex-disjoint trees that join each input to the cor-
responding set of outputs. (A tree joining an input to a set of outputs is a directed tree
whose root is the input and whose leaves are the outputs.) Let d(n) denote the
minimum possible number of edges in a generalized n-connector; that

d(n)<= 10n log2 n + O(n)

for n a power of 2 is implicit in the work of Ofman [1]. Thompson [5] has recently
shown that

d(n)<= 12n log3 n + O(n)

for n a power of 3.
The object of this note is to show that

d(n)=c(n)+O(n),
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and thus that

It is clear that

thus it will suffice to show that

d(n)c(n).

d(n)>-c(n);

(1) d(n) c(n)+ O(n).

This will be done by means of a new type of graph which will be called a generalizer.
An n-generalizer is an n-graph that satisfies the following condition: given any
correspondence between inputs and nonnegative integers that sum to at most n, there
exists a set of vertex-disjoint trees that join each input to the corresponding number of
distinct outputs. Let g(n)denote the minimum possible number of edges in an
n-generalizer; it will be shown below that

(2) g(n) <- 120n + O((log n)),
so that in particular

g(n)=O(n).

A generalized n-connector can be obtained from an n-generalizer and an n-connector
by identifying the outputs of the generalizer with the inputs of the connector, as shown
in Fig. 1. it is obvious that this yields a generalized n-connector" the generalizer
provides the appropriate number of copies of each input, and the connector joins
these copies to the appropriate outputs. Thus

d(n)<=c(n)+g(n)

c(n)+O(n),

which completes the proof of (1).

n GENERALIZER n CONNECTOR

INPUTS OUTPUTS

GENERALIZED n- CONNECTOR

INDICATES IDENTIFICATION
OF VERTICES (NOT EDGES)

FIG. 1.
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It remains to prove (2). To do this, two more types of graphs, called concentrators
and superconcentrators, will be needed.

An n-superconcentrator is an n-graph that satisfies the following condition" given
any set of inputs and any equinumerous set of outputs, there exists a set of vertex-
disjoint paths that join the given inputs in a one-to-one fashion to the given outputs.
Let s(n)denote the minimum possible number of edges in an n-superconcentrator;
that

s(n)<=234n

was shown by Valiant [6], who first defined superconcentrators. Pippenger [3]
subsequently showed that

s(n)<= 39n + O(log n).

An (n, m)-concentrator is an (n, m)-graph that satisfies the following condition:
given any set of m or fewer inputs, there exists a set of vertex-disjoint paths that join
the given inputs in a one-to-one fashion to distinct outputs. Let r(n, m) denote the
minimum possible number of edges in an (n, m)-concentrator; that

r(n, m) <= 29n
was shown by Pinsker [2], who first defined concentrators. It will now be shown that

(3) r(n, [n/2J )=< 20n + O(log n),

where [.. denotes "the greatest integer less than or equal to ...".
A (n, [n/21)-concentrator can be obtained by combining [n/2J edges with an

[n/2]-superconcentrator (where [... denotes "the least integer greater than or
equal to ..."), as shown in Fig. 2. It is obvious that this yields an (n, [n/2J)-

Ln/2J

INPUTS

n
INPUTS

Ln/2 J EDGES

OUTPUTS

rn/21

INPUTS
ONE OUTPUT NOT USED
IF n ODD

r n/21 SUPERCONCENTRATOR

n, L n /2 J CONCENTRATOR

C

INDICATES EDGES

INDICATES IDENTIFICATION
OF VERTICES (NOT EDGES)

FIG. 2.
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concentrator" those of the given inputs that lie among the upper [n/2J inputs can be
joined to distinct outputs through the edges; those that lie among the lower In/2] can
be joined to other distinct outputs through the superconcentrator. Thus

r(n, [n/2])-< [n/2J +s([n/2])
_-< tn/2J + 39 In/2] + O(log In/21),

=< 20n + O(log n),

which completes the proof of (3).
It still remains to prove (2). This will be done by means of a recursive con-

struction: an n-generalizer can be obtained by combining an (n, Ln/2J )-concentrator,
an/n/2J-generalizer, 2 Ln/2J edges, and an n-superconcentrator, as shown in Fig. 3.
This can be seen to yield an n-generalizer as follows. If an input is to be joined to x

2 Ln/2 J EDGES

(n,Ln/2J) CONCENTRATOR Ln/2 J- GENERALIZER

INPUTS

n- SUPERCONCENTRATOR

n
OUTPUTS

n GENERALIZER

INDICATES EDGES
, INDICATES IDENTIFICATION

OF VERTICES (NOT EDGES)
FIG. 3.
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distinct outputs, one can write x 2y + z, where y is a nonnegative integer and z is
either 0 or 1. Since the x’s sum to at most n, there can be at most [n/2] inputs for
which y is greater than 0. Each of these inputs can therefore be joined to a distinct
output of the concentrator, thence to y distinct outputs of the [n/2]-generalizer, and
finally to 2y distinct outputs of the n-generalizer. All that. remains is to join the inputs
for which z is 1 to other distinct outputs; this can be done through the superconcen-
trator. Thus

g(n)<=g([n/ZJ)+r(n, [n/Z])+2[n/2] +s(n)
<-- g([n/2J )+ 20n + O(log n)+ 2 [n/2J + 39n + O(log n)

<= g([n/21 )+60n + O(log n)

=< 120n + O((log n)2),
which completes the proof of (2).

The result of this note is satisfying from a theoretical point of view" information-
theoretic considerations suggest that since

log n log n!+ O(n)

one should have

d(n)=c(n)+O(n),

as has indeed been shown to be the case. The proof technique used in this note,
however, does not endow the result with any practical significance: 120n exceeds
6n log3 n until n exceeds 32o= 3,486,784,401.

Acknowledgment. The author is indebted to Clark Thompson for suggesting the
possibility of proving the existence of linear generalizers.
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