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Abstract

The Kapitza-Dirac Effect

An approach from QED

by David Clarke

May 2003

The Kapitza-Dirac effect is similar to the canonical experiment on diffraction

of electrons through slits in an opaque screen, except that the diffraction grating

has been replaced by a standing wave of light. Remarkably, incident electrons

are diffracted by the standing light wave almost as if by a standard diffraction

grating. Only recently has this effect been confirmed experimentally in this form

[1], although it was originally predicted by Kapitza and Dirac almost 70 years ago.

This paper examines the relativistic effects involved in this phenomena using the

formalism of quantum field theory.
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Chapter 1

Introduction

In 1933 Paul Dirac and P.L. Kapitza predicted that electrons would be deflected

in the presence of a standing wave of light. They theorized that, since light is

made up of electromagnetic fields, those fields would necessarily have an effect

on the path of an electron. Further, since the fields in a light wave are oscillatory,

the deflection resulting from a standing wave of light would be similar to that of

a diffraction grating made up of a number of slits in an otherwise opaque sheet.

Kaptiza and Dirac predicted that the wave-like diffraction of the electron would

create a coherent interference pattern. However, they concluded their publication

by writing

”We see, therefore, that the experiment could hardly be carried out with ordi-

nary continuous sources of light, and it seems to us that the only possibility would

be to produce the illumination by using an intense spark discharge instead of a

mercury arc. In this case, a much larger intensity will be obtained for a short time,

but, since the magnitude of the phenomena is proportional to the the square of the

intensity, this will increase the number of reflected electrons. The calculation of this

case is somewhat difficult, since certain losses will be present due to the broaden-

ing of the spectral lines in the spark discharge. Actual experiments will have to be

made to find out if it is possible to raise the momentary intensity without undue

broadening of the lines, in order to raise the intensity of the reflected beam to an

observable value.”
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A few important developments have been made since Kapitza and Dirac’s pre-

diction. Primary among these is the invention of the laser. The coherent nature of

laser light allows the increase in intensity mentioned by Kapitza and Dirac with

very little spectral broadening. In 2001, a group led by Herman Batelaan at the

University of Nebraska demonstrated for the first time the Kapitza-Dirac effect as

it had been predicted nearly 70 years before. Their results (covered in more de-

tail in chapter 2) showed the diffraction pattern of incident electrons to be in good

agreement with a numerical solution to the Schrodinger equation for the incident

electron in the presence of the oscillatory potential caused by the standing light

wave.

Another important development, however, has been in the advances of quan-

tum field theory. At present, our best description of the interaction of electrons

with light lies not with the Schrodinger equation but with the formalism of quan-

tum electrodynamics (QED). The Schrodinger equation has proved sufficient for

a description of the Batelaan group’s experiment, using 10 ns, .2 J laser pulses.

Where the Schrodinger equation’s description of this phenomena may break down

is in the high energy regime, using ’relativistic’ power levels in the laser, i.e. power

levels at which the electron would be expected to reach a significant fraction of

the speed of light in its deflection by the laser. The goal of this paper is to pro-

vide a description of the Kapitza-Dirac effect in such relativistic cases using QED,

and to predict the power levels at which any relativistic effect would dominate the

observed diffraction pattern of the electron.

It is shown, however, that the standard perturbative treatment of QED breaks

down at the laser intensities at which the Kapitza Dirac effect has been observed.

Chapter 2 of this paper discusses the experiment and results of the Batelaan

group

Chapter 3 will introduce the ‘coherent’ photon states and demonstrate their use

in describing standing waves of light.
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Chapter 4 begins the QED description of the Kapitza-Dirac effect.

Chapter 5 will conclude with a summary of our major results.

Appendix A will cover the notation and unit system that will be used for this

paper, including a glossary of the commonly used symbols.



Chapter 2

Summary of the Results of the Batelaan group

The experiment conducted by Herman Batelaan’s research group at the Univer-

sity of Nebraska was set up as follows, (and as shown in Figure 1): laser light from

a Nd:YAG laser is reflected off of a lens to create a standing light wave. The light

occurs in 10-ns pulses, each with of 0.2 J of energy and a beam waist of 125 µm.

A collimated beam of 380 eV electrons is sent through this grating of light, and a

diffraction pattern is observed 24cm downstream of the interaction. The observed

maxima of the diffraction pattern occur regularly, with a spacing of

55µm= 2 λdb

λopt
(×24cm), where λdb is the de Broglie wavelength of the electrons and

λopt is 532 nm, the wavelength of the laser light. Since λdb = 2π~

p
and λopt = c

2πω
,

2 λdb

λopt
= 2~ω/c

p
corresponds to two photon recoils separating each peak. The fac-

tor of 2 is explained classically by the the Batelaan group as the ratio between the

light grating periodicity and the wavelength of the light. Figure 2 shows the data

gathered by the Batelaan group, as well as a numerical solution to the Schrodinger

equation for their experimental parameters. Both figures (and their captions) are

taken from the Nature article authored by the group [1]. The Schrodinger equation

proved sufficient to describe the Kapitza-Dirac effect in this experiment, but it may

not work as well in all energy regimes for the electrons and intensity ranges for the

laser light.
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Figure 2.1: Schematic of [Batelaan Group] Apparatus. Electrons are collimated by four molyb-
denum slits and diffract from a standing wave of light formed by two counter propagating laser
beams. The electrons must be described by a quantum mechanical wave while the standing light
wave acts as a grating.
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Figure 2.2: Experimental data. The electron detection rate is presented as a function of detector
position. [The Batelaan Group’s] data (black points) agree reasonably well with a numerical solu-
tion of the Schrodinger Equation.... and clearly show diffraction peaks, which is the signature of
the Kapitza-Dirac effect. The bottom figure shows the electron beam profile with the laser beams
turned off.



Chapter 3

Coherent States and Standing Waves

The first hurdle in finding a quantum field theoretic description of the Kapitza-

Dirac effect lies in the determination of the initial state. While the electron can be

assumed to begin in a momentum eigenstate while far from the area of the inter-

action, the photon state is a bit more complicated. A standard photon occupancy

state would consist of a definite number of photons with a particular wave vector

and indeterminant phase and amplitude. Laser light has within it an indetermi-

nant total number of photons, but the light is known to have definite phase and

amplitude. As such, laser light is well described not by an occupancy number, but

by a ’coherent’ state of light, as defined below.

3.1 Coherent States

A coherent state of light in a particular mode k is defined to be an eigenstate of the

photon lowering operator, such that

âk|vk〉 = vk|vk〉. (3.1)

In terms of the standard photon occupancy (Fock) states for the mode k,

|vk〉 = e−
|vk|2

2

∞∑

nk=0

vnk

k√
nk!

|nk〉 (3.2)

where |nk〉 represents a state with n photons in the mode k

Since the number operator for photons in the mode k is N̂ = â
†
kâk, the expected

number of photons in the state |vk〉 is

〈vk|N̂ |vk〉 = 〈vk|â†kâk|vk〉 = (〈vk|â†k)(âk|vk〉) = v∗v〈vk|vk〉 = |vk|2. (3.3)
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3.2 The displacement operator

Equation 3.2 can also be written as:

|vk〉 = e−
|vk|2

2 evkâ†
k |0〉, (3.4)

where |0〉 is the vacuum state.

Since a lowering operator maps the vacuum state to zero, there is no harm in

inserting ev∗
k
âk next to the vacuum state above. Then

|vk〉 = e−
|vk|2

2 evkâ†
ke−v∗

k
âk |0〉

= evkâ†
k
−v∗

k
âk |0〉 (3.5)

= D̂k(vk)|0〉 (3.6)

where the last line is a definition. The second line above uses the identity that for

two operators Â and B̂,

eÂ+B̂ = eÂeB̂e−
[Â,B̂]

2 (3.7)

provided that
[
Â, [Â, B̂]

]
=

[
B̂, [Â, B̂]

]
= 0, which is true for

Â = vkâ
†
k, B̂ = −v∗kâk, [Â, B̂] = |v|2,

D̂k(vk) is known as the displacement operator. Some important properties of

this operator are:

D̂
†
k(vk) = D̂−1

k (vk) = D̂k(−vk) (3.8)

and

D̂
†
k(vk)âkD̂k(vk) = âk − [vkâ

†
k − v∗kâk, âk] = âk + vk (3.9)

D̂
†
k(vk)â

†
kD̂k(vk) = âk + v∗k (3.10)
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The first of these properties can be proven by noting that −i(vkâ
†
k − v∗k)âk is

a manifestly hermitian operator, and that for any hermitian operator Ôh, eiÔh is

unitary.

The conjugation relations can be obtained from the operator identity that when-

ever
[
Â, [Â, B̂]

]
= 0,:

e−ÂB̂eÂ = B̂ − [Â, B̂] (3.11)

with Â = vkâ
†
k − v∗kâk, and B̂ = âk or B̂ = â

†
k

3.3 Waves

For a coherent state |vk〉, the expected value of the electromagnetic vector potential

Âµ =
∑

k′,λ′

c

√
2π~

ωk′V
εµ(k′, λ′)

(
âk′,λ′ei(~k′·~x−wk′ t) + â

†
k′,λ′e

−i(~k′·~x−wk′ t)
)

(3.12)

is given by

〈vk|Âµ|vk〉 = 〈0|D̂†(vk)ÂµD̂(vk)|0〉.

Since D̂†(vk)âk′D̂(vk)|0〉 = âk + vkδk,k′ , and letting v = |v|eiφ,

D̂
†

(vk)ÂµD̂(vk) = Âµ + c

√
2π~

ωkV
εµ(k, λ)

(
vk,λe

i(~k·~r−wkt) + v∗k,λe
−i(~k·~x−wkt)

)

= Âµ + 2c

√
2π~

ωkV
|vk|εµ(k, λ) cos(~k · ~x− wkt+ φ). (3.13)

Hence, since 〈0|Âµ|0〉 = 0,

〈vk|Âµ|vk〉 = 2c

√
2π~

ωkV
|vk|εµ(k, λ) cos(~k · ~x− wkt+ φ) (3.14)

That is, the expected value of the vector potential for a coherent state |vk〉 is a

plane wave of definite phase φ and amplitude proportional to |v| traveling in the k

direction. This is a good description of a laser beam, which has definite phase and

amplitude.
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In the case of the Kapitza-Dirac effect, the standing wave of light is created by

two counter propagating laser beams. Following the above logic, the combined

state of these beams is given by |vk, v−k〉. The expectation value of Âµ is given by

〈vk, v−k|Âµ|vk, v−k〉 = 〈0|D̂†(vk)D̂
†(v−k)ÂµD̂(v−k)D̂(vk)|0〉.

As before, since D̂†(vk)âk′D̂(vk)|0〉 = âk + vkδk,k′ , and letting v = |v|eiφ,

D̂†(vk)D̂
†(v−k)ÂµD̂(v−k)D̂(vk) = Âµ + c

√
2π~

ωkV
εµ(k, λ+)

(
vk,λ+ei(~k·~x−wkt) + v∗k,λ+e

−i(~k·~x−wkt)
)

+

c

√
2π~

ω−kV
εµ(−k, λ−)

(
v−k,λ−ei(−~k·~x−w−kt) + v∗−k,λ−e

−i(−~k·~x−w−kt)
)
.

Note that ωk = ω−k Then, assuming that the counter-propagating laser modes

have the same magnitude (i.e. |vk| = |v−k|), with phases φ+and φ−, (and that both

modes are polarized in the same direction, so that εµ(k, λ+) = εµ(−k, λ−) = εµ(k)),

D̂†(vk)D̂
†(v−k)ÂµD̂(v−k)D̂(vk) = Âµ + c

√
2π~

ωkV
|v|εµ(k)

(
eiφ+

ei(~k·~x−wkt) + e−iφ+

e−i(~k·~x−wkt) +

eiφ−

ei(−~k·~x−wkt) + e−iφ−

e−i(−~k·~x−wkt)
)

= Âµ + 4c

√
2π~

ωkV
|v|εµ(k) cos (~k · ~x+ φ+ − φ−) cos (wkt−

φ− + φ+

2
).

Again, since 〈0|Âµ|0〉 = 0 the expected value of the vector potential is a standing

wave in space:

〈vk, v−k|Âµ|vk, v−k〉 = 4c

√
2π~

ωkV
|v|εµ(k) cos (~k · ~x+ φ+ − φ−) cos (wkt−

φ− + φ+

2
)



Chapter 4

The Kaptiza-Dirac Effect.

We are now ready to attempt a quantum field theoretic description of the Kapitz-

Dirac effect.

Let Ĥ(t) = −ie
∫ ̂̄ψ(~x, t)γµψ̂(~x, t)Âµd3x be the standard quantum electrody-

namic interaction hamiltonian (see appendix for definition of ψ̂). The interaction

time development operator Û(t, t0) is then given by the integral equation:

Û(t, t0) = Î − i

∫ t

t0

dt′Û(t, t′)Ĥ(t′). (4.1)

For a general operator Ô, let ̂̃
O = D̂†(vk)D̂

†(v−k)ÔD̂(v−k)D̂(vk), and for a ket |i〉,
let |̃i〉 = D̂†(v−k)D̂

†(vk)|i〉 so that for arbitrary initial and final states |i〉 and 〈f |

〈f |Û(t, t0)|i〉 = 〈f̃ | ̂̃U(t, t0)|̃i〉. (4.2)

Then
̂̃
U(t, t0) = Î − i

∫ t

t0

dt′
̂̃
U(t, t′)

̂̃
H(t′) (4.3)

Note that in the case of the Kapitza-Dirac effect, |i〉 = |vk, v−k, e
−
pi
〉, so |̃i〉 =

|e−pi
〉. This simplifies somewhat the calculation involved in determining the time

development of this state, as shall be seen.

Now since D̂ acts only on the space of photons, the operators ψ̂ and ̂̄ψ act only

on the space of electrons,and so ̂̃
H = e

∫ ̂̄ψ(~x, t)γµψ̂(~x, t)
̂̃
Aµd3x. As we saw in chap-

ter 5, however,

̂̃
Aµ = Âµ + 4c

√
2π~

ωkV
|v|εµ(k) cos (~k · ~x+ φ+ − φ−) cos (wkt−

φ− + φ+

2
) (4.4)
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so

̂̃
H = Ĥ−ie

∫
4c

√
2π~

ωkV
|v|εµ(k) cos (~k · ~x+ φ+ − φ−) cos (wkt−

φ− + φ+

2
)̂̄ψ(~x, t)γµψ̂(~x, t)d3x

(4.5)

Define the second term of the above expression, describing the interaction of an

electron with a classical standing wave of light, as F̂ , so that

̂̃
H(t) = Ĥ(t) + F̂ (t) (4.6)

Then

̂̃
U(t, t0) = Î − i

∫ t

t0

dt′
̂̃
U(t, t′)(Ĥ(t′) + F̂ (t′))

= Î − i

∫ t

t0

dt′
̂̃
U(t, t′)Ĥ(t′) − i

∫ t

t0

dt′
̂̃
U(t, t′)F̂ (t′) (4.7)

A standard approach to perturbative quantum electrodynamics at this point

would be to use this equation to substitute iteratively for ̂̃
U . Unfortunately, in the

case of the Kapitza-Dirac Effect, the perturbative approach to quantum field theory

is largely ineffective. The perturbative approach relies upon the condition that the

interaction hamiltonian is small compared to unity. Since the hamiltonian for the

interaction is given by −ie
∫ ̂̄ψ(~x, t)γµψ̂(~x, t)Âµd3x, this requirement is usually met

because of the factor of e =
√
α ≈

√
1

137
that causes each term in the expansion to be

geometrically smaller than the last. However, in the Kapitza-Dirac effect, F̂ is pro-

portional to |v|, which is the squareroot of the number of photons expected in each

mode of the standing wave. Hence, if this expected number is on the order of about

137 or greater, the perturbative approach can no longer be applied, as the series ex-

pansion may not even converge. Since a laser has, in general, an expected |v|2 = E
~ω

photons, where E is the energy of the laser pulse, this approach is rarely useful.

For example, in the Batelaan group’s experiment,E = 0.2J , λ = 2πc
ω

= 532nm, so

|v|2 ≈ 5.7 × 1017, far outside of a perturbative regime. There is, however, a form

of ̂̃
U(t, t0) that will allow some qualitative arguments to be made in comparing the

QED description of the effect to the classical description.
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4.1 Qualitative arguments about the Kapitza Dirac effect

Define a new unitary operator M̂(t, t0) by the differential equation:

i
∂

∂t
M̂(t, t0) = F̂ (t)M̂(t, t0). (4.8)

M̂(t, t0) describes the time evolution of a quantized Dirac particle in the presence

of a classical standing wave potential. Let ÛM(t, t0) = M̂(t, t0)
† ̂̃U(t, t0) Then

̂̃
U(t, t0) = M̂(t, t0)ÛM(t, t0) and

i
∂

∂t
(ÛM(t, t0)) = i

∂

∂t
(M̂(t, t0)

† ̂̃U(t, t0))

= i
∂

∂t
(M̂(t, t0)

†) ∗ ̂̃
U(t, t0) + M̂(t, t0)

† ∗ i ∂
∂t

(
̂̃
U(t, t0))

= −M̂(t, t0)
†F̂ (t) ∗ ̂̃

U(t, t0) + M̂(t, t0)
† ∗ (H(t) + F (t))

̂̃
U(t, t0)

= M̂(t, t0)
† ∗H(t)

̂̃
U(t, t0) (4.9)

Where the third line makes use of the adjoint of the definition of M̂ :

−i ∂
∂t
M̂(t, t0)

† = M̂(t, t0)
†F̂ (t).

Defining ĤM(t, t0) = M̂(t, t0)
†Ĥ(t)M̂(t, t0), it is evident that

i
∂

∂t
ÛM(t, t0) = ĤM(t, t0)ÛM(t, t0). (4.10)

The purpose of all this symbol pushing now becomes more clear: Since M̂ is uni-

tary, ψ̂M̂ is normalized in the same fashion as ψ̂. Hence,

ĤM = M̂ †(t, t0)(−ie
∫ ̂̄ψ(~x, t)γµψ̂(~x, t)Âµd3x)M̂(t, t0) is of the same order as Ĥ (i.e.

√
α) and can be treated perturbatively. This allows a meaningful series expansion
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to be written for the time development of the system:

̂̃
U(t, t0) = M̂(t, t0)ÛM(t, t0)

= M̂(t, t0)
[
Î − i

∫ t

t0

dt′ĤM(t′) +

(−i)2

∫ t

t0

dt1

∫ t

t1

dt′ĤM(t′)ĤM(t1) +

(−i)3

∫ t

t0

dt2

∫ t

t2

dt1

∫ t

t1

dt′ĤM(t′)ĤM(t1)ĤM(t2) + . . .
]

= M̂(t, t0) − i

∫ t

t0

dt′M̂(t, t′)Ĥ(t′)M̂(t′, t0) +

(−i)2

∫ t

t0

dt1

∫ t

t1

dt′M̂(t, t′)Ĥ(t′)M̂(t′, t1)Ĥ(t1)M̂(t1, t0) +

(−i)3

∫ t

t0

dt2

∫ t

t2

dt1

∫ t

t1

dt′M̂(t, t′)Ĥ(t′)M̂(t′, t1)Ĥ(t1)M̂(t1, t2)Ĥ(t2)M̂(t2, t0) + . . .

If the (transformed) initial state is a single electron, this form has the interesting

physical interpretation that the electron is propagating in the presence of a classical

field, and at various times (t′,t1, etc.), interacts with the quantized electromagnetic

field by emitting or absorbing a photon (or a virtual photon). Each term in the

expansion represents a possible number of interactions with the quantized field,

and the integrals are taken over all possible times for these interactions.

If the initial and final photon states are the same, and |i〉 = |vk, v−k, e
−
pi
〉, then

|̃i〉 = |e−pi
〉, and 〈f̃ | = 〈e−pf

|, so to second order in
√
α

〈f̃ | ̂̃U(t, t0)|̃i〉 = 〈e−pf
| ̂̃U(t, t0)|e−pi

〉 (4.11)

≈ 〈e−pf
|M̂(t, t0)|e−pi

〉

−i
∫ t

t0

dt′〈e−pf
|M̂(t, t′)Ĥ(t′)M̂(t′, t0)|e−pi

〉

+(−i)2

∫ t

t0

dt1

∫ t

t1

dt′〈e−pf
|M̂(t, t′)Ĥ(t′)M̂(t′, t1)Ĥ(t1)M̂(t1, t0)|e−pi

〉.

Since

Ĥ = −ie
∫

d3x̂̄ψ(~x, t)γµψ̂(~x, t)
∑

k′,λ′

c

√
2π~

ωk′V
εµ(k′, λ′)

(
âk′,λ′ei(~k′·~x−wk′ t)+â†k′,λ′e

−i(~k′·~x−wk′ t)
)
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is linear in the photon creation and annihilation operators, and M̂ has no effect

on the photon state, the first order term above is identically zero. Hence, the first

correction to 〈e−pf
|M̂(t, t0)|e−pi

〉 comes in at a factor of (
√
α)2 ≈ 1

137
smaller than the

zeroth order term.

The largest contribution to the electron’s behavior from interactions with the

quantized vector potential Âµ occurs at first order in
√
α with the electron emitting

a single photon into the mode kf . This process is commonly known as bremsstrahlung.

In this case, 〈f̃ | = 〈e−pf
|âkf

, so

〈f̃ | ̂̃U(t, t0)|̃i〉 = 〈e−pf
|âkf

̂̃
U(t, t0)|e−pi

〉 ≈ −i
∫ t

t0

dt′〈e−pf
|âkf

M̂(t, t′)Ĥ(t′)M̂(t′, t0)|e−pi
〉

= −i
∫ t

t0

dt′〈e−pf
|âkf

M̂(t, t′)
(
− ie

∫
d3x′ ̂̄ψ(~x, t)γµψ̂(~x, t)

×
∑

k′

c

√
2π~

ωk′V
εµ(k′)â†k′e

−i(~k′·~x′−wk′ t
′)
)
M̂(t′, t0)|e−pi

〉

= −ec
√

2π~

ωkf
V
εµ(kf )

∫ t

t0

dt′
∫

d3x′e
−i(~kf ·~x

′−wkf
t′)

×〈e−pf
|M̂(t, t′)̂̄ψ(~x′, t′)γµψ̂(~x′, t′)M̂(t′, t0)|e−pi

〉, (4.12)

where the last step follows from the fact that M̂ does not act on the photon state.

The probability amplitudes of each of these processes can then be calculated

dependent upon knowledge of M , the time development operator for the classical

standing wave interaction with the quantized Dirac field.

Unfortunately, while this term can be understood qualitatively, it is difficult,

given the strength of the electromagnetic field, to find a solution to the differen-

tial equation i ∂
∂t
M̂(t, t0) = F̂ (t)M̂(t, t0). However, the qualitative results above do

show that to a good approximation, the vector potential can be treated classically

for the Kapitza-Dirac Effect.
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4.2 The Perturbative regime

While it is not a commonly realized physical situation, it is interesting to investi-

gate the behavior of an electron in the presence of a standing wave of light with a

low expected number of photons. In this case, the equation

̂̃
U(t, t0) = Î − i

∫ t

t0

dt′
̂̃
U(t, t′)(Ĥ(t′) + F̂ (t′)) (4.13)

becomes, in a series expansion:

̂̃
U(t, t0) = Î − i

∫ t

t0

dt′(Ĥ(t′) + F̂ (t′)) + (−i)2

∫ t

t0

dt1

∫ t

t1

dt′(Ĥ(t′) + F̂ (t′))(Ĥ(t1) + F̂ (t1)) +

(−i)3

∫ t

t0

dt2

∫ t

t2

dt1

∫ t

t1

dt′(Ĥ(t′) + F̂ (t′))(Ĥ(t1) + F̂ (t1))(Ĥ(t2) + F̂ (t2)) + . . . .

If the number of photons expected in each mode of the standing wave is small

compared to 1
α
≈ 137, then each term in this series is smaller than the last. If the

transformed initial and final states are, respectively, |e−pi
〉 and 〈e−pf

|, then, since H

must either create or destroy a photon and F acts only on the electron state, to

second order in
√
α the series becomes:

̂̃
U(t, t0) ≈ 〈e−pf

|e−pi
〉 − i

∫ t

t0

dt′〈e−pf
|F̂ (t′)|e−pi

〉

+(−i)2

∫ t

t0

dt1

∫ t

t1

dt′(〈e−pf
|Ĥ(t′)Ĥ(t1)|e−pi

〉 + 〈e−pf
|F̂ (t′)F̂ (t1)|e−pi

〉).

The scattering matrix Sfi = 〈f |Û(∞,−∞)|i〉 = 〈f̃ | ̂̃U(∞,−∞)|̃i〉. To second

order, this is:

Sfi ≈ 〈e−pf
|e−pi

〉 − i

∫ ∞

−∞

dt′〈e−pf
|F̂ (t′)|e−pi

〉

+(−i)2

∫ ∞

−∞

dt1

∫ ∞

t1

dt′(〈e−pf
|Ĥ(t′)Ĥ(t1)|e−pi

〉 + 〈e−pf
|F̂ (t′)F̂ (t1)|e−pi

〉).
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The first order correction term in this expansion is:

−i
∫ ∞

−∞

dt′〈e−pf
|F̂ (t′)|e−pi

〉 = −i
∫

d4x′〈e−pf
|̂̄ψ(~x′, t′)γµψ̂(~x′, t′)|e−pi

〉 ×

(−ie4c
√

2π~

ωkV
|v|εµ(k) cos (~k · ~x+ φ+ − φ−) cos (wkt−

φ− + φ+

2
)).

Now

〈e−pf
|̂̄ψ(~x′, t′)γµψ̂(~x′, t′)|e−pi

〉 =
mc2

V
ū(sf )(pf )e

−i(
pf ·~x−Ef t

~
)γµu(si)(pi)e

−i(
pi·~x−Eit

~
),

so, using the identity
∫

dx′ekx = 2πδ(k),

−i
∫ ∞

−∞

dt′〈e−pf
|F̂ (t′)|e−pi

〉 = −eū(sf )(pf )γ
µεµ(k, λ)u(si)(pi)

m
√

2pi|v|(2π)4

√
EfEiωkV 3

×

[
δ(~k − ~pf + ~pi)[δ(

Ef − Ei

~
− ωk)e

iφ+

+ δ(
Ef − Ei

~
+ ωk)e

−iφ−

]

+δ(−~k − ~pf + ~pi)[δ(
Ef − Ei

~
− ωk)e

iφ−

+ δ(
Ef − Ei

~
+ ωk)e

−iφ+

]
]
.

Qualitatively, this term shows the electron momentum changing by one photon

recoil in each direction. The energy delta functions show the electron gaining or

losing the energy of a single photon of frequency ω as it emits or absorbs a photon

from the modes k or −k of the standing wave.

Similarly, the second order term includes (−i)2
∫ ∞

−∞
dt1

∫ ∞

t1
dt′〈e−pf

|Ĥ(t′)Ĥ(t1)|e−pi
〉,

a mass correction term that will result in no momentum change, and

(−i)2
∫ ∞

−∞
dt1

∫ ∞

t1
dt′〈e−pf

|F̂ (t′)F̂ (t1)|e−pi
〉, a term that will result in momentum delta

functions corresponding to two photon recoils (for a net momentum change of 0

or 2k).

We would expect, then, that the electron diffraction pattern upon passing through

a low intensity standing wave would have peaks corresponding to integer num-

bers of photon recoils. Comparing this prediction with the experimental data of

the Batelaan group, the finite width of the observed peaks can be attributed to the

non-idealities of the system not taken into account by this simple model. For in-

stance, the electron should be described by a gaussian wave packet rather than
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a single momentum eigenstate. This accounts for the smooth appearance of the

diffraction pattern. One notes, however, the clear discrepancy between the low

intensity theory and the high intensity experiment that while the peaks are pre-

dicted to occur at integer numbers of photon recoils, they actually occur at only

even numbers of recoils. This is a problem that bears further investigation. The

resolution of this issue, if it is not a fundamental change in the behavior in low and

high intensity versions of the experiment, may lie in a more thorough treatment of

the polarization of the beam and the phases φ+ and φ− of the counter-propagating

waves.



Chapter 5

Conclusion

While we have met with some success in describing the initial state of the

system for the light in the Kapitza-Dirac effect as a direct product of counter-

propagating coherent states, the direct approach to the understanding of the Kapitza-

Dirac effect via a perturbative expansion has been stymied by the formally diver-

gent series that results from the effective hamiltonian Ĥ + F̂ being large compared

to unity. However, indirect approaches to the problem, such as those explored in

chapter 4, look to be promising. The full quantum electrodynamic time develop-

ment matrix

Ufi(t, t0) = 〈f |Û(t, t0)|i〉 in the case of the Kapitza Dirac effect appears to be equiv-

alent to first order in
√
α to the time development matrix for an electron interacting

with a classical standing wave vector potential. This qualitative agreement is bol-

stered by the apparent success of the classical Schrodinger equation in describing

the data seen by the Batelaan group.

An issue which requires resolution is the behavior of the system at low laser

intensities, which has peaks predicted at all integer numbers of photon recoils. This

is qualitatively different than the peaks observed only at even integer numbers of

photon recoils by the Batelaan group at high laser intensities. Either there exists

some transition between these two behaviors as the laser intensity increases, or

the low energy prediction must be reexamined in order to account for this missing

factor of 2. The next step toward a quantum electrodynamic description of the

Kapitza Dirac effect would appear to be in solving the differential equation for the
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classical potential time development operator M(t, t0), i.e.

i
∂

∂t
M̂(t, t0) = F̂ (t)M̂(t, t0). (5.1)

Given a solution to this equation, the scattering amplitudes involved in the Kapitza-

Dirac effect can be approximated to second order in
√
α using the straightforward

(if symbolically complicated) prescription of eqs. 4.11 and 4.12.



Appendix A

Notation

This paper will use the standard Dirac, (or Bra(c)ket ) notation to represent the

states of the particles discussed. Linear operators will be represented with hats

(e.g. Ô), and their adjoints by daggers (e.g. Ô†). Equations and normalization

factors are given in gaussian units. The notation of quantum electrodynamics

can quickly become overwhelming. For convenience, there follows here a list of

definitions of common symbols used in this paper.

âk is the lowering operator for the mode k. For a Fock occupancy state |n〉k of n

photons in mode k, âk|n〉k =
√
n|n− 1〉k. â†k is the raising operator for the mode k.

For a Fock occupancy state |n〉k of n photons in mode k, â†k|n〉k =
√
n+ 1|n+ 1〉k.

The commutation relations for â†k and âk are:

[âk, â
†
k′ ] = δk,k′

[âk, âk′ ] = 0

[â†k, â
†
k′ ] = 0

Âµ is the quantized vector potential operator:

Âµ =
∑

k′,λ′ c
√

2π~

ωk′V
εµ(k′, λ′)

(
âk′,λ′ei(~k′·~x−wk′ t) + â

†
k′,λ′e−i(~k′·~x−wk′ t)

)

εµ(k, λ) is the polarization vector associated with a particular mode k, λ of

the quantized electromagnetic field.
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F̂ is used in this paper to denote the electron space operator resultant

from using the classical standing wave potential for Âµ in the formula

−ie
∫ ̂̄ψ(~x, t)γµψ̂(~x, t)Âµd3x for the interaction hamiltonian. i.e.,

F̂ = −ie
∫

4c
√

2π~

ωkV
|v|εµ(k) cos (~k · ~x+ φ+ − φ−) cos (wkt− φ−+φ+

2
)̂̄ψ(~x, t)γµψ̂(~x, t)d3x

ψ̂ is the quantized Dirac wave operator:
∑

~p′,s′

√
mc2

EV

[
b̂
(s′)
~p′ u

(s′)(~p′)ei( ~p·~x
~

−E′t
~

) + d̂
(s′)†
~p′ v(s′)(~p′)e−i( ~p·~x

~
−E′t

~
)
]

where b̂ is the electron annihilation operator, d̂† is the positron creation operator,

and the sum is over all possible momenta p and spins s for the electrons and

positrons. u and v are bispinors satisfying

(iγµp
µ +mc)u(s)(~p) = 0

(−iγµp
µ +mc)v(s)(~p) = 0 (A.1)

where γµ with µ = 1, 2, 3, 4 are 4 × 4 matrices satisfying the anticommutation rela-

tions

{γµ, γν} = 2δµν (A.2)

b̂ and d̂ satisfy the anticommutation relations:

{b̂(s)~p , b̂
(s′)†
~p′ } = δp,p′δs,s′

{d̂(s)
~p , d̂

(s′)†
~p′ } = δp,p′δs,s′

{d̂(s)
~p , d̂

(s′)
~p′ } = {d̂(s)†

~p , d̂
(s′)†
~p′ }

= {b̂(s)~p , b̂
(s′)
~p′ } = {b̂(s)†~p , b̂

(s′)†
~p′ }

= {d̂(s)
~p , b̂

(s′)†
~p′ } = {d̂(s)†

~p , b̂
(s′)
~p′ }

= {d̂(s)†
~p , b̂

(s′)†
~p′ } = {d̂(s)

~p , b̂
(s′)
~p′ } = 0 (A.3)
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