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Abstract

Modeling moving droplets:

A precursor film approach

by Benjamin P. Bryant

May 2003

We investigate the behavior of moving droplets and rivulets, driven by a com-

bination of gravity and surface shear (wind). The problem is motivated by a desire

to model the behavior of raindrops on aircraft wings. We begin with the Stokes

equations and use the approximations of lubrication theory to derive the specific

thin film equation relevant to our situation. This fourth-order partial differential

equation describing the height of the fluid is then solved numerically from vary-

ing initial conditions, using a fully implicit discretization for time stepping, and

a precursor film to avoid singularities at the drop contact line. Results describing

general features of droplet deformation, limited parameter studies, and the appli-

cability of our implementation to the long-term goal of modeling wings in rain are

discussed.
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Chapter 1

Introduction

The behavior of thin films, droplets and rivulets is of interest in many appli-

cations. These include such diverse areas as coating flows used in the creation of

microchips and other electronic devices, sintering in metallurgy, spray coating pro-

cesses, heat exchange, and oil recovery [15, 4]. We are motivated by the problem

of water flowing on an aircraft wing or other possibly inclined surfaces sheared

by wind. In this problem, droplets accumulate on the surface as a result of rain

impacting the wing. They are then sheared by the wind and coalesce into a span-

wise film, which is convected back along the wing, and eventually breaks up into

rivulets, which are driven farther back off the wing or break up into larger drops,

which in turn run off the wing’s trailing edge. The presence of this phenomenon

on the wing surface has generally undesirable effects on wing performance, in that

it tends to decrease lift and increase drag under most flight conditions [2, 13, 12].

Thompson found in wind tunnel tests that performance degradation correlates

with increasing contact angle (and therefore decreasing surface wettability), pre-

sumably due to the flatter profile presented by wetting films [14]. He also found

that wetting surfaces gave rise to longer convecting regions, but that for a given

contact angle, a longer film convection region more negatively affected perfor-

mance than a short region. This implies that an optimal method for alleviating

degradation in flight performance is to use a wettable surface, but take steps to

minimize the length of the film convection region, perhaps by controlling the ac-
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tion of the droplets prior to their coalescing into a film.

This leads to the need for modeling the motion of a droplet subjected to surface

shear from the surrounding gas while experiencing a body force due to gravity,

which is the primary aim of this thesis. In the remainder of chapter 1, we will dis-

cuss previous efforts related to this problem and briefly describe our approach. In

chapter 2 we derive the relevant equations to describe the situation we are model-

ing. Chapter 3 outlines the numerical methods used to implement our model. In

chapter 4 we discuss results, before concluding in chapter 5 with a summary and

suggestions for future work.

1.1 Previous work

Drops and rivulets have previously been modeled in many different situations, us-

ing many different techniques. Most relevant to our aim is the work of Durbin

[5], who developed a model describing the shape of a drop being sheared by a

high-Reynolds number stream. However, he solves this using only a pressure dis-

tribution, ignoring shear by assuming the droplet is of equal or greater thickness

than the boundary layer. In the less aeronautical regime, Wilson et al [15] analyt-

ically examined a non-Newtonian fluid driven by gravity or shear stress using a

contact line model and certain lubrication approximations. They obtained similar-

ity solutions for two-dimensional steady profiles in the transverse direction, in the

limits of strong and weak surface tension.

Moriarty and Schwartz [9] developed a precursor film model of a droplet run-

ning down an inclined surface that they modified to account for shear effects as

well. Their model uses the method of matched asymptotic expansions, account-

ing for surface tension only at the critical area near the front of the advancing

drop, where curvatures are highest. They then match this with a simpler model

for the flatter, receding face of the drop. A larger issue with their model is that
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their equations describe height as a function of time and one spatial dimension

only, and therefore are in reality modeling ridges of fluids and not drops. (For fu-

ture reference, this sort of modeling is referred to as one-dimensional. It should

be noted that, because the independent variables in the model are used to track

a height, one-dimensional modeling produces two-dimensional drops, and two-

dimensional modeling results in three-dimensional drops.)

Li and Pozrikidis [8] modeled a droplet adhering to a surface surrounded by

Stokes flow. While an interesting problem, this is quite distinct from our aims, be-

cause they modeled two immiscible fluids of equivalent viscosity, as opposed to a

liquid-gas interface. Also, their model uses a pinned contact line, and therefore it is

impossible for the drop to move. Schleizer and Bonnecaze [11] used a boundary-

integral method to study a drop between two plates subject to pressure or shear

stress. Their model is also one-dimensional, and explicitly tracks a moving contact

line. It is not, therefore, what we are seeking to do, but will prove useful in mak-

ing comparisons after our model is developed. Lastly, Dimitrakopoulos and Hig-

don [4] studied the conditions required for the displacement of a two-dimensional

droplet from a surface, using a contact line model.

Our aim is to track the height of a shearing droplet as a function of time and

two spatial dimensions, and it appears this has so far not been done.

1.2 Our methods

Our approach to the problem is to restrict our attention to very wetting drops,

and utilize the simplifications of lubrication theory. Thus we assume our drops are

governed by the well-studied thin film equation. For our situation it takes the form

ht = ∇ ·

[

h3

3
∇

(

Gh − S∇2h
)

]

+
(

Γh3 + Ch2
)

x
, (1.1)

where h is the height of the fluid and each term represents a contribution from

different forces, which are detailed in the derivation found in chapter 2. The above
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equation is a specific example of the more general class of thin film equations,

which have been modeled fairly extensively in the context of lubrication theory,

where it is usually presented in it’s one dimensional form [10, 6]. We plan to,

among other things, test it’s applicability to droplet modeling.

The primary goal of our research is to successfully simulate droplet deforma-

tion under both gravity and surface shear stresses, describing height as a function

of time and two spatial dimensions. This will be accomplished by numerically

solving the applicable thin film PDE, using a precursor film to account for contact

line singularities. We will also examine the potential of this method of implemen-

tation for larger-scale modeling of droplets on a wing. Numerical details, results

and further goals are discussed in later chapters. First however, we must derive

the equation we plan to model.



Chapter 2

Derivation of Relevant Equations

2.1 Fundamental equations

We begin with the Stokes equations which describe flow at very low Reynolds

numbers, and derive the thin film equation relevant to our situation. The Stokes

equations are the Navier-Stokes equations with the inertial and time-derivative

terms removed, since they are assumed to make a neglible contribution relative to

the terms we consider, which are those describing pressure gradients, shear mo-

tion, and body forces:

∇p = µ∇2
u + F, (2.1)

where the body force F is simply the force due to gravity.

For our purposes, we assume gravity can act in the z and x direction only. This

allows us to model flow on a plane inclined at any angle, with z normal to the

surface of the plane. Taking this into account and expanding the above equation

into separate parts, we have

px = µ(uxx + uyy + uzz) + ρg sin θ (2.2)

py = µ(vxx + vyy + vzz) (2.3)

pz = µ(wxx + wyy + wzz) − ρg cos θ, (2.4)

where u,v and w are the x,y and z components of u respectively, θ is the angle

of inclination below horizontal (that is, positive θ indicates sloping down to the

right), and subscripts denote partial differentiation with respect to the subscripted
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variable. Also, for convenience, the x and z gravity terms ρg sin θ and ρg cos θ will

from hereon be referred to as just M and N , respectively.

In wetting film and droplet applications such as ours, we recognize that the

characteristic height (H) is different (specifically, much much less) than than the

length (L) for variation in x and y. To further simplify the equations, we take

advantage of this relation by examining the relative scales of elements of the ∇2
u

term. We partially nondimensionalize by assigning

x = Lx, y = Ly, z = εLz, t = Tt (2.5)

where ε = H
L

� 1 (this is known as the thin film approximation) and variables

appearing on the right side of the equation are nondimensional.

Substituting these gives:

px =
µ

LT
(uxx + uyy +

1

ε2
uzz) − M (2.6)

py =
µ

LT
(vxx + vyy +

1

ε2
vzz) (2.7)

pz =
µ

LT
(εwxx + εwyy +

1

ε
wzz) − N, (2.8)

From this, we see that among the terms contained in ∇2
u, uzz and vzz are dominant,

since all others are at least O(ε) smaller, and most are smaller still. Retaining these

terms of the original equations leaves us with governing equations of:

px = µuzz + M (2.9)

py = µvzz (2.10)

pz = −N, (2.11)

and also the continuity equation,

ux + vy + wz = 0. (2.12)

The boundary conditions are determined by the specific situation we are trying to

model, which will be discussed below.
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2.2 Thin film equation derivation

We model the effect of wind flowing past by simply imposing a constant shear

stress in the x direction at the free surface, and a zero shear stress in the y direction

at the surface. This is expressed as µuz = C and µvz = 0, at h, the height of the film.

We also must account for pressure differences due to surface curvature. Since we

are utilizing the lubrication approximation, it is valid to assume that the curvature

is small, and thus use ∇2h as the first order approximation to curvature. Thus at

the surface we also have p = −σ∇2h, where σ is the surface tension coefficient,

and the Laplacian is two-dimensional. At the fluid-solid interface, we have the

standard no-slip condition, u = 0. Expressed together, we have:

z = h : µuz = C, µvz = 0, p = −σ∇2h (2.13)

z = 0 : u = 0, (2.14)

Integrating (2.11) with respect to z and satisfying the surface tension boundary

condition, we find

p = −N(z − h) − σ∇2h. (2.15)

We then differentiate with respect to x and equate it with (2.10) giving

µuzz = (Nh − σ∇2h)x − M. (2.16)

Integration with respect to z and satisfaction of boundary conditions gives:

µuz = [−(M + (−Nh + σ(∇2h))x)](z − h) + C (2.17)

Here C is the shear coeffecient, not a constant of integration.

Integrating one more time, we arrive at an expression for u:

u =
1

µ

[

[

−(M + (−Nh + σ(∇2h))x)
]

(
1

2
z2

− hz) + Cz

]

. (2.18)
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A similar process undertaken with respect to y yields a similar equation, less

the surface shear and x component of gravity terms:

v =
−1

µ

[

(Nh − σ(∇2h))y

]

(
1

2
z2

− hz) (2.19)

In order to arrive at an equation describing only the height of the fluid, we

apply conservation of mass to an element of the fluid, as shown below. As ∆x and

Figure 2.1: A volume element

∆y approach zero, the volume of the element can be approximated as h(x, y)∆x∆y.

We now satisfy conservation of mass for an incompressible fluid (2.12), and write

that the time rate of change of volume of the fluid element ( ∂V
∂t

), is simply the

net flux of the fluid crossing the faces of the element. Mathematically, this can be

expressed as

∂V

∂t
= ∆y

∫ h(x−∆x
2

,y)

0

u dz − ∆y

∫ h(x+∆x
2

,y)

0

u dz (2.20)

+∆x

∫ h(x,y−∆y

2
)

0

v dz − ∆x

∫ h(x,y+∆y

2
)

0

v dz (2.21)

Dividing through by ∆x∆y and taking limits, we see that this is equivalent to

∂h

∂t
= −

(∫ h

0

u dz

)

x

−

(∫ h

0

v dz

)

y

(2.22)
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Substituting in our previously derived expressions for u and v and evaluating the

definite integral, we arrive at

ht =
−1

µ

[

[

[

−
(

M + (−Nh + σ∇2h)x

)]

(−
h3

3
) +

C

2
h2

]

x

+

[

[

(Nh − σ∇2h)y

]

(−
h3

3
)

]

y

]

(2.23)

which can be rearranged as

ht =
1

µ

[

∇ ·

[

h3

3
∇(Nh − σ∇2h)

]

+

(

Mh3

3
+

Ch2

2

)

x

]

. (2.24)

This PDE is our equation of interest which describes the height of the fluid as it

evolves in time and space. Here we can see different forces accounted for in the

different terms of the equation. The term containing N represents the vertical com-

ponent of gravity, which is maximum when the the surface is flat, and zero when

it is vertical. The term containing σ is the surface tension term, while the M term

accounts for the horizontal component of gravity, and the C term accounts for sur-

face shear. In the next section we aim to reduce the parameter dependence of the

equation in order to analyze it more easily.

2.3 Nondimensionalization

We seek to facilitate the exploration of the droplet behavior by minimizing the

number of dynamic variables involved, which we achieve through the process of

nondimensionalization. Thus recognizing differing length scales for length in the

x direction and for height in z, we nondimensionalize as follows:

h = Hh̃, l = Ll̃, t = T t̃, (2.25)

where the capital letters are the dimension carrying terms. For notational conve-

nience we drop the tilde, and remember that every variable below is now dimen-

sionless.

ht = ∇ ·

[

h3
∇

(

TNH3

3µL2
h −

TσH3

3µL4
∇

2h

)]

+

(

TMH2

3µL
h3 +

TCH

2µL
h2

)

x

(2.26)
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If, in non-dimensionalizing, we choose to make the time scaling of equal order as

the shear stress term (and thus scale all other terms with respect to that), we have

T ∼
2µL

CH
, and

ht = ∇ ·
[

h3
∇

(

Gh − S∇2h
)]

+
(

Γh3 + h2
)

x
(2.27)

where G the term originates from the z component of gravity, the S term accounts

for surface tension effects, the Γ term accounts for the x-component of gravity,

and the unmodified term is the surface shear term, to which all other terms are

normalized. The form of the remaining scaling terms is

G =
2H2N

2LC
(2.28)

S =
2σH2

3CL3
(2.29)

Γ =
2MH

3C
(2.30)

To further nondimensionalize, we set H =
√

3LC
2N

. This gives

G = 1 (2.31)

S =
σ

L2N
(2.32)

Γ =

√

2LM2

3CN
(2.33)

Finally, setting L =
√

σ
N

, we have

G = 1 (2.34)

S = 1 (2.35)

Γ = (
2

3C
)

1

2 σ
1

4 N
−3

4 M (2.36)

Our final equation is then of the form

ht = ∇ ·
[

h3
∇

(

h −∇
2h

)]

+
(

Γh3 + h2
)

x
(2.37)

We seek to examine the behavior of a droplet subject to this equation under vary-

ing size, shape, and values of Γ. In addition, we will consider the one-dimensional
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form of the equation as well, and compare simulations from one and two dimen-

sions. The one dimensional form is simply

ht =
[

h3(h − hxx)x + Γh3 + h2
]

x
(2.38)

Neither of these equations are analytically tractable, and this requires that we use

a numerical solver. We discuss ours in the next chapter.



Chapter 3

Numerical Methods

Both the one-dimensional and two-dimensional forms of the relevant thin film

equation are clearly difficult to solve which requires numerical techniques. We

discuss our methods below.

3.1 Discretization and iteration techniques

We discretize the 2-d equation using a centered finite difference scheme and a fully

implicit time step. For convenience, we break it into a system of two equations,

making the substitution f = ∇2h. This gives us a system

Hi,j =
hi,j − hn

i,j

∆t
+ Gi,j + Si,j + Γi,j + Ci,j = 0 (3.1)

Fi,j = fi,j −
1

(∆x)2
(hi+1,j − 2hi,j + hi−1,j) (3.2)

−
1

(∆y)2
(hi,j+1 − 2hi,j + hi,j−1) = 0,

where

Gi,j =
G

8(∆x)2

[

(hi+1,j + hi,j)
3(hi+1,j − hi,j) − (hi,j + hi−1,j)

3(hi,j − hi−1,j)
]

(3.3)

+
G

8(∆x)2

[

(hi,j+1 + hi,j)
3(hi,j+1 − hi,j) − (hi,j + hi,j−1)

3(hi,j − hi,j−1)
]

Si,j =
S

8(∆x)2

[

(hi+1,j + hi,j)
3(fi+1,j − fi,j) − (hi,j + hi−1,j)

3(fi,j − fi−1,j)
]

(3.4)

+
S

8(∆x)2

[

(hi,j+1 + hi,j)
3(fi,j+1 − fi,j) − (hi,j + hi,j−1)

3(fi,j − fi,j−1)
]

Γi,j =
Γ

8∆x

[

(hi+1,j + hi,j)
3
− (hi,j + hi−1,j)

3
]

(3.5)

Ci,j =
1

4∆x

[

(hi+1,j + hi,j)
2
− (hi,j + hi−1,j)

2
]

(3.6)
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and subscript denotes the spatial gridpoint. Since this is a fully implicit scheme,

all entries are taken to be at time n + 1 unless explicitly noted in the superscript (as

in hn
i,j).

In a fully implicit discretization of a nonlinear system such as this, we guess

at a solution and Newton iterate until we converge to a solution that satisfies the

system of equations. In order to guarantee convergence (within an appropriate

region), we construct the following linear system:



































H1

F1

H2

F2

...

HN

FN



































+



































dH1

dh1

dH1

df1

dH1

dh2

DH1

df2
. . . . . . . . .

dF1

dh1

dF1

df1

dF1

dh2

DF1

df2
. . . . . . . . .

dH2

dh1

dH2

df1

dH2

dh2

DH2

df2
. . . . . . . . .

dF2

dh1

dF2

df1

dF2

dh2

DF2

df2
. . . . . . . . .

. . . . . . . . . . . .
. . . . . . . . .

. . . . . . . . . . . . . . . dHN

dhN

dHN

dfN

. . . . . . . . . . . . . . . dFN

dhN

dFN

dfN





































































∆h1

∆f1

∆h2

∆f2

...

∆hN

∆fN



































= 0

where N = mn is the number of gridpoints (assuming n rows and m columns),

and each gridpoint is assigned the number jn + i. Solving this system gives us a

vector containing approximate corrections ∆hi and ∆fi which we add to each hi

and fi, and use the result as our guess for the next time step. We then reconstruct

the system and solve it again. We continue to modify the h and f vectors in this

fashion until the norm of the correction vector is below some tolerance. Satisfaction

of this tolerance signifies that h and f are no longer changing significantly, so the

current values are then accepted as one time step, and the process is repeated with

the new solution becoming the guess for the next time step. For further information

on finite difference methods and Newton iteration, see Burden and Faires [1].

Numerically, we take advantage of the fact the Jacobian matrix above is banded,

with half-bandwidth = 2n + 1. Thus, for a 100 by 100 grid, we would have 10000

gridpoints with a Jacobian of 400 million points, of which 8060000 are stored. It
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should be noted that even in this banded form, the majority of entries are zeros be-

cause there is a solid diagonal of half-bandwidth 3 down the center, and then one

superdiagonal and one subdiagonal each 2n away (these result from the mixed

derivative). In between these diagonals are only zeros. If the terms involving the

outer diagonals could be approximated in some manner, it is possible significant

improvement in speed could be had, assuming that the reduced rate of conver-

gence was offset by the increased speed in solving the matrix system.

The code for solving the one-dimensional version of the equation (actually writ-

ten first) works by the same method, with only the discretization being different:

Any term that involves derivatives in the y direction simply becomes zero. Since

there is only one ’row,’ points are labeled straightforwardly and N just equals n.

This program runs much much faster, since the system being solved is of size 2n

with half-bandwidth of just 3. For more discussion of the code, see the appendix.

3.2 Precursor film

It should be mentioned that when numerically modeling a free surface of a fluid

contacting a solid surface (as is the case with a droplet or the front of a thin film),

the typical no-slip condition on which the equations were derived would not allow

the contact line to advance. This is because all terms in the PDE are a function of

height, and when this is zero, ht is always zero.

There exist two standard methods of circumventing this issue. One is a Navier-

slip method which relaxes the no-slip condition very near the contact line, advanc-

ing it based on the behavior of the rest of the free surface. The other method (which

we adopt) is to use what is called a precursor film. Numerically, this exists as a flat

sheet of fluid with height at least an order of magnitude less than the height of

the drop. The relatively small height prevents excessive diffusion of the drop or

film, yet allows the object of interest to change it’s boundaries. A precursor film
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cannot give a completely accurate representation of the drop since diffusion will

always be playing a role at the boundaries even when it should not be, however

it is computationally much simpler and faster, and in many cases gives (for thin

films at least) approximately the same results [3].

3.3 Numerical verification

Tests were run to confirm that the code preserved volume, that the dynamic time

step did not yield significantly different results than the fixed time step, and that

varying grid density did not have significant effects. It was found that volume was

preserved within 10−6 of the original volume, that for the 1-d code the dynamic

time-step advanced 3 gridpoints (out of 500) farther of a long-time run, and that

when shifted to account for that movement, differences in height at gridpoints

were on the order of 10−3. None of these indicate a need for concern with the

numerical functioning of the system.



Chapter 4

Results

In an effort to examine what governs the behavior of moving droplets, we im-

plemented the numerical solvers to solve the one dimensional form,

ht =
[

h3(h − hxx)x + Γh3 + h2
]

x
, (4.1)

and the two-dimensional form,

ht = ∇ ·
[

h3
∇

(

h −∇
2h

)]

+
(

Γh3 + h2
)

x
, (4.2)

of our equation which describes droplet height as a function of time and space.

Specifically, we looked at what droplet shapes evolve, and how they differ as a

function of drop size, shape, and variations in the parameter Γ. We also ran various

checks to test the validity and applicability of our model to our long-term goal of

modeling coalescing droplets on the surface of a wing.

4.1 Droplet phases

We begin our discussion of simulation results with a description of the qualitative

phases through which a shearing drop progresses. Our simulations all began with

a Gaussian-like initial condition, the general form of which is shown in figure 4.1.

This was generated by allowing a spherical cap to diffuse free of shearing forces

until the radial velocity of the edge of the drop had fallen off considerably (since

the drop is on a precursor film it will never completely cease spreading and some

cutoff must be subjectively decided upon).



17

0
10

20
30

40
50

60

0

10

20

30

40

50

60

0

0.05

0.1

0.15

0.2

0.25

y

x

h

Figure 4.1: The form of a typical initial condition drop.
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The first qualitative stage the droplet goes through is simply a generally shifting

of this initial condition. With the exception of where it meets the precursor film,

the surface remains everywhere convex, with the downwind side just steepened

and the center of mass shifted in the direction of positive x as can be seen in figure

4.2.

After this, the drop develops somewhat of a flattened back and takes on what

might be called a rounded tetrahedron shape, where the edges are composed of

the contact lines, and those bounding the ’back face’ of the drop, shown in figure

4.3.

We saw in the tetrahedron figure a tip developing at the front of the drop. As

we progress in time, the tip becomes more and more pronounced. Here, in 4.4 we

see this pronounced tip, as well as a dimple beginning to form behind it.

This dimple is the beginning of what can be labeled a crescent-shaped phase of

the droplet, where the curved front of the drop rises above the inner portions, creat-

ing a crescent-shaped concavity in the back of the drop. This general phenomenon

can be observed when blowing water droplets along glass surfaces. Figure 4.5 dis-

plays a more fully developed crescent shape.

Also in this figure, the tip can be seen to extend beyond the front of the drop,

forming a longitudinal ridge as well. What occurs beyond this point is unclear, as

more runs need to be performed out in this phase of the droplet behavior. What

has happened in a few cases is that the tip continues thinning longitudinally, to

the point that in the x-direction it is described by only a few gridpoints, as shown

in figure 4.6. This may be a numerical artifact which would disappear with finer

grid resolution, or may be the numerical manifestation of some other phenomenon

such as droplet overturning.
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Figure 4.2: a) shows a 2-d view of the deformed drop after time t = 3.7. b) and c) show cross-
sections in x and y.
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Figure 4.3: a) three dimensional representation at time t = 13.5. b) and c) show cross section in x
and y.
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Figure 4.4: a) 3-d representation at time t = 39.5. b) and c) are cross-sections in x and y. Note
concavity in y cross-section.
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Figure 4.5: a) three dimensional representation of drop at time t = 179. Note longitudinal ridge
behind tip. b) and c) are cross section in x and y.
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4.2 Parameter studies

Parameter studies were done, varying Γ, dx, and initial height, all independently,

and also varying height and dx simulataneously by the same factor. Aside from a

qualitative examination of the results, we measured the time it took to form a de-

pression in the back of the drop, which was taken as a measure of how susceptible

the drop is to shear-induced deformation. The standard run to which comparisons

were made had a dx of .1, and an initial height of .23. Our results are summarized

in the chart below. Each pair of columns gives the time to depression formation for

the given paramater value, or in the case of h0 and size variation, the scaling of the

reference initial condition.

Γ t dx t h0 t size t

1 9.6 .05 42.3 .5 12.2 .5 31.7

2 6.7 .1 9.6 1 9.6 1 9.6

4 3.9 .4 7.8 2 8.69

Runs were performed on a wider range of parameters, however due to various

numerical issues not all of them gave useful data. We can at least reach tentative

conclusions from the data we do have. We find that, not surprisingly, a stronger

driving force decreases the time to becoming crescent shaped, and that widening

the drop does the same. When changing both the height alone as well as the size

of the drop however, we find that the smaller the drop, the more stable it is - that

is, the longer it takes for a depression to form. This probably is a result of surface

tension being able to keep the surface more uniform as its relative contribution in-

creases the smaller the drop becomes, since curvature necessarily becomes greater.
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4.3 Two drop coalescence

Since the motivation behind the project involves modeling the behavior of shearing

droplets which coalesce, a check was made to ensure the droplet coalescence does

not present any special simulation problem. We placed two droplets within close

proximity, so that after a small amount of time they would diffuse into each other,

at which point we would expect surface tension effects to more quickly bring the

drops together. This is indeed what occurred, as can be seen in figure 4.7. However,

it is not visually obvious from these results that surface tension is in fact bringing

the drops together more quickly than would occur were the drops just diffusing

without interaction. Thus we ran a single drop diffusion to an equal time and su-

perimposed the resulting profiles. This clearly shows the interface height is being

raised much more quickly when the drops are interacting. This, combined with

the fact that a precursor film eliminates a need to track the qualitative difference

of whether two drops have touched, indicates that our model is both a convenient

and capable means for simulating droplet coalescence on a larger scale.

4.4 Inevitable shear dominance

Examining the governing equation of our system, one can see that since the shear

and x-gravity terms are (h2)x and and (h3)x respectively, the shear term will domi-

nate for heights significantly less than one. While this does model a physical reality,

when it is combined with a precursor film model in which droplets leave tails and

continually expand outwards, it implies that there will be inevitable shear domi-

nance of the drop. This is because all drops will spread out and subsequently (by

conservation of mass) decrease in height, and at some point the drop will move in

the direction of shear, regardless of which direction gravity is driving it. Indeed,

we see this phenomenon in figure 4.8. This is a one-dimensional run, where the

profile is displayed changing through time. Gravity is set working to the right,



26

0 20 40 60 80 100 120
0

20

40

60

80

0

0.05

0.1

0.15

0.2

0.25

y

x

h

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

y

x

h

(a)

0 20 40 60 80 100 120 140

0

20

40

60

80

100

0

0.02

0.04

0.06

0.08

0.1

0.12

y

x

h

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

y

h

single−drop 

height difference 

(b) (c)

Figure 4.7: a) double drop initial condition. b) partial merger. c) more complete merger. d) distin-
guishing merger surface tension effects.
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while shear is directing the drop to the left. We see that while the drop is tall, the

peak moves toward the right, but eventually the entire drop is driven in the op-

posite direction. It should be noted that this is a limitation in applicability of the

model, rather than an inherent flaw, as the phenomenon of flow reversal can be

seen when a large drop of fluid flows down a windshield, spreading into a rivulet

which undergoes flow reversal once sufficiently drawn out. To properly apply our

model, one must either be modeling a drop which does in fact leave a trail, or only

consider results obtained before the drop has spread significantly.
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Figure 4.8: This plot shows a one-dimensional droplet evolving over time. It initially moves to the
right, but as it spreads out shear dominates and it gets sent in the opposite direction.
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4.5 Comparison of 1-d and 2-d simulations

As mentioned in the introduction, work has previously been done by sauthors

modeling droplets height as a function of a single spatial dimension only. Another

aim of our project was to compare the results of simulation in one and two spatial

dimensions to see whether one-dimensional modeling (which is computationally

much simpler) can give useful insight into real droplet behavior, whether there are

qualitative features it cannot capture, and what factors need to be borne in mind

when doing 1-d droplet modeling.

To compare results, we set the center longitudinal profile of the 2-d initial con-

dition as the initial condition for the 1-d simulation, and set both Γ and dx to the

same values for the one and two dimensional simulation. Each droplet was then

run to various fixed times and the resulting profiles compared.

Examining figure 4.9, we can see that the droplet profile remains roughly the

same, and moves at very nearly the same velocity. While in the first plot the 2-d

drop profile has lost a slight amount of cross-sectional area due to outward diffu-

sion in the y-direction, at a later time it appears to have gained in mass (indeed,

integration over the vector determines that it has). The 1-d droplet meanwhile,

conserves mass in both cases.

While differences in the center profile of the drop may not be significant, there

is another issue to be examined. If we take longitudinal cross-sections of a 2-d drop

we find profiles that would be very unlikely (if not impossible) to develop in a sim-

ple 1-dimensional simulation. As shown in figure 4.10, we find odd profiles with

unusual concavities that mostly likely can only originate from the combined effects

of forces in the x and y directions. This implies that it is not feasible to capture all

the relevant features of droplet behavior simply using a one-dimensional model.

It appears however, that 1-d modeling will give a surprisingly accurate estimate of

the bounds for the center profile of a corresponding two dimensional drop.
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Figure 4.9: Here we compare the central profile of a 2-dimensional drop with a simple 1-d run at
two fixed times (a) = 3.7 and b) = 39.6).
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Figure 4.10: These plots are longitudinal cross-sections of a 2-d drop taken off the centerline. They
show profiles which are likely impossible to get using the 1-d model.



30

4.6 Potential surface roughness modeling

In a thin film application, Kondic and Diez [7] modeled patterned surface rough-

ness by patterned variations in precursor film height. Such variations in roughness

can have the effect of altering contact angle, and if a drop lies across a boundary

where one side has a lower contact angle, the drop will tend to move toward that

side. This is a potential method for controlling droplet behavior on the surface of a

wing. If our model is to be used to investigate the possibility of controlling droplet

trajectories by altering surface roughness, we need to confirm that changes in the

height of the precursor film do in fact result in altered drop trajectories. To check

whether this was plausible, we ran a zero shear 1-d simulation on a symmetric

drop, where the precursor film was of height .01 to the right of the drop, and .02 to

the left of the drop. The results can be seen in figure 4.11. A mild skew to the left

can be seen as compared with the initial condition, though it is very slight com-

pared to the diffusion in both directions. We can however, check that the location

of maximum height did in fact shift to the left by two gridpoints. The effect then, is

real, though a systematic study characterizing the relations between precursor film

height, droplet steepness and velocity of diffusion would need to be performed to

determine whether changes in surface roughness (or numerically, precursor film

height) could be used to effectively guide drops.
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Figure 4.11: This plot illustrates the (slight) effect differing precursor film heights can have on an
otherwise symmetric drop. The drop has spread out and moved slightly to left, in the direction of
the higher precursor film.
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Conclusions and Future Work

We successfully simulated droplet deformation as a result of gravity and sur-

face shear, in both one and two dimensions. We were able to characterize general

droplet behavior, as well as describe the effect of changing the driving force and

size and shape of the droplet. We were able to investigate the applicability and

limitations of our precursor film model, and found that while the inherent diffu-

sion involved places limits on the applicability of certain results, our model should

be suited to further modeling of more complex droplet interactions, such as may

be found on the surface of a wing in rain. We also successfully compared runs

of one and two-dimensional drops and found that while the 1-d model matches

quite closely the front and back edges of a two-dimensional drop, there are certain

qualitative features which 1-dimensional modeling cannot capture.

If the project were to be continued, it is recommended that the 2-dimensional

code be converted to use an Alternating Direction Implicit method (ADI), which,

as described in Witelski and Bowen [16], greatly decreases computational time, by

changing the problem to one which involves solving many much smaller matrix

equations as opposed to one large one. Once this is done, more systematic study

of both large scale coalescence as well as the ability to control droplet trajectory

through variations in precursor film height could be undertaken. It might also

be wise to investigate methods for realistically handling the inevitable diffusion

caused by the use of a precursor film.

Lastly, a lofty goal to be kept in mind in is that of simulation of the film forma-

tion and break up process. Ideally by starting with a randomized array of droplets
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we could observe mass coalescence into a film, followed by film breakup and

rivulet formation due to instability. Combined with explorations into changing

droplet trajectory, such a model could give both theoretically interesting insights,

as well as information useful from an engineering standpoint.



Appendix A

Appendix

A.1 Discussion of Code

Code for solving the one dimensional version of our equation was written in Mat-

lab in the summer of 2002. In the fall, it was deemed necessary to convert the code

to C both because it would drastically improve the speed of 1-d simulation, and

also because it would be necessary to make 2-d simulation practical at all. The

plan for some time was to use an ADI method for the 2-d code, however timeline

issues and the intricacies involved led to the development of a clumsier but more

easily implementable 2-d code which operates on the same principles as the 1-d

code. As discussed in chapter 3, it involves a banded matrix who’s half bandwidth

is twice the number of gridpoints in the x-direction, and who’s length is two times

the total number of gridpoints. The matrix solving is by far the limiting step in

the speed of our program, and scales strongly with halfbandwidth, and thus with

the number of gridpoints in the x-direction. Currently, the step takes on the order

of 1 to 20 seconds, depending upon both the gridsize as well as the smoothness

of the surface being modeled. The 1-d C code can run though tens of time steps

per second. Thus switching to ADI would very likely decrease the computational

time.

Since they use similar methods, the 1-d code and the 2-d code each have a sim-

ilar structure with similar supporting files. Both use a vector class, a matrix class

and an ’smatrix’ class (the two are equivalent in the 1-d code), all of which were

written specifically for the program. The vector class performs useful functions
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such as finding the norm of the vector as well as reading in and printing out vectors

from ascii files. The standard matrix class provides a way of conviently referencing

a gridpoints in the 2-d simulation, and can store matrices in both banded and full

forms. The smatrix class is very similar to the matrix class, except it automatically

produces an array whose entries are taylored so that it can be passed to the dgbsv

Fortran banded matrix solver (documentation can be found by going to any search

engine and typing dgbsv).

The main files for each are big2.c and big2d.c - these are written in a rather ugly

script-like fashion, and the b vector, jacobian, solving, updating, time stepping and

outputting all occur here. Each also has a file benparam.h, which contains constant

information about the initial timestep, gridspacing, gridsize, and other parameter

values.

When performing runs in either program, the following items must be noted:

The initial condition vector to be read in is named near the top of big2.c and

big2d.c. The name of the output vectors are changed at the bottom of those two

files. The 2-d simulation outputs a vector of all the gridpoints, as well as a vector

of the time and time step at each output. Attention must also be paid to adjusting

the boundary conditions, both in constructing b (of Ax+ b = 0) and in constructing

the Jacobian.

Both codes have similar files plotfixer.m and antiplotfixer.m, designed for relat-

ing the output and input to matlab. In each case, plotfixer takes in the name of a

run (which is output as a giant vector) as well as the gridsize (and in the case of

2-d, the time step to be visualized), and outputs a matrix. For the 1-d code, the

rows are entries at given time, and time progresses through the columns. For 2-d

code, it is at a specific time, and a mesh of the matrix will show the shape of the

2-d droplet.

Antiplotfixer.m takes a matrix and creates a vector with the columns appended

in an appropriate fasion so that it can be read as an initial condition.
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Lastly, ccavechecker.m takes a 2-d run and it’s associated time vector and de-

termines at what time concavity first appeared in the back of the drop. It does this

by taking cross-sections in the y direction and seeing at what time the maximum is

no longer in the middle of the profile.

In general, when viewed by a CS major, the code will likely appear ghastly and

inelegant, and a knowledgeable person could likely make many improvements to

increase it’s ease of use. It does however, function.
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