
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2003

Shortest Path Problems: Multiple Paths in a Stochastic Graph Shortest Path Problems: Multiple Paths in a Stochastic Graph

Melissa Chase
Harvey Mudd College

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

Recommended Citation Recommended Citation
Chase, Melissa, "Shortest Path Problems: Multiple Paths in a Stochastic Graph" (2003). HMC Senior
Theses. 143.
https://scholarship.claremont.edu/hmc_theses/143

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/143?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu

Shortest Path Problems:
Multiple Paths in Stochastic Graphs

by
Melissa Chase

Ran Libeskind-Hadas, Advisor

Advisor:

Second Reader:

(Arthur Benjamin)

April 2003

Department of Mathematics

Abstract

Shortest Path Problems:

Multiple Paths in Stochastic Graphs

by Melissa Chase

April 2003

Shortest path problems arise in a variety of applications ranging from transporta-

tion planning to network routing among others. One group of these problems

involves finding shortest paths in graphs where the edge weights are defined by

probability distributions. While some research has addressed the problem of find-

ing a single shortest path, no research has been done on finding multiple paths

in such graphs. This thesis addresses the problem of finding paths for multiple

robots through a graph in which the edge weights represent the probability that

each edge will fail. The objective is to find paths for n robots that maximize the

probability that at least k of them will arrive at the destination. If we make certain

restrictions on the edge weights and topology of the graph, this problem can be

solved in O(n log n)time. If we restrict only the topology, we can find approximate

solutions which are still guaranteed to be better than the single most reliable path.

Table of Contents

List of Figures iii

Chapter 1: Introduction 1

1.1 The Problem is Hard . 1

1.2 Revised Problem Statement . 2

Chapter 2: Related Work 3

2.1 Graph Weights . 3

2.2 Total Cost . 5

2.3 Amount of Information Given . 10

2.4 Algorithm Goals . 12

Chapter 3: Two Path Problem 14

Chapter 4: Chain topology 17

4.1 Basic Observations . 17

4.2 Maximum Number of Split Edge Pairs 20

4.3 Sorting Edge Pairs . 21

4.4 Semi Ordered Edge Pairs . 23

4.5 Approximations . 23

Chapter 5: More Complicated Topologies 27

5.1 Additional Uncrossed Edges . 27

5.2 Series-Parallel Graphs . 31

5.3 Additional Crossing Edges . 32

Chapter 6: Conclusions 34

Bibliography 36

ii

List of Figures

3.1 A series parallel graph . 15

4.1 A chain graph . 17

5.1 An addition to the chain graph . 27

5.2 A non-series-parallel graph . 32

iii

Acknowledgments

I would like to thank Professor Ran Libeskind-Hadas for all his help and

advice this year. I would also like to thank Professor Arthur Benjamin for

encouraging me to pursue the math major and Nathaniel Dirksen for sug-

gesting the revised version of this problem.

iv

Chapter 1

Introduction

I began my research looking at algorithms to find multiple paths through a

stochastic graph, a graph in which each edge weight is given by a probability func-

tion. Given n robots at some source vertex, the objective is to find paths which will

send at least k of those robots to a specified destination vertex, minimizing some

objective function. Some possible objective functions might involve minimizing

the expected time that the earliest robot would arrive, minimizing the expected

average arrival time for the first k robots, or maximizing the probability that at

least k robots would arrive by a given time.

Initially, I focused on the problem of finding paths for two robots that minimize

the expected arrival time of the first robot to arrive at the destination. I assumed

that the weights on the edges would be discrete random variables. On first glance

it may appear that the best solution would be to send both robots along the path

with the shortest expected travel time. However, in some cases, it is beneficial to

divide the robots up, sending one on a slower path that is guaranteed to arrive by

a certain time and sending the other on a faster but “riskier” path.

1.1 The Problem is Hard

This problem turned out to be much more complicated than I had anticipated.

Most shortest path algorithms in deterministic, static graphs, rely on the fact that

any overall shortest path passing through a node will first traverse the shortest

2

path to that node. Unfortunately, this is not true for stochastic graphs.

Furthermore, even computing the expected earliest arrival time given two paths

is extremely difficult. Because it represents the expected value of a minimum of

two random variables, this requires examining every possible value of each vari-

able and their relative probabilities. When two edges are added together, the pos-

sible arrival times at the final vertex are all the possible combinations of one travel

time for the first edge and one for the second. Thus, if a path has n edges and

each edge has p possible travel times, there may be pn possible travel times for the

entire path. Then finding the earliest arrival time along two such paths requires

examining every one of these possible times.

1.2 Revised Problem Statement

I decided instead to look at a simpler but related problem: Instead of having a

weight which represents the probability distribution, each edge has only a single

probability of failure. The objective is then to plan paths for n robots to maximize

the probability that at least k of them reach the designated destination. In this case,

it is not best to send all robots on the most reliable path. Sending each robot on a

path which is at least slightly different will give some probability of one of them

reaching the destination even if one path fails.

Chapter 2

Related Work

There are a variety of different shortest path problems, some of which have

been solved, and many of which have not even been considered. I am considering

the class of shortest path problems to be those problems which search for a path

or several paths optimizing some cost function. Within this class of problems, a

graph can have many different types of edge weights, each of which may require a

different approach to finding the shortest path. On many types of graphs there are

several ways that the total cost of a path can be defined. Furthermore, algorithms

can vary with respect to the amount of information which is known when the algo-

rithm is run. Finally, there are several types of algorithms whose goal is not to find

a path with the least cost, but which have some other way of defining optimality.

2.1 Graph Weights

The simplest graphs are unweighted, and the shortest path in such a graph merely

looks for a path which traverses the fewest edges. Slightly more complicated are

those graphs whose edge weights are single values representing the cost of travers-

ing an edge. In this case, the shortest path is the path whose edges have the min-

imum total cost. Edge weights can be yet more complex and thus require more

complex algorithms for finding shortest paths. Some examples of complex edge

weights would be those which are time-dependent or stochastic, or even more

complicated, a combination of the two.

4

2.1.1 Time-Dependent Graphs

A separate class of algorithms has been developed to consider the case when the

edge weights are not static, but instead change with time. Sometimes this weight

can represent the travel time across an edge, but there can also be an additional cost

associated with each edge. The weight can change according to some continuous

function giving the weight at every time, or a discrete function, where weights are

given for a series of time intervals. Another important distinction can be made in

the way that algorithms represent the passage of time. Some discretize time into a

series of integers, requiring that everything happen exactly on the time increment.

Others allow time to be continuous so that events can occur at any time. Note that

because the weights change, it may sometimes be advantageous to wait until the

weight is lower before traversing an edge.

Time-dependent graphs have been used when it is known how travel times

change. Thus, they are useful in transportation applications, to model, for example,

freeways which take much longer to traverse during rush-hour than in the middle

of the night. They have also been used to model networks of buses and trains

where edges can only be traversed at certain points in time. Often, this involves

setting the weight of an edge to infinity until a bus is ready to depart. One issue

which becomes important in categorizing time-dependent shortest path problems

is whether or not a given graph obeys the “Non-Passing Principle” or NPP. A graph

with a given set of time-dependent edge weights obeys the NPP if leaving later can

never allow one to arrive earlier. If a graph is known to obey this principle, there

will never be any reason to wait at any node, because waiting will never allow one

to arrive at the destination any earlier. Many algorithms use this fact and require

that the given graph obeys the NPP.

5

2.1.2 Stochastic Graphs

One class of algorithms examines paths where the edge weights are not given by

a single deterministic value. Instead, with each edge is associated a random vari-

able with a given probability function representing the possible traversal costs of

the edge and the likeliness of each cost. This could be a discrete function with a

series of costs and their probabilities, or a continuous probability density function.

Often, algorithms assume other restrictions on the probabilities, limiting them to

be decreasing and linear or exponential, for example. This type of graph is often

useful in modeling transportation networks where there is some uncertainty in the

amount of traffic that will be on each road, so travel times can only be estimated.

2.1.3 Stochastic and Time-Dependent Graphs

Finally, there are graphs whose edge weights are both stochastic and time-dependent.

Instead of having one probability distribution or a deterministic weight that varies

over different times, these graphs have a probability function that changes over

time. This probability function can be discrete or continuous, the way it changes

could be discrete or continuous, and time itself could be discrete or continuous.

These graphs can follow a principle analogous to the NPP in deterministic

graphs, called “stochastic consistency” [27]. Stochastic consistency means that the

probability of arriving by a given time can’t be improved by leaving later. As with

the NPP, certain algorithms require that the given graphs be stochastically consis-

tent.

2.2 Total Cost

There are a variety of ways for defining the “shortest path.” As mentioned above,

in a simple non time-dependent, non-stochastic graph, the shortest path is sim-

ply the path with the smallest total weight. However, in time-dependent and/or

6

stochastic graphs, the shortest path is often defined differently.

2.2.1 Time-Dependent Graphs

Minimum Time

In most cases, the shortest path is simply the path which takes the least time to

traverse. There have been several algorithms proposed for finding the shortest

time path in a time-dependent graph, some dealing with discretized, and others

with continuous time. Chabini gives an algorithm to find the shortest path when

time is discrete and the graph is only time-dependent until some time M . In this

case, he expands the graph to a much larger graph with nodes for each time and

space combination. Then, he can find the shortest paths from all source nodes at

all departure times to the destination in θ(SSP + nM + mM) time, where n is the

number of nodes, m is the number of edges, and SSP is the time required to find a

static shortest path [6].

Other algorithms deal instead with the continuous time case. When time is

continuous and edge weights are changing, the cost of traversing an edge can be

calculated in several different ways. The simplest way is to use the cost at the

time of departure from the first node. There are other approaches, however, which

take into account any changes in the cost of the edge. Several of these models

also guarantee the NPP. Orda and Rom in [19] discuss how one such cost can be

converted into the simpler departure time model. Once this conversion is made, if

the NPP holds, as it does in this case, a Dijkstra-like algorithm will find the shortest

path. Sung, Bell, Seong, and Park, give a similar result using a slightly different

version of cost, which runs in O(n2 + mv) time, where n and m are the number of

nodes and edges in the network, and v is the maximum number of weight changes

which need to be considered for any one edge [26]. In a similar approach Cooke

and Halsey used a modified version of Bellman’s algorithm to find the shortest

7

path between any two vertices in a network [7].

Minimum Weight

There are also several algorithms which find the path minimizing some additional

time-dependent cost, or a function of that cost and travel time. Thus, such an

algorithm might be used if a traveler wanted to spend as little money as possible

on a trip, but was not as particular about when he was to arrive. Chabini, in [6],

examines the case of this problem where time is discrete, and edge weights are

only time-dependent until a given time M . For such a graph, he is able to find

optimal paths from every node and at all departure times in θ(SSP + nM + mM)

time, where as before, n is the number of nodes, m is the number of edges, and

SSP is the time required to find a static shortest path. He also proves that this time

is the best possible for this particular model.

In [1], Ahuja proves that finding the general minimum cost path in a time-

dependent network is NP-complete. However, he presents a pseudopolynomial-

time algorithm to solve this problem when time is discretized. Orda and Rom

pursued this problem further by finding a criteria for which the minimum cost

path in the continuous time model is finite, and then describing an algorithm to

find that path given a situation where the criteria holds. There is, however, no

running time given for this algorithm.

2.2.2 Stochastic Graphs - Utility Functions

There have been a number of works which examine a stochastic graph to find the

path with the least expected travel time. For that problem it is possible to replace

all the edge weights with their expected values and then solve the problem with

a simple deterministic algorithm [16]. However, Loui points out that there is a lot

of information lost in this process, and that, often, more than the expected time

8

is important [16]. For example, it may be extremely advantageous to arrive by

a specific time, so that taking a path with a longer expected time, but which has

a possibility of arriving earlier can be better than taking the path with the least

expected time. He first suggests minimizing some function of the upper and lower

bounds on the total path weight, however, he says that this strategy is not widely

used and points out that it does not work if an edge weight has some probability

of being infinite. Instead, he suggests using an idea which he attributes to von

Neumann and Morgenstern, which involves using a “utility function” to allow

some arrival times to be preferred over others. The value of the utility function at

a given time represents how relatively advantageous it would be to arrive at that

time. Then the goal of the shortest path algorithm is to maximize the expected

value of the utility function.

There are several algorithms which use such a utility function. In [13], Kerr

describes an algorithm for maximizing a utility function when the utility function

is a “decreasing deadline” function, a function which decreases linearly until some

time, then falls to 0. Murthy and Sakar propose a solution to a similar problem in

which they use 2 different pruning techniques to reduce the number of paths that

must be considered [18]. Eiger, Mirchandani, and Soroush show that whenever

the given utility function is linear or exponential, a Dijkstra-like algorithm can be

used [8]. Bennett and Bard attempt to find a faster solution given any general util-

ity function by using a heuristic to limit the number of paths considered [2]. Bard

and Miller also approach a more complicated version of this problem in which the

algorithm is also given a fixed amount of resources to spend on reducing the un-

certainty in the graph. Thus, it must first decide where to apply the resources, and

then use the resulting information to find the path which maximizes the expected

utility. They present a heuristic for solving this problem, but in their implementa-

tion, it was not fast enough to be efficient for very large graphs [3].

9

2.2.3 Stochastic Time-Dependent Graphs

There are several different ways to define the shortest path on a stochastic, time-

dependent graph. One of the most common is to find the path with the shortest ex-

pected travel time given a specific departure time. Unlike the non-time-dependent

case, this cannot necessarily be reduced to a Dijkstra-like algorithm. This is because

the weights change, so if one edge changes from very fast to very slow, the possi-

bility of arriving at the first node before the weight change would be better than

a guaranteed arrival during the slow period, even if the second expected arrival

time was slightly earlier.

The earliest solution to this problem was presented in [10], where Hall gives

a high level description of an algorithm for the path with the earliest expected

arrival time. Wellman followed up with an optimization of this algorithm which

reduces the number of paths considered on a network that obeys the principle

of stochastic consistency, and Kelly produced an implementation from which he

shows that Wellman’s optimization significantly reduces the running time of Hall’s

algorithm [27, 12]. Kaufman and Smith also proposed an optimization on Hall’s

algorithm. They use heuristics to find upper and lower bounds on the travel time

of the final path, so that many paths needn’t be considered [11]. Furthermore,

Wellman proposes an approximation algorithm which uses stochastic consistency

and stochastic dominance to find approximate shortest paths which are contained

within continuously tightening upper and lower bounds [15]. There is no running

time given for this algorithm, but it is guaranteed to approach the optimal solution

as it is given more time. These are all continuous time algorithms. However, when

time is discretized, algorithms can run much quicker. Thus, Pretolani’s algorithm

can find the best route for such a problem in O(k) time, where k is the total number

of arrival times along all of the edges [24]. Unfortunately, this algorithm is based

around the use of hypergraphs, and is therefore not space efficient.

10

However, not all shortest path algorithms for time-dependent stochastic graphs

aim to minimize the expected arrival time. As we have observed above, this is

not always the desired objective. Thus, Miller-Hooks and Mahmassani designed

an algorithm focused on finding the “least possible time path”, or the path with

the possibility of taking the least time [17]. As with the “adaptive” algorithms

described below, this algorithm gives a path from each node for each departure

time. In this case, it gives both the least possible time path and the probability of

achieving this travel time, thus providing an alternative to the least expected time

path.

2.3 Amount of Information Given

In a static or time-dependent deterministic problem, all of the graph parameters

are already known when the algorithm is run. Thus, an algorithm is able to re-

turn one path which is guaranteed to be as short as possible. However, there are

other algorithms that run based on the fact that all the parameters are not given

beforehand.

2.3.1 Adaptive Plan Algorithms

In stochastic graphs, while the probabilities for traveling across a certain edge are

known, the exact time the traversal will take is not. Thus, several of the algorithms

dealing with stochastic graphs have been designed to return not a single path, but a

strategy for traversing the graph based on the arrival time at each node. Following

such a strategy has been shown to give traversal times at least as short as any single

shortest path [10].

Boyan and Mitzenmacher [4] have developed an algorithm for a bus network,

where in a graph of bus lines and bus stops, at each stop each bus has a specific

continuous probability function describing when it is likely to arrive. It requires

11

only that these probability functions have an increasing failure rate, meaning that

as time goes on, if an edge still is not traversable, the probability the it will soon be

traversable is always increasing, i.e. P (x ≥ k + t|x ≥ t) ≤ P (x ≥ k) where x, t, and

k, are all times and P (t) is the probability of being able to traverse the edge at time

t. Given this information, the algorithm returns an optimal travel plan of the form

“take bus 1 whenever it arrives; take bus 2 if it arrives before time 2; take bus 3 if

it arrives before time 3; and so on.” This algorithm has complexity O(hSQ log(Q))

where h is the maximum allowable number of bus changes, S is the number of

stations, and Q is the maximum number of buses per station.

The plan algorithms are not restricted to static graphs. Hall, in [10], gives a very

high level description of an algorithm which runs on stochastic, time-dependent

graphs and returns the best edge to traverse for each range of arrival times at each

node. Later, an optimization and more concrete description of this algorithm was

developed by Wellman, Larson,and Ford [27]. They require stochastic consistency

and give an optimal solution on a network of buses in O(B2Dn) time and O(BDn)

space, where B is the maximum number of buses per edge, D is the maximum

out-degree of a node, and n is the number of nodes in the graph.

Similar adaptive plan algorithms have been developed for minimizing a utility

function over stochastic graphs. In [13], Kerr’s algorithm returns a optimal traver-

sal plan which maximizes the value of a decreasing deadline utility function in a

static stochastic graph. Once again, this plan gives the best edge to traverse given

the time of arrival at a specific node.

2.3.2 Partially Observed Graphs

Other algorithms consider graphs in which even less information is known. In

particular, a family of algorithms considers the case when the form of the graph

itself is not entirely known.

12

Pemberton and Korf examine the case where the only thing known is a rough

estimate of how far a given node is from the destination. Nodes that have already

been explored and those adjacent to them are the only ones that are visible. The

algorithm explores the graph, discovering the positions of nodes and the costs of

the adjacent edges. It traces a path which, while not necessarily optimal, is guaran-

teed to eventually reach the destination in a worst case of O(n2) time and O(n+m)

space in a graph with n nodes and m edges [22].

2.4 Algorithm Goals

Finally, not all of the algorithms have a simple, or an absolute shortest path as

their goal. Sometimes it is useful to find several good paths, or to have algorithms

which, once they have found one shortest path, take very little time to find the

solution to a slightly different problem.

2.4.1 All Criterion Paths

Often it is useful to have, not just one overall shortest path, but a set of relatively

short paths from which to choose. One set of alternatives is the set of k-shortest

paths. For a given number k, these are the k shortest paths which differ from the

optimal shortest path by at least one edge. Brander and Sinclair in [5] describe 4

different algorithms for finding these k paths in static deterministic graphs. They

describe algorithms by Yen and Lawler which take O(kn3) time, and faster algo-

rithms by Katoh and Hoffman which take O(kn2) time. Scott goes a bit farther and

points out that often, paths that differ by only one edge are not different enough.

Instead, she proposes finding k-similar paths: paths with at most k edges in com-

mon with the original path. She mentions that this problem is NP-hard, but ex-

plains how to use Lagrangian Relaxation to approximate the solution [25].

13

2.4.2 Reoptimization

It is also often useful to find the shortest paths in several graphs which are only

slightly different. Nguyen, Pallotino, and Scutella describe an algorithm which,

given a graph and the shortest path from the source to the destination, finds the

shortest path to the same destination from a different source. They also include an

approximation optimization of this algorithm. This gives a complexity of O(n2 +

km), where n is the number of nodes, m is the number of edges, and k is the number

of shortest paths that have already been calculated [21].

Chapter 3

Two Path Problem

This thesis considers the following problem: We are given a directed graph in

which the weight of each edge represents the reliability, i. e. the probability that

the edge will not fail. If two paths traverse the same edge, they will either both

fail or both successfully complete the traversal. Given a source and destination

on that graph, we would like to find two paths from the source which maximize

the probability that at least one will reach the destination. For the most of this

discussion, we will consider only series-parallel graphs.

A directed graph G is two-terminal series parallel, with terminals s and t, if it can

be produced by a sequence of the following operations:

1. Create a new graph, consisting of a single edge directed from s to t.

2. Given two two-terminal series parallel graphs X and Y , with terminals sX , tX , sY ,

and tY , form a new graph G = P (X,Y) by identifying s = sX = sY and

t = tX = tY . This is known as the parallel composition of X and Y .

3. Given two two-terminal series parallel graphs X and Y , with terminals sX ,

tX , sY , and tY , form a new graph G = S(X,Y) by identifying s = sX , tX = sY ,

and t = tY . This is known as the series composition of X and Y . [9]

Lemma 3.0.1 On a series parallel graph, one of the two paths in the optimal solution will

be one of the single most reliable paths.

15

Figure 3.1: A series parallel graph

Proof: Let C be the most reliable path from the source, v0 to the destination, vn.

Let A and B be an optimal pair of paths such that neither A nor B is as reliable as

C. Let the subpath of A from node s to node t be the shortest subpath such that s

and t both appear in C and A is less reliable than C from s to t. Note that the two

subpaths will share no edges: otherwise we could remove those edges leaving a

shorter segment over which C was more reliable than A. Thus, these two subpaths

are arranged in parallel.

If B does not intersect C between s and t:

Let A’ be the path which follows A from v1 to s, follows C from s to t, and

then follows A again from t to vn. Originally, the probability of either path A or

path B arriving at vn was P (A ∨ B) = P (A) + P (B) − P (AB). Now P (A′ ∨ B) =

P (A′) + P (B) − P (A′B).

Let P (Arest) be the probability that path A does not fail between v1 and s or

between t and vn. Let P (BArest) be the probability that B doesn’t fail anywhere

and that A does not fail between v1 and s and between t and vn. Let P (Ast) and

16

P (Cst) be the probabilities that A and C do not fail between s and t.

P (A′ ∨ B) = P (A′) + P (B) − P (A′B)

= P (Arest)P (Cst) + P (B) − P (Cst)P (BArest)

≥ P (Arest)P (Ast) + P (B) − P (Ast)P (BArest)

≥ P (A) + P (B) − P (AB)

= P (A ∨ B)

Thus, A′ and B are a more reliable pair of paths than A and B, contradicting our

initial assumption.

If B intersects C between s and t:

B cannot intersect A because these two paths are parallel in that interval. Simi-

larly, B must contain nodes s and t.

Let B’ be the path which follows B from v1 to s, C from s to t, and B from t to

vn.

Let P (Brest) be the probability that B does not fail between v1 and s or between t

and vn, P (Bst) be the probability that B does not fail between s and t, and P (ABrest)

be the probability that A does not fail anywhere and that B does not fail between

v1 and s or between t and vn.

P (A ∨ B′) = P (A) + P (B ′) − P (AB′)

= P (A) + P (Brest)P (Cst) − P (Cst)P (ABrest)

≥ P (A) + P (Brest)P (Bst) − P (Bst)P (ABrest)

≥ P (A) + P (B) − P (AB)

= P (A ∨ B)

Thus, A and B ′ are a more reliable pair of paths than A and B, contradicting our

initial assumption. �

Chapter 4

Chain topology

We will begin by considering this problem on very simple graphs. We will

examine graphs consisting of a series of nodes v1 . . . vn, where v1 is the source and

vn is the destination, and in which each pair of consecutive nodes can be connected

by any number of edges. We will refer to this as a chain topology. In this case there

are several observations which can be made.

4.1 Basic Observations

Observation 4.1.1 One path will contain the most reliable edge between each pair of

nodes.

This follows directly from Lemma 3.0.1.

Observation 4.1.2 The second path will always take one of the two most reliable edges.

The rest of the edges will never be used.

Proof: Let the edges between vi and vi+1 have probabilities of not failing e1 . . . ek,

where ej > ej+1 for all j, 1 ≤ j ≤ n − 1. e1 will be used by at least 1 path by

Figure 4.1: A chain graph, in this case with exactly two edges between each pair of adjacent nodes.

18

Lemma 3.0.1. Suppose that in the optimal pair of paths, the second path uses some

ej , j > 2. Let P1 and P2 be the probability that the first and second paths arrive

at vn, and P12 be the probability that both arrive. Thus, the probability that at

least one of the paths does not fail will be P1 + P2 − P12. Further, obviously P2

is greater than P12. The probability that a path does not fail is the product of the

reliability of all of its edges. If we replace ej with e2, the probability that the sec-

ond path arrives will be P ′
2 = P2 ∗ e2

ej
and the probability that both paths arrive

will be P ′
12 = P12 ∗

e2

ej
. The probability that at least one path arrives at vn will be

P1 + P ′
2 + P ′

12 = P1 + e2

ej
(P2 − P12) > P1 + P2 − P12, since e2

ej
> 1. Thus, it is more

likely that at least one path will arrive at vn if the second path takes e2 instead of

ej , which contradicts the original assumption that one of the optimal paths would

take ej . �

This means that we can simplify any such graph by removing all but the two

most reliable edges between any pair of nodes.

Observation 4.1.3 The order of the node pairs is insignificant.

This follows from the fact that multiplication is associative, and the probability

of several paths not failing is just the product of the probabilities that each of the

edges won’t fail.

Given this framework, let ai and bi be the most reliable edges between vi and

vi+1, and let Ai and Bi be their respective weights such that Ai ≥ Bi. Further, if

Ai = 1 or Bi = 0, any optimal pair of paths will remain optimal if both paths

traverse ai. In both cases, the optimal path in the rest of the graph is the same as

that in the node chain where nodes vi and vi+1 have been combined. Thus, once

we have identified all such node pairs, we have only to find the optimal path in

the rest of the graph. From here on we will assume that 0 < Bi ≤ Ai < 1.

19

Now, we know that at least one path will take a1, . . . an−1 by Observation 4.1.1

. Call two paths p1 and p2. The probability of p1 arriving at vn is just the product

of all the reliabilities of the edges in each path. The same is true for p2. The prob-

ability that both paths arrive is the product of the probability that both paths will

successfully traverse each pair of nodes. Between vi and vi+1, if both paths take ai,

this probability will be Ai, and if the second path takes bi, this probability will be

AiBi. Now, the probability that at least one path arrives at the destination is:

P1 + P2 − P12 =
∏

i<n Ai +
∏

ai∈p2
Ai

∏
bi∈p2

Bi +
∏

i<n Ai

∏
bi∈p2

Bi

Lemma 4.1.4 Edge bi ∈ p2 for some optimal pair of paths p1 and p2 iff Bi

Ai

1−Aip
1−p

≥ 1 where

p =
∏

bj∈p2,j 6=i Aj

Proof: If we examine just one pair of edges, ai and bi, let P ′
1 be the probability

that the first path does not fail through the rest of the graph, P ′
2 be the probability

that the second path does not fail through the rest of the graph, and P ′
12 be the

probability that neither path fails over the rest of the edges. Then, if the second

path includes bi, the probability that at least one path will reach the destination is

AiP
′
1 + BiP

′
2 − AiBiP

′
12. If the second path includes ai, the probability is AiP

′
1 +

AiP
′
2 − AiP

′
12. Thus, the path taking bi will be better than the path taking ai iff

AiP
′
1 + BiP

′
2 − AiBiP

′
12 > AiP

′
1 + AiP

′
2 − AiP

′
12

BiP
′
2 − AiBiP

′
12 > AiP

′
2 − AiP

′
12

BiP
′
2(1 − Ai

P ′
12

P ′
2

) > AiP
′
2(1 −

P ′
12

P ′
2

)

Let p =
P ′

12

P ′
2

BiP
′
2(1 − Aip) > AiP

′
2(1 − p)

Bi

Ai

1 − Aip

1 − p
> 1

20

p =
P ′

12

P ′
2

p =

∏
j 6=i Aj

∏
bj∈p2,j 6=i Bi∏

aj∈p2,j 6=i Aj

∏
bj∈p2j 6=i Bj

p =
∏

j 6=i,aj /∈p2

Aj

�

4.2 Maximum Number of Split Edge Pairs

Let a split edge pair in a pair of paths denote a pair of edges ai and bi such that the

first path takes ai and the second path takes bi. Now, let M = max1≤i≤nAi and

m = max1≤i≤n
Bi

Ai

Lemma 4.2.1 The maximum possible number of split edge pairs in an optimal pair of paths

is dlogM(1 − m)e

Proof: Let x be the number of splits in an optimal pair of paths. Let ai, bi be one of

the edge pairs which will be split. That means bi

ai

1−Aip
1−p

> 1. Since there are x other

split edges, and since p =
∏

bj∈p2,j 6=i Aj , we know p ≤ Mx−1. Note that the quantity
1−Aip
1−p

increases as p approaches 1.

That means that

1 < 1−Aip
1−p

≤ 1−AiM
x−1

1−Mx−1 < 1
1−Mx−1

Also, bi

ai
≤ m by definition. Thus, since bi, ai is a split edge pair,

1 ≤
Bi

Ai

1 − Aip

1 − p
< m

1

1 − Mx−1

1 < m
1

1 − Mx−1

m > 1 − Mx−1

1 − m < Mx−1

21

Since 1 − m,Mx−1 < 1,

logM(1 − m) > x − 1

logM(1 − m) + 1 > x

dlogM(1 − m)e ≥ x

Thus, the number of split edges can be at most dlogM(1 − m)e. �

Similarly, if we define f = min1≤i≤n Ai and g = min1≤i≤n
Bi

Ai
, we can show that

the minimum number of split edges is blogf (1 − g)c.

4.3 Sorting Edge Pairs

Recall that in an optimal pair of paths, the ai, bi edge pair will be a split edge pair

(i.e. the first path will take ai and the second path will take bi) iff Bi

Ai

1−Aip
1−p

≥ 1 where

p =
∏

bj∈p2,j 6=i Aj . Let x be the number of split edge pairs. Then p < M x.

Lemma 4.3.1 If Aj > Ai, edge pair aj, bj is split in an optimal pair of paths, and Bi

Ai
>

Bj

Aj
,then ai, bi is also split.

Proof: If Aj > Ai, then 1−Aip
1−Ajp

> 1.

Bi

Ai

1 − Aip

1 − p
=

Bi

Ai

Bj

Aj

1 − Aip

1 − Ajp
∗

Bj

Aj

1 − Ajp

1 − p

≥
Bi

Ai

Bj

Aj

1 − Aip

1 − Ajp
∗ 1 since aj, bj is split.

> 1

Thus, ai, bi is split by Lemma 4.1.4. �

Lemma 4.3.2 If Aj > Ai, edge pair aj, bj is split in an optimal pair of paths, and Bj

Aj
≤

(1 − Mx)Bi

Ai
, then ai, bi is also split.

22

Proof: Suppose this is not true. That means, aj, bj is split, but ai, bi is not. When x-1

other edges have been split, p ≤ M x−1.

Thus, 1−Aip
1−Ajp

≤ 1−AiM
x−1

1−AjMx−1 < 1
1−AjMx−1 ≤ 1

1−Mx .

Bj

Aj

1 − Ajp

1 − p
=

Bj

Aj

Bi

Ai

1 − Ajp

1 − Aip
∗

Bi

Ai

1 − Aip

1 − p

≤

Bj

Aj

Bi

Ai

1 − Ajp

1 − Aip
∗ 1 since ai, bi is not split.

<

Bj

Aj

Bi

Ai

1

1 − Mx

≤ (1 − Mx)
1

1 − Mx

= 1

Thus, aj, bj is not split by Lemma 4.1.4, in contradiction to our original statement.�

Let k be the maximum value of
Bi
Ai
Bj
Aj

< 1 over all i and j.

Lemma 4.3.3 If k ≤ 1 − Mx and Bi

Ai
>

Bj

Aj
and aj, bj is split then ai, bi is split.

Proof: If Aj > Ai, then this is a restatement of Lemma 4.3.1

If Aj < Ai:

Since Bi

Ai
>

Bj

Aj
,

Bj

Aj
≤ kBi

Ai
≤ (1 − Mx)BiAi

Thus, by Lemma 4.3.2, ai, bi is split.

Thus, in chain graphs in which k ≤ 1−M x, we can find an optimal pair of paths

using the following algorithm:

Sorting Algorithm:

1. Sort the edge pairs by Bi

Ai
.

23

2. Split the first edge pair.

3. Compute Bi

Ai

1−Aip
1−p

in which p =
∏

1≤h≤i Ai for each successive edge pair ai, bi.

4. If al, bl is the first edge pair for which this quantity is less than 1, then an

optimal second path will take bi for all i, 1 ≤ i < l and ai for all i, l ≤ i < n.

Note, there is always at least 1 edge split so if k < 1 − M , this algorithm is always

successful.

This algorithm will take O(n log n) to sort the list and O(n) to compute Bi

Ai

1−Aip
1−p

for each edge pair. Thus, the total running time is O(n log n).

4.4 Semi Ordered Edge Pairs

If kw < 1 − Mx for very small w and if all Bi

Ai
are distinct, a similar approach can be

used. First we sort the edge pairs by Bi

Ai
. Then we find two paths using the sorting

algorithm given above. If we say that each ratio Bi

Ai
is distinct, if Bi

Ai
<

Bj

Aj
, there are

at most w − 1 edge pairs, aj, bj , such that (1 − Mx)
Bj

Aj
< Bi

Ai
. Thus, there are at most

w − 1 edge pairs aj, bj which will appear before ai, bi in the sorted edge pair list,

for which the optimal pair of paths might split ai, bi without splitting aj, bj . If the

sorting algorithm splits the first x edge pairs, we know we have only to examine

paths which do not split some subset of the last w of the split edges. There will

be 2w subsets, but if w is a small constant, this does not increase the running time

significantly.

4.5 Approximations

If k > 1 − M c, and all of the ratios Bi

Ai
are distinct, we can use this algorithm to get

an approximate solution.

24

Let a skipped edge pair be an edge pair ai, bi which is not split, but where there is

some j > i in the sorted edge list such that aj, bj is split. In the optimal path, let s

be the number of skipped edge pairs.

Lemma 4.5.1 The Sorting Algorithm gives a pair of paths which is at least 1+mc(1−Mc)
1+mcks

optimal

Proof: Suppose OPT’s solution has c split edges and s skipped edges. Let ALG1

and ALG2 be the pair of paths generated by the Sorting Algorithm. This is the

best pair of paths with no skipped edges. Consider the pair of paths P1, P2 which

have c split edges and no skipped edges. This pair must be less reliable than ALG1

and ALG2. Since OPT has c split edges an s skipped edges, the last split edge in

OPT will be edge pair ac+s, bc+s. If ai, bi appears after aj, bj in the sorted list, then

we know Bi

Ai
<

Bj

Aj
. From our definition of k, this means that Bi

Ai
≤ k

Bj

Aj
. Thus,

Bc+s

Ac+s
≤ ks Bc

Ac
. This also means that the ith split edge, ay,by, in OPT’s paths will have

By

Ay
≤ Bi

Ai
which will be the ith split edge in ALG1 and ALG2.

25

The ratio of ALG1and ALG2’s reliability to that of OPT will be:

P (ALG1 ∨ ALG2)

P (OPT1 ∨ OPT2)
=

P (ALG1) + P (ALG2) − P (ALG1ALG2)

P (OPT1) + P (OPT2) − P (OPT1OPT2)

=

∏
1≤h≤n−1 Ah +

∏
1≤h≤c Bh

∏
c<h≤n−1 Ah −

∏
1≤h≤n−1 Ah

∏
a≤h≤c Bh∏

1≤h≤n−1 Ah +
∏

bh∈OPT2
Bh

∏
ah∈OPT2

Ah −
∏

1≤h≤n−1 Ah

∏
bh∈OPT2

Bh

=
1 +

∏
1≤h≤c

Bh

Ah
−

∏
a≤h≤c Bh

1 +
∏

bh∈OPT2

Bh

Ah
−

∏
bh∈OPT2

Bh

≥
1 +

∏
1≤h≤c

Bh

Ah
−

∏
a≤h≤c Bh

1 +
∏

bh∈OPT2

Bh

Ah

=
1 +

∏
1≤h≤c

Bh

Ah
(1 −

∏
a≤h≤c Ah)

1 +
∏

bh∈OPT2

Bh

Ah

≥
1 + Bc

Ac

∏
1≤h≤c−1

Bh

Ah
(1 − M c)

1 + Bc+s

Ac+s

∏
bh∈OPT2,h6=c+s

Bh

Ah

≥
1 + Bc

Ac

∏
1≤h≤c−1

Bh

Ah
(1 − M c)

1 + ks Bc

Ac

∏
bh∈OPT2,h6=c+s

Bh

Ah

≥
1 + m

∏
1≤h≤c−1

Bh

Ah
(1 − M c)

1 + ksm
∏

bh∈OPT2,h6=c+s
Bh

Ah

≥
1 + m

∏
1≤h≤c−1

Bh

Ah
(1 − M c)

1 + ksm
∏

16=h6=c−1
Bh

Ah

≥
1 + mc(1 − M c)

1 + ksmc

�

Note: There must be at least one skipped edge pair, so this algorithm is at least
1+mc(1−Mc)

1+mck
optimal. Further, at least one edge must be split, so even if c is unknown,

this algorithm is at least 1+m(1−M)
1+mk

as reliable as an optimal solution.

Recall that we defined w to be the largest number such that kw ≤ 1−M c. Thus,

this ratio is at least 1+mckw

1+mcks . If w is small, this is a fairly close bound.

We can compute the best pair of paths with at most q skipped edge pairs in

O(nq) time by skipping each possible subset of q or less edges and computing the

26

best paths(using the Sorting Algorithm). Further, if all of the ratios (Bi

Ai
) are distinct,

this can be done in O(nwq−1) time. This is because, as discussed in the previous

section, we need only consider subsets which skip the last w of the edges identified

by the algorithm.

If we have found the best pair of paths with at most q skipped edge pairs, then

either we have found the optimal paths, or the optimal paths have at least q + 1

skipped edges. Then, we have a pair of paths which is at least 1+mkw

1+mkq+1 optimal.

Thus, in O(nq) time we can compute a pair of paths which is at least 1+mkw

1+mkq+1 as

reliable as optimal.

Chapter 5

More Complicated Topologies

We have examined this problem on simple chain graphs. Now we examine the

problem on more complicated graphs.

5.1 Additional Uncrossed Edges

Consider a chain graph in which edges have been added connecting some nonad-

jacent vertices with the restriction that these edges cannot cross: Let e1 and e2 be

two additional edges between vertices in the chain connecting va to vb and vc to vd,

where a < b and c < d. These edges would be considered crossed if a < c < b < d

or c < a < d < b. Requiring the edges to be uncrossed means that the graph will

still be series parallel.

Figure 5.1: An addition to the chain graph: in this case we have added a set of edges connecting
nodes along the chain, while still requiring that the graph be series-parallel

Let c be an edge with weight C which spans the same set of nodes as {as, . . . , at}.

Lemma 5.1.1 If C ≤
∏

s≤i≤t Bi, c will never be used.

28

Proof: Let P1, P2 be an optimal pair of paths which includes c where C ≤
∏

s≤i≤t Bi.

P1 will take as . . . at since that is part of the most reliable path. Thus, P2 takes c.

However, consider the result of replacing c with bs . . . bt in P2. This increases the

reliability of P2 without increasing the degree to which P1 and P2 are interdepen-

dent. Thus, we can increase the reliability of the pair P1, P2 by replacing c with

bs . . . bt, which means these paths are not optimal. �

Lemma 5.1.2 If C ≥
∏

s≤i≤t Ai then c will always be used.

This follows by Lemma 3.0.1 directly from the fact that c is then part of the single

optimal path. This also simplifies the graph, as we can replace c, as . . . , at, and

bs . . . bt with a single edge pair of weights C and
∏

s≤i≤t Ai.

Since those cases are relatively simple, let’s assume that
∏

s≤i≤t Bi < C <
∏

s≤i≤t Ai. Let x be a minimum for the number of edges ai which do not appear

in the second path.

Lemma 5.1.3 The second path will use c instead of bs . . . bs+r, as+r+1, . . . at iff
C∏

s≤i≤s+r Bi

∏
s+r+1≤i≤t Ai

1−p
∏

s≤i≤t Ai

1−p
∏

s≤i≤s+r Ai
≥ 1 where p =

∏
bj∈p2,j 6=s,...s+r Aj

This follows in exactly the same form as the proof in chapter 4.

Lemma 5.1.4 if as, . . . as+r are split and as+r+1 . . . at are not and if
C

Ax...At
≥ 1

1−Mx−r

∏
s≤i≤s+r(

Bi

Ai
)2, then the second path will take edge c instead of bs . . . bs+r.

Proof: In this case:

29

C∏
s≤i≤t Ai

∏

s≤i≤r+s

(
Ai

Bi

)
1 − p

∏
s≤i≤t Ai

1 − p
∏

s≤i≤s+r Ai

≥
1

1 − Mx−r

∏

s≤i≤s+r

(
Bi

Ai

)2
∏

s≤i≤s+r

Ai

Bi

1 − p
∏

s≤i≤t Ai

1 − p
∏

s≤i≤s+r Ai

=
1

1 − Mx−r

∏

s≤i≤s+r

Bi

Ai

1 − p
∏

s≤i≤t Ai

1 − p
∏

s≤i≤s+r Ai

=
1

1 − Mx−r

∏

s≤i≤s+r

Bi

Ai

1 − p
∏

s≤i≤s+r Ai

1 − p

(1 − p
∏

s≤i≤t Ai)(1 − p)

(1 − p
∏

s≤i≤s+r Ai)2

≥
1

1 − Mx−r

∏

s≤i≤s+r

(1 − p
∏

s≤i≤t Ai)(1 − p)

(1 − p
∏

s≤i≤s+r Ai)2

≥
1

1 − Mx−r

∏

s≤i≤s+r

1 − p

1 − p
∏

s≤i≤s+r Ai

≥
1

1 − Mx−r
(1 − Mx−r)

= 1.

Thus, the second path will include c. �

Lemma 5.1.5 If as, . . . as+r are split and as+r+1 . . . at are not and if C∏
s≤i≤t Ai

≤ 1
1−Mx

∏
s≤i≤s+r

Bi

Ai
,

then the second path will still take bs . . . bs+r.

Proof: In this case:

30

C∏
s≤i≤t Ai

∏

s≤i≤r+s

(
Ai

Bi

)
1 − p

∏
s≤i≤t Ai

1 − p
∏

s≤i≤s+r Ai

≤
1

1 − Mx

∏

s≤i≤s+r

(
Bi

Ai

)
∏

s≤i≤s+r

Ai

Bi

1 − p
∏

s≤i≤t Ai

1 − p
∏

s≤i≤s+r Ai

=
1

1 − Mx

1 − p
∏

s≤i≤t Ai

1 − p
∏

s≤i≤s+r Ai

≤
1

1 − Mx

1 − Mx−r
∏

s≤i≤t Ai

1 − Mx−r
∏

s≤i≤s+r Ai

≤
1

1 − Mx

1 − Mx−rM r
∏

s+r+1≤i≤t Ai

1 − Mx−rM r

≤
1

1 − Mx

1

1 − Mx

= 1

Thus, the second path will not include c. �

Lets extend the definition of k to be the maximum ratio less than one between

two parallel paths between the same pair of nodes.

Lemma 5.1.6 If k ≤ 1−Mx−r then, if C∏
s≤i≤t Ai

<
∏

s≤i≤s+r
Bi

Ai
the second path will take

bs . . . bs+r otherwise it will take c.

Proof: If C∏
s≤i≤t Ai

<
∏

s≤i≤s+r
Bi

Ai

Then,

C∏
s≤i≤t Ai

≤ k
∏

s≤i≤s+r

Bi

Ai

≤ (1 − Mx−r)
∏

s≤i≤s+r

Bi

Ai

≤ (1 − Mx)
∏

s≤i≤s+r

Bi

Ai

31

Thus, by Lemma 5.1.5, the second path will take bs . . . bs+r.

If C∏
s≤i≤t Ai

>
∏

s≤i≤s+r
Bi

Ai

Then,

C∏
s≤i≤t Ai

≥
1

k

∏

s≤i≤s+r

Bi

Ai

≥
1

1 − Mx−r

∏

s≤i≤s+r

Bi

Ai

≥
1

1 − Mx−r

∏

s≤i≤s+r

(
Bi

Ai

)2

Thus, by Lemma 5.1.4, the second path will take c.

5.2 Series-Parallel Graphs

Solving this problem on any series-parallel graph reduces to solving the problem

on a chain graph with additional uncrossed edges: We know that the most reliable

path is guaranteed to be one of a pair of optimal paths. Thus, we can consider

the nodes in this path to be the base of the chain, and the edges in this path to be

a1 . . . an−1.

We can also simplify the graph by removing all but one of the non-chain paths

between each pair of vertices on the most reliable path. If vi and vk are vertices on

the most reliable path, and there are two paths px and py between vi and vk which

contain no other vertices along the chain such that the probability of px not failing

is higher than that for py, then any supposedly optimal pair of paths containing

py could be improved by replacing it with px. This is clearly the case because this

change increases the reliability of the second path without increasing the degree to

which the two paths are interdependent. Thus, no path containing py can be in an

optimal pair. That means that all edges only in py can be ignored.

Further, if we have one path between vi and vk with probability P of not failing,

32

that is equivalent to having one edge between vi and vk with weight P. Thus,a series

parallel graph reduces to a chain of vertices with single edges connecting pairs of

these vertices. Finally, we know that none of these edges could cross because none

of the original paths could cross in a series-parallel graph. Thus, this reduces to

the problem discussed in the previous section.

5.3 Additional Crossing Edges

Allowing additional edges to cross makes the problem much more difficult. In this

case, Lemma 3.0.1 is no longer guaranteed. It is possible that neither of the optimal

two paths will be one of the most reliable single paths. Consider the following

graph:

r r r

r 2 e-

r 2 e-

Figure 5.2: This is an example of a non-series-parallel graph for which Lemma 3.0.1 does not hold.
The three shorter edges each have length r while the two longer edges have length r

2 − ε each.

Let path A = {v0, v2, v3}, path B = {v0, v1, v3}, and path C = {v0, v1, v2, v3}.

Now,

P (A) = (r2 − ε) ∗ r = r3 − rε

P (B) = r ∗ (r2 − ε) = r3 − rε

P (C) = r ∗ r ∗ r = r3

33

Thus, C is the most reliable route. However,

P (A ∨ B) = (r2 − ε) ∗ r + r(r2 − ε) − (r2 − ε) ∗ r ∗ r(r2 − ε)

= 2r3 − 2rε − (r6 − 2r4ε + r2ε2)

= 2r3 − 2rε − r6 + 2r4ε − r2ε2

P (A ∨ C) = (r2 − ε) ∗ r + r ∗ r ∗ r − (r2 − ε) ∗ r ∗ r ∗ r

= 2r3 − rε − (r5 − r3ε)

= 2r3 − rε − r5 + r3ε

P (B ∨ C) = r(r2 − ε) + r ∗ r ∗ r − r ∗ (r2 − ε) ∗ r ∗ r

= 2r3 − rε − r5 + r3ε

If ε < r5−r6

r+r2+r3−2r4

r5 − r6 > (r + r2 + r3 − 2r4)ε

2r3 − 2rε − r6 + 2r4ε − r2ε > 2r3 − rε − r5 + r3ε

2r3 − 2rε − r6 + 2r4ε − r2ε2 > 2r3 − rε − r5 + r3ε

2r3 − 2rε − r6 + 2r4ε − r2ε2 > 2r3 − rε − r5 + r3ε

P (AorB) > P (BorC) = P (AorC)

Thus, A and B are the optimal pair of paths, although neither alone is as reliable

as C.

Chapter 6

Conclusions

For a restricted class of edge weights, we have been able to solve our problem

on a graph with chain topology. For a broader class of edge weights, in some cases

the problem can still be solved efficiently. In other cases, we can make approxima-

tions and we have shown a lower bound on how good these approximations must

be.

In addition, we have seen that solving this problem on the chain graph allows

us to solve the problem on any series-parallel graph with similarly restricted edge

weights. However, we have shown that the same algorithm will not work on arbi-

trary acyclic graphs.

Some future areas to consider would include extending this problem to find n

paths from a given source to a destination which maximize the probability that at

least k arrive at the destination. It is unknown whether it would be possible to

extend the current approach for a greater number of paths. In particular, Lemma

3.0.1 has not been proven for n paths.

It would also be extremely useful to be able to solve the problem exactly and

efficiently for unrestricted edge weights. As mentioned above, currently only a re-

stricted class of edge weights can be solved exactly in O(nlogn) time, while other

edge weights can only be approximated. A simpler but still unsolved problem

would be to consider approximations in the case where the ratios Bi

Ai
are not dis-

tinct.

Finally, we would like to know if there is any way to efficiently solve this prob-

lem on a graph with crossing edges, or on an arbitrary acyclic graph. We have

35

shown that the given algorithm will not work in this case. It is possible that some

variation may be more successful, or that an entirely different algorithm may be

required to solve this more complicated problem.

Bibliography

[1] Ravindra K. Ahuja. Dynamic shortest paths minimizing travel times and

costs. citeseer.nj.nec.com/512158.html, 2001.

[2] J. F. Bard and J. E. Bennett. Arc reduction and path preference in stochastic

acylic networks. Management Science, 37(2):198–215, 1991.

[3] Jonathan F. Bard and Jeanne L. Miller. Probabilistic shortest path problems

with budgetary constraints. Comput. Oper. Res., 16(2):145–159, 1989.

[4] Justin A. Boyan and Michael Mitzenmacher. Improved results for route plan-

ning in stochastic transportation. In Symposium on Discrete Algorithms, pages

895–902, 2001.

[5] A. W. Brander and Mark C. Sinclair. A comparative study of k-shortest path

algorithms. In Proc. 11th UK Performance Engineering Worksh. for Computer and

Telecommunications Systems, September 1995.

[6] I. Chabini. Discrete dynamic shortest path problems in transportation appli-

cations: Complexity and algorithms with optimal run time. Transportation

Research Records, 1645:170–175, 1998.

[7] Kenneth L. Cooke and Eric Halsey. The shortest route through a network with

time-dependent internodal transit times. J. Math. Anal. Appl., 14:493–498, 1966.

[8] Amir Eiger, Pitu B. Mirchandani, and Hossein Soroush. Path preferences and

optimal paths in probabilistic networks. Transportation Sci., 19(1):75–84, 1985.

37

[9] David Eppstein. Parallel recognition of series parallel graphs. Information &

Computation, 98(1):41–55, May 1992.

[10] R. W Hall. The fastest path through a network with random time-dependent

travel times. Transportation Science, 20(3):182–188, 1986.

[11] D. E. Kaufman and R. L. Smith. Fastest paths in timedependent networks

for intelligent vehicle-highway systems applications. IVHS Journal, 1(1):1–11,

1993.

[12] Terence Kelly. Further computational results on fastest paths in stochastic

time-dependent networks. citeseer.nj.nec.com/26139.html.

[13] A. Kerr. Utility maximising dynamic route selection in acyclic stochastic net-

works. In Proceedings of the First Western Pacific and Third Australia-Japan Work-

shop on Stochastic Models, Christchurch (New Zealand), pages 269–277, 1999.

[14] Andrew Kerr. Utility maximising stochastic dynamic programming: An

overview. citeseer.nj.nec.com/271595.html.

[15] Chao-Lin Liu and Michael P. Wellman. Using stochastic-dominance

relationships for bounding travel times in stochastic networks. cite-

seer.nj.nec.com/513777.html.

[16] Ronald Prescott Loui. Optimal paths in graphs with stochastic or multidimen-

sional weights. Comm. ACM, 26(9):670–676, 1983.

[17] E. D. Miller-Hooks and H. S. Mahmassani. Least possible time paths in

stochastic. To appear in Computers and Operations Research. 14, 1997.

38

[18] I. Murthy and S. Sarkar. Exact algorithms for the stochastic shortest path

problem with a decreasing deadline utility function. European J. Oper. Res.,

103(1):209–229, 1997.

[19] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algo-

rithms in networks with time-dependent edge-length. J. Assoc. Comput. Mach.,

37(3):607–625, 1990.

[20] Ariel Orda and Raphael Rom. Minimum weight paths in time-dependent

networks. Networks, 21(3):295–319, 1991.

[21] Stefano Pallottino and Maria Grazia Scutellà. Shortest path algorithms in

transportation models: classical and innovative aspects. Technical Report TR-

97-06, 14, 1997.

[22] J. Pemberton and R. Korf. Making locally optimal decisions on graphs with

cycles. Technical Report, Computer ScienceDepartment, University of Cali-

fornia at Los Angeles, 1992., 1992.

[23] Wim Pijls and Antoon Kolen. A general framework for shortest path algo-

rithms. citeseer.nj.nec.com/319172.html.

[24] Daniele Pretolani. A directed hypergraph model for random time dependent

shortest paths. citeseer.nj.nec.com/pretolani98directed.html.

[25] K. Scott, G. Pabon-Jimenez, and D. Bernstein. Finding alternatives to the

best path. Preprint 970682, The Transportation Research Board, January 1997.

From the 76th annual meeting of the TRB., 1997.

[26] Kiseok Sung, Michael G. H. Bell, Myeongki Seong, and Soondal Park. Shortest

39

paths in a network with time-dependent flow speeds. European J. Oper. Res.,

121(1):32–39, 2000.

[27] Michael P. Wellman, Matthew Ford, and Kenneth Larson. Path planning un-

der time-dependent uncertainty. pages 532–539.

	Shortest Path Problems: Multiple Paths in a Stochastic Graph
	Recommended Citation

	tmp.1553032813.pdf.oo5hk

