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Abstract

A Combinatorial Analogue of the Poincaré-Birkhoff

Fixed Point Theorem

by John C. Cloutier

May 2003

Results from combinatorial topology have shown that certain combinatorial

lemmas are equivalent to certain topologocal fixed point theorems. For example,

Sperner’s lemma about labelings of triangulated simplices is equivalent to the fixed

point theorem of Brouwer. Moreover, since Sperner’s lemma has a constructive

proof, its equivalence to the Brouwer fixed point theorem provides a constructive

method for actually finding the fixed points rather than just stating their existence.

The goal of this research project is to develop a combinatorial analogue for the

Poincaré-Birkhoff fixed point theorem.
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Chapter 1

Introduction

The study of combinatorial topology examines ways in which methods from

combinatorics can be used to obtain topological results. By triangulating a topo-

logical space, we can often make that space more tractable for study. For example,

by triangulating a space
�

we can compute the simplicial homology groups of
�

in

a straightforward manner, whereas computing the equivalent singular homology

groups for the untriangulated space may be more difficult [9]. In certain situations,

we can even prove results from topology using combinatorial theorems. For exam-

ple, the combinatorial lemma of Sperner can be used to prove the Brouwer fixed

point theorem [12], and the combinatorial lemma of Tucker can be used to prove

the Borsuk-Ulam theorem [7], [4]. We further discuss the relationship between

Sperner’s lemma and the Brouwer fixed point theorem below. More recently, meth-

ods from combinatorial topology have been used to solve fair division problems.

Simmons (see [11]) used Sperner’s lemma to solve the classical cake-cutting prob-

lem, in which one seeks to divide a cake among � -people such that each person

feels that the piece they receive is the most desirable piece.

In this thesis, we begin by discussing the equivalence of Sperner’s lemma and

the Brouwer fixed point theorem. We then use techniques developed in this dis-

cussion to develop a combinatorial analogue of the Poincaré-Birkhoff fixed point

theorem.
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1.1 Terminology

Before we begin our discussion of the Sperner-Brouwer equivalence, we define

some terms that we shall use throughout this paper.

An � ������� -polytope � is the convex hull of � points, ��	
���
��������������� , in ��� . These

points are called the vertices of � . A simplex is a �������
����� -polytope, the convex

hull of ����� affinely independent points in � � , and may be thought of as a � -

dimensional tetrahedron. A face of a polytope is the convex hull of any subset of

the vertices of that polytope. A face of codimension 1 is called a facet.

A triangulation � of � is a finite collection of distinct simplices such that: (i) the

union of all the simplices in � is � , (ii) the intersection of any two simplices in � is

either empty or a face common to both simplices and (iii) every face of a simplex

in � is also in � . The vertices � 	!���"�#�����������$� are called vertices of � to distinguish them

from the vertices of the triangulation � . A Sperner labelling of � is a labelling of the

vertices of � that satisfies these conditions: (1) all vertices of � have distinct labels

�
�&%'��������� � and (2) the label of any vertex of � which lies on a facet of � matches the

label of one of the vertices of � that spans that facet. A full cell is any � -dimensional

simplex in � whose �(�)� vertices possess distinct labels.

The statement of Sperner’s lemma is given below. Proofs of this lemma can be

found in [11] and [2].

Theorem 1 (Sperner’s Lemma). Any Sperner labelled triangulation of a simplex con-

tains an odd number of full cells.

De Loera, Peterson, and Su recently proved a generalization of Sperner’s lemma

for polytopes [3]. It states:

Theorem 2 (The Polytopal Sperner Lemma). Any Sperner labelled triangulation of

an � �*�&� � -polytope must contain at least �,+-� full cells.
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The following figure gives an example of a Sperner labelled simplex and a

Sperner labelled polytope.
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Figure 1.1: A sperner labeled triangle (2-simplex) and pentagon ( ��������� -polytope). Full cells are
shaded.

The above theorems are equivalent to the Brouwer fixed point theorem. Sim-

ilarly, Tucker’s lemma, a combinatorial statement about triangulated spheres, is

equivalent to the Borsuk-Ulam theorem. Constructive proofs of these combinato-

rial lemmas have been used to develop algorithms to locate the fixed point guar-

anteed by the Brouwer theorem or the antipodal points guaranteed by the Borsuk-

Ulam theorem [12], [4]. In order to give an idea of how this works, in the next

section we prove the Brouwer fixed point theorem via Sperner’s lemma and de-

scribe how a constructive proof of Sperner’s lemma can be used to find the fixed

point.
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1.2 Sperner Implies Brouwer

The importance of the Sperner lemma is seen through its equivalence to the Brouwer

fixed point theorem. We are mainly interested in one direction of this equivalence,

namely the proof that Sperner’s lemma implies the Brouwer fixed point theorem.

The Brouwer fixed point theorem states:

Theorem 3 (The Brouwer Fixed Point Theorem). Let � � denote the n-dimensional

ball. Then every continuous map ����� ��� � � has a fixed point.

To prove this theorem via Sperner’s lemma, we shall triangulate a regular � -

simplex � , which is homeomorphic to the ball � � , use the map � to provide a

Sperner labelling for that triangulation, and use the existence of a full cell to show

the existence of a fixed point of � .

Proof. Begin by giving the vertices of � distinct labels. To determine the labels

of the remaining vertices, we define an auxiliary function � on the vertices in the

following way: for each vertex � , we draw the ray from �*� � � through � . We define

the point at which this ray intersects the boundary to be � � � � . Now, we label the

vertex � with the same label as the vertex of � to which � � �'� lies the closest. If � � � �
lies the same distance from more than one vertex of � , then we give � the label of

one of these vertices. This procedure is shown in Figure 1.2.

This labeling by the retract � is a Sperner labeling since all of the vertices of �
have distinct labels and for any vertex � on the boundary of � , � � �'�
	 � , so � will

be given the same label as one of the vertices of � that span the face of the � that

contains � .

Now, suppose that the map � has no fixed points. Then the retract � is defined

on each point of � . Since the map � is continuous, the map � must also be continu-

ous. In fact, since � is compact, � must be uniformly continuous. Now, let �
��� be
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Figure 1.2: The vertex � is labelled via � ��� � .

less than one half the side length of � , and choose
� ��� according to the definition

of uniform continuity of � .
To arrive at a contradiction, we give � a triangulation � such that the mesh size

of � is smaller than
�
. Label the vertices of � according to � . This is a Sperner label-

ing, and thus it contains a full cell. Since the vertices of a full cell all have distinct

labels, � maps the vertices of this cell to the boundary of � in such a way that the

images of no two vertices are closest to the same vertex of � . Thus, there must be a

pair of vertices of the full cell whose images are at least half of the side length of �
apart. That is, there are vertices less than

�
apart whose images under � are more

than � apart. Thus, � cannot be uniformly continuous, which is a contradiction.

Therefore, the map � must have a fixed point.
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That the existence of a full cell implies the existence of a fixed point makes

intuitive sense. For in order for a cell of the triangulation to have all distinct labels,

� spreads the vertices of this cell out in different directions which, in turn, means

that � maps the vertices of this cell in different directions. So, since � is continuous,

there must be point near the full cell that is not moved at all by � , or a fixed point.

Thus, fixed points can be found near full cells.

The usefulness of the Sperner-Brouwer equivalence comes from the fact that

Sperner’s lemma can be proved constructively. That is, the proof of Sperner’s

lemma provides a method of actually locating the full cells. We will outline the

procedure for a 2-simplex or a triangle. It is easily generalized to higher dimen-

sions through induction, and a detailed proof can be found in [11].

Given a Sperner labelled 2-simplex � , we show the existence of a full cell via a

path following argument. Suppose the vertices of the triangulation � of � are given

labels 1, 2, or 3. We may view cells of this triangulation as rooms, and edges labeled

with a 1 and a 2, which we will call � �
�&% � -edges, as doors to these rooms. Now, a

given cell has 0, 1, or 2 doors since it is possible for a cell to contain as many � �
�&% � -
edges. Notice that the only cells that contain exactly one door are full cells. Now,

we will construct a path by moving from room to room via the ���
�&% � -doors without

backtracking. We start the paths at any door on the boundary of � . These doors

will lie on the edge of � spanned by the labels 1 and 2. Now, we walk through a

boundary door into a room. This room is either has another door or it does not. If

it does not, then it is a full cell. If it does, then we walk through that door into the

next room, and so on. Paths starting from a boundary door can either terminate

at a full cell, or a one door room, or can exit � through another boundary door.

Now, on the side of � spanned by 1 and 2, as we move from the vertex labelled

1 to the vertex labeled 2, we must make an odd number of transitions between

the labels 1 and 2. Thus, there are an odd number of � �
�&% � -edges along this side.

Thus, there is an odd number of boundary doors in � . Since paths that both enter



7

and exit through a boundary door pair off an even number of the boundary doors,

there must be at least one path starting from a boundary door that leads to a full

cell. Hence, by following paths from the boundary doors, we are able to locate

at least one full cell. This procedure is illustrated in Figure 1.3. A path following

procedure can also be used to locate the full cells given by the polytopal Sperner

lemma. See [3].
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Figure 1.3: Path following in a Sperner labelled 2-simplex.

Given a continuous map � �
� � � � � , we can find a homeomorphism � �
� � � � where � is a regular � -simplex. We can then triangulate � via the retract �
and use the path following technique to find a full cell. If we triangulate � with a

sequence of finer and finer triangulations, some subsequence of full cells converges

to a single point. We may then map this point back to � � using ��� 	 in order to

locate the fixed point of � .
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1.3 The Poincaré-Birkhoff Fixed Point Theorem

We now provide some background information on the Poincaré-Birkhoff fixed

point theorem before we embark on developing a combinatorial analogue for it.

Theorem 4 (The Poincaré-Birkhoff Fixed Point Theorem). Any continuous self map

� ��� � � of the annulus � 	 � 	���� � ����� that is area preserving and satisfies a boundary

twist condition, which states that � advances points on the outer edge of � positively and

points on the inner edge negatively, must have at least two fixed points.

f

A

A

Figure 1.4: The Poincaré-Birkhoff fixed point theorem.

The original proof of this theorem can be found in [1]. There is a generalization

of this theorem due to Franks [5] that states that a homeomorphism � from the

open annulus � 	 � 	�� � � ����� to itself such that every point in � is non-wandering

under � and there is a lift of � to the universal covering space, � � � � ����� that

possesses both a positively and negatively returning disk, then � has at least one

fixed point. A corollary that follows from this theorem states that self map of the

closed annulus that satisfies the same conditions will contain two fixed points.



Chapter 2

A Combinatorial Analogue to the Poincaré-Birkhoff Fixed Point

Theorem

In this chapter we seek to develop a combinatorial analogue to the Poincaré-

Birkhoff fixed point theorem. To do so we will employ some of the techniques from

the Sperner-Brouwer equivalence developed in the previous chapter. We shall state

and prove a combinatorial lemma, called the NWSE lemma, and then show that it

implies the Poincaré-Birkhoff fixed point theorem for a certain class of maps.

2.1 The NWSE Lemma

To prove the Brouwer fixed point theorem via Sperner’s lemma we first triangu-

lated the ball � � by mapping it to an � -simplex. We then used the map � , which

we wanted to show had a fixed point, to generate a labeling of the triangulation

by using the retract � . The existence of a full cell of the triangulation contradicts

the uniform continuity of � , proving the existence of a fixed point of � . In the same

way, to develop a combinatorial analogue to the Poincaré-Birkhoff fixed point the-

orem we wish to triangulate the annulus � , label the vertices of the triangulation

according to the map � , which we want to prove has two fixed points, in such a

way that the resuting labeling will have two full cells. Then we will use the exis-

tence of these full cells to contradict the uniform continuity of an auxiliary function

associated to � , thus proving the existence of two fixed points of the map � .

In order to triangulate the annulus � we may think of � as a rectangle with two

opposite edges, say the right and left edges, identified. This space is a cylinder
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which is homeomorphic to an annulus. Next, we triangulate the rectangle by di-

viding it into smaller rectangles via grid lines, then dividing each square into two

triangles across the diagonal connecting the bottom left and top right corners. Call

this triangulation � . Next, we construct a labeling scheme for the vertices of � that

is determined by the map � . That is, we construct a set of rules for the labeling

the rectangle such that if we were to suppose that these labels were determined

by a map � then the labels would emulate the area preserving and boundary twist

conditions imposed on � . This labeling scheme should provide two full cells since

the Poincaré-Birkhoff theorem guarantees two fixed points.

Before we develop a labeling scheme for � , we state a few definitions. A

chain in the triangulation � is a sequence of distinct vertices �'	
���
�#�����������$� and edges
� 	!� � ����������� � � � 	 where each vertex ��� is connected to the next, ����� 	 , by the edge �

� . A

closed chain is a chain in � whose beginning and end points are the same. A cycle

is a closed chain in � whose beginning and end point are the same vertex on the

identified edge of � . That is, a cycle is simply a loop of vertices and edges of � that

wraps around the cylinder represented by our rectangle.

We now state a labeling condition for the vertices of � . Suppose a rectangle �
is triangulated with triangulation � and that each vertex of � is given one of the

four labels N, W, S, or E, subject to the following conditions: (1) The labels on the

left edge of � are identical to the labels on the right edge of � , (2) The vertices on

the top edge of � are all labeled W (resp. E) and the vertices on the bottom edge of

� are all labeled E (resp. W), and (3) there are no cycles in � all of whose vertices

are labeled S and there are no cycles in � all of whose vertices are labeled N. Such

a labeling will be called an NWSE labeling.

Theorem 5 (The NWSE Lemma). Any triangulated rectangle whose vertices are given

an NWSE labeling will either contain two full cells or will contain a cycle whose vertices

will be labeled with only E’s and W’s.
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Figure 2.1: Examples of a chain and a cycle.



12

Proof. To prove this lemma, we shall make use of a piecewise linear or � � map from

� to another rectangle � whose corners are labeled N, E, S, and W read clockwise.

The � � map maps each vertex of � to the vertex of � that has the same label, and

extends linearly across each simplex of � . As such, the � � map is continuous.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 2.2: An illustration of the ��� map.

We now state and prove a few useful lemmas.

Lemma 1. If the triangulation � of � contains no cycle labeled entirely with N’s, then

there is a chain in � connecting the bottom edge and top edge of � that has no vertex

labeled with an N. Likewise, if there are no cycles in � labeled entirely with S’s, then there

is a chain from the top to the bottom of � that has no vertices labeled with an S.

Proof. Given a vertex � of � , let the neighborhood of � , denoted �	� be the interior

of the polytope spanned by the vertices that are adjacent to � . Then �	� is an open

neighborhood of � . Let 
 be the union of the neighborhoods of all vertices of �
not labeled N, and let � be the component of 
 that contains the bottom edge of
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� . Such a component will exist since the bottom edge contains no vertices labeled

with an N. Suppose that there is no chain in � connecting the top and bottom edges

that contains no vertices labeled with N’s. Then � does not intersect the top edge

of � . Hence, the boundary of � must be a set of disjoint chains. The vertices of

these chains must all be labeled with N’s, otherwise they would be contained in � .

Since the top and bottom edges of � are not connected by a chain with no vertices

labeled N, some N-chain in the boundary of � must separate the top edge from

the bottom edge. This N-chain must be a cycle, thus contradicting the assumption

that there were no N-cycles in � . Thus, there must be a chain in � connecting the

top and bottom edges of � that contains no N-vertices.

A similar argument shows that there exists a chain from the top edge to the

bottom edge of � that contains no vertices labeled S.

By lemma 1 we may find an chain from the bottom edge to the top edge of �
that contains no vertices labeled N, and one that contains no vertices labeled S. Call

these chains ��� and ��� respectively. Now, since ��� leads from the top edge of � ,

which without loss of generality is labeled entirely with W’s, to the bottom edge,

which is labeled entirely with E’s, and since the � � map is continuous, � � ����� �
will be a continuous path connecting the E corner and W corner of � .

Since ��� contains no vertices labeled N, � � ����� � will either cover the E-W diag-

onal of � or it will cover the W-S and S-E edges of � , or both. Likewise, � � ����� �
will either cover the E-W diagonal of � or will cover the E-N and N-W edges of � .

Construct a closed chain � by connecting the ends of ��� and ��� along the top and

bottom edges of � . Then � � ����� will do one of the following: (a) � � ����� will cover

the boundary of � with degree of at least one, (b) � � ����� will cover the boundary

of the WSE or the WNE simplex of � with degree of at least one, or (c) � � ����� will

only cover the E-W edge of � .

Lemma 2. Let � � � � � be a continuous map. If the image of � under � covers the
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boundary of � with degree of at least one, then � is surjective.

For a proof of this lemma, see [3]

Now, if (a) is true, then � � is surjective by Lemma 2, and thus at least two of

the full simplices in � (NWS, NES, ESW, and ENW) will have preimages in � . That

is, the triangulation � will contain at least two full cells.

If (b) is true then � � maps onto of the full simplices of � , again by Lemma 2,

and thus that simplex in � has a preimage in � . So, there is at least one full cell in � .

Once this full cell is located we use a path following argument to find another full

cell. In the proof of Sperner’s lemma we viewed 1-2 edges as doors through which

we could walk into the neighbooring cell. For this proof, we view E-W edges as

doors. Any cell in � will either have 0, 1, or 2 E-W doors and cells with exactly

one E-W edge are full cells. We now construct a path from cell to cell by walking

through E-W doors without backtracking. See Figure 2.3. If (b) is true, the full cell

we are given by the � � map provides a starting point for the path, since it has only

one E-W door. The resulting path cannot form a cycle, that is it cannot terminate

in the same cell in which it started, for that cell only has one E-W door. Thus, the

path must terminate in another full cell. Hence, we have found two full cells.

Now we consider the case where (c) is true. If � � covers the E-W edge of � ,

then that edge will have a preimage in � . Thus, we can find an E-W edge in � . We

may use this edge, or rather the cells that share this edge, as starting points for a

path. This path either has two end points, which are full cells, or it forms a loop

of simplices around the cylinder represented by � whose edges will form an E-W

cycle.

Thus, � will either contain two full cells or it will contain an E-W cycle.

Notice that a path following argument also works for N-S edges. Hence, in the

case that (a) is true, once one full cell is found, we can find another by following

N-S or E-W edges. So, there will always be an even number of full cells (possibly
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zero).

2.2 The NWSE Lemma Implies Poincaré-Birkhoff for the Class of Regular Maps

We now show that the NWSE lemma implies the Poincaré-Birkhoff fixed point the-

orem for a certain class of maps. To do this we will use an approach similar to the

one used to show that Sperner’s lemma implies the Brouwer fixed point theorem.

That is, given a map � that satisfies the conditions of the Poincaré-Birkhoff fixed

point theorem, we suppose that � has fewer than two fixed points, use � to gen-

erate a labeling of an annulus � , show that the labeling is an NWSE labeling, and

use information gained from the NWSE lemma to arrive at a contradiction.

In order to define precisely the class of maps for which the NWSE lemma ap-

plies, we first describe the procedure by which we generate a labeling of the ver-

tices of a triangulation according to a map � .

Let � be an annulus and let � � � � � be a map satisfying the conditions of

the Poincaré-Birkhoff fixed point theorem. Define an auxiliary map � ��� � � � �&%�� �
in the following way: take a point � of � , and examine the ray starting at � that

passes through � � � � . Let � � � � be the angle that this ray makes with the horizontal.

x

f(x)

g(x)

Figure 2.4: An illustration of the auxiliary map � .
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Since the right and left edges of � are identified, there are many possible rays

starting at � that pass throught �*� � � , and so we need to be precise about which

one we choose. To do this, we examine the covering space of � , � ��� , where
� is the interval � �'��� � . Choose a lift ��� of � into this covering space such that ���
advances points on the top and bottom edges of � in opposite directions. In the

covering space, there is only one ray from � to ��� � � � , and so we may use this lift to

determine � � � � .
We label a vertex � of a triangulation � N(orth), W(est), S(outh), or E(ast) ac-

cording to which direction � moves � the most. That is, we divide the plane into

quadrants, one for each direction, and label � by the quadrant in which � � � � lies.

This corresponds to giving � a label of N if � � � ��� � ���	� ��
 ���	��� , or a label of W if

� � � �
� � 
 ����� �������	��� and so on. Figure 2.5 illustrates this procedure.

N

W

S

E

π/43π/4

5π/4 7π/4

x

f(x) g(x)

Figure 2.5: The vertex � is labeled with a W because � ��� � lies in the W quadrant, or � ��� ���� ������� � � ����� � .

Now we define the class of maps for which the NWSE lemma implies the
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Poincaré-Birkhoff fixed point theorem. We shall call a cycle � in a triangulation

� regular if there is no vertical line that passes through � at more than one point. A

cycle is irregular if it is not regular. A map � is regular if there exists a
� � � such

that if the mesh size of a triangulation � is smaller than
�
, then the auxiliary map �

associated to � induces a labeling of the vertices of � that contains no irregular N

or S-cycles. We shall prove the following theorem using the NWSE lemma.

Theorem 6. If � � � � � is a regular map satisfying the conditions of the Poincaré-

Birkhoff fixed point theorem then � has at least two fixed points.

Proof. Suppose the map � has at most one fixed point, � . Then the map � is defined

and continuous at every point of � except possibly � . In fact, since � is a compact

set, � is uniformly continuous on � except possibly in a neighborhood around � .

This is to say, if � has no fixed points, then � is uniformly continuous on � , and

if � has one fixed point � and 
 is an open neighborhood of � , then ��� � ��� is

uniformly continuous, since �)+ 
 is a closed subset of a compact set, and thus is

itself compact.

Let ��� ��� ���	� . Since � (resp. �	� � ��� ) is uniformly continuous, 
 � � � such

that if � � 	 + � ���
� �
then � � � � 	&� + � � � �
���
� � where � 	
� � � � � (resp. � + 
 ).

Triangulate � with a triangulation � that has a mesh size smaller than
�
. We now

will use the auxiliary map � to label the vertices of � .

We now show that this labeling of � is an NWSE labeling. First, notice that the

labeling by � will certainly satisfy conditions (1) and (2) since the vertices on the

left and right edges of � are identified and since the boundary twist condition of

the Poincaré-Birkhoff fixed point theorem will require all of the vertices on the top

edge of � to be labeled E (or W) and the vertices on the bottom edge to be labeled

W (or E).

Our intuition tells us that this labeling by � should also satisfy condition (3),

or rather that a labeling not satisfying condition (3) would not be generated by
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a map that satisfies the area preserving condition of the Poincaré-Birkhoff fixed

point theorem. Examine the simple example illustrated in Figure 2.6.

N

S SSSS

NNN

S S

N N N

Figure 2.6: A labeling with an N-cycle and an S-cycle is not induced by an area preserving map.

Points between the N-cycle and the S-cycle are being pushed together, and thus

a map that induces this labeling cannot be area preserving. Similar situations can

arise when there is any arbitrary N or S cycle present in the labeling. We will now

prove that our intuition is correct.

Suppose that the labeling of � generated by the auxiliary map � contained an N-

cycle or an S-cycle. Without loss of generality, suppose it is an N-cycle �!� . Because �
is a regular map, � � is a regular cycle. If � has no fixed points or if the neighborhood


 of the potential fixed point � does not intersect � � , then, since the mesh size of

� is smaller than
�
, any point � on � � must lie within

�
of a vertex � of � � . The

map � is uniformly continuous on � � , thus � � � � must lie within � ����� ��
 ���	��� since �
is labeled N. Hence for each � � � � � � � � � lies higher in the vertical direction. Note

that � cannot map a point of � that lies above � � to a point that lies below � � . This
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is because a point � above � � is connected to the top edge of � by a path that does

not cross �&� . Since � is continuous, � ��� � must be connected to the top edge of � by

a path that does not cross � ��� � � . Therefore, the area between � � and the top edge of

� cannot be preserved by � , which is a contradiction.

Now, if the neighborhood 
 of � does intersect � � , then we cannot say that �

is uniformly continuous on � � and so the above argument does not apply. So, we

choose a smaller neighborhood 
 	 of � , find a new (smaller)
�
, say

� 	 . Construct a

subtriangulation of � that preserves the grid structure of the original triangulation

and has mesh size smaller than the
� 	 . The cycle � � will still be present in this

subtriangulation, except now it will have more vertices and 
 	 may not intersect

�&� . If 
 	 does not intersect � � , then the above argument applies and we arrive at

a contradiction. If 
 	 does intersect � � , the we repeat this procedure by choosing

a smaller neighborhood 
*� of � , finding an new bound on the mesh size
� � and

retriangulating, and so on. If there is an � such that 
�� does not intersect � � , then

we have a contradiction as argued above. If not, then � lies on �
� and every other

point of � � is mapped vertically higher by � , and so we again have that � is not

area preserving.

Thus, we have shown that the labeling of � generated by � cannot contain any

N-cycles or S-cycles, and so we conclude that this labeling is indeed an NWSE

labeling.

Note that the above arguments may not hold if � is not a regular map. Specifi-

cally an area preserving map � may induce a labeling of � that contains an irregular

N-cycle. See Figure 2.7.

The dark line is an N-cycle and the light line is its image under � . Notice that

the area above the cycle and the area above its image are potentially the same. This

type of behavior, however, cannot occur if � is a regular map.

The NWSE lemma then guarantees either two full cells or an E-W cycle. We

wish to show that the existence of these objects violates the uniform continuity of
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N N

N

NN
N

N

N

NN NNNNNN

N

Figure 2.7: The area above the irregular N-cycle and its image are the same.

� . To do so, we will use the following lemma.

Lemma 3. If the labeling of the triangulation � induced by the map � contains an E-W or

N-S edge, then � is not uniformly continuous.

Proof. Any two points sharing an edge in � cannot be more than
�

far apart, how-

ever a point labeled E and a point labeled W must have images under � that differ

by at least ���"% . Hence, an E-W edge provides two points that violate the uniform

continuity of � . The same holds for N-S edges.

Suppose the NWSE lemma gives us an E-W cycle. This cycle will contain more

than one E-W edge. Now, one of the E-W edges may intersect the neighborhood


 of � , where � is not uniformly continuous, and so one E-W edge may not violate

the uniform continuity of � � ��� � . However,
�

was chosen so that the E-W edges

cannot both intersect 
 . Hence, the existence of two E-W edges necessarily violates

the uniform continuity of � or � � � � � .
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Now suppose that the NWSE lemma gives us two full cells. If these full cells do

not share an edge, then they will each contain either an E-W or an N-S edge, which

violates the uniform continuity of � as argued above.

Finally, suppose that the two full cells given by the NWSE lemma share an

edge � 	 , say an E-W edge. If � contains no other E-W or N-S edges, then � 	 must

be an edge in a cycle �#	 that is labeled with all N’s or all S’s, say S’s without loss of

generality, except for the vertices of � 	 . In this case, we construct a subtriangulation

of � with smaller mesh size. This subtriangulation either contains another N-S

or E-W edge, which leads to a contradiction of the uniform continuity of � , or it

contains only one E-W edge, � � that is part of a cycle �!� whose other vertices are

labeled with S’s. If the latter is true, we repeat the process of subtriangulation.

Either this process terminates after a given number of steps, having produces

more than one E-W or N-S edge, or we construct a sequence of edges � � and a

sequence of cycles � � . It follows from the uniform continuity of � that the subse-

quence of regular cycles of � � is equicontinuous and thus converges to some cycle

� . The edges � � in this subsequence converge to a point � which must be fixed.

Hence, the label � is given by � is arbitrary, and we may choose to label � with an

S. This way, the cycle � is a regular S-cycle, which contradicts our assumption that

� was area preserving.

Thus, the supposition that � has at most one fixed point leads to a violation of

either the uniform continuity of � or the regularity of � . Therefore, we have shown

that � has at least two fixed points.



Chapter 3

Conclusion, Future Work

In our proof of the Poincaré-Birkhoff fixed point theorem via the NWSE lemma,

we did not employ the full strength of the NWSE lemma. Though the NWSE

lemma possibly gives two full cells, we were only interested in the existence of

two E-W or N-S edges. So, if we only wanted the existence of two E-W or N-S

edges, why did we provide the stronger version of the NWSE lemma? To answer

this question, we again look to the Sperner-Brouwer equivalence. When showing

that Sperner’s lemma implied the Brouwer fixed point theorem , we noticed that

full cells of the triangulation closely corresponded to fixed points of the map. The

same can be said for the NWSE-Poincaré-Birkhoff relationship. Fixed points of the

map � will be located near full cells of the triangulation � of � . The case where

there is only an E-W cycle rather than two full cells is likely to correspond to the

case where the map � produces fixed circle in the annulus. The reason we did

not use the full strength of the NWSE lemma in our proof is that our proof is not

constructive. A problem for future research is to find a constructive proof of the

Poincaré-Birkhoff fixed point theorem via the NWSE lemma. Such a proof may

use the full strength of the NWSE lemma. Moreover, it may provide a method of

locating the fixed points of � as is the case with constructive proof of the Brouwer

fixed point theorem via Sperner’s lemma.

In this paper, we have only shown that the NWSE lemma implies the Poincaré-

Birkhoff fixed point theorem for the class of regular maps. Another problem for

the future is to modify the NWSE lemma so that it applies to non-regular maps.

In this paper, we discussed only one direction of the equivalence between the
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NWSE lemma and the Poincaré-Birkhoff fixed point theorem. An open problem

is to develop a proof that the Poincaré-Birkhoff fixed point theorem implies the

NWSE lemma, thus showing that the two theorems are in fact equivalent in the

sense that each implies the other. To do this, one could take a similar approach to

proving the Poincaré-Birkhoff fixed point theorem via NWSE, but in reverse. Here

we would start with an NWSE labeled triangulation, use it to construct a map �
satisfying the conditions of the Poincaré-Birkhoff fixed point theorem, then use

the existence of two fixed points to prove the existence of two full cells or use the

existence of a fixed circle to prove the existence of an E-W cycle. It is unclear how

this map � is to be constructed, however. So, while this direction of the equivalence

is less useful and seemingly more difficult, it would be nice to have for theoritical

completeness.

Yet another interesting problem for future research would be to find a combi-

natorial analogue for the Lefschetz fixed point theorem. The Lefschetz theorem is

very general in the sense that it provides conditions under which a continuous self

map of any finite complex will have a fixed point. It states that if � is a continuous

self map of a complex � � � and the Lefschetz number of � , denoted by � � � � , is not

zero, then � has a fixed point. To get a handle on this problem, I propose to begin

by examining self maps of surfaces which are easy to represent as triangulated ob-

jects. The � -holed torus, for example, can be represented as a � � -gon, with certain

pairs of edges identified. In this way, we can triangulate the torus by triangulating

its respective polygon. We may then examine labelings of these triangulations by

maps, and determine what types of maps induce labelings that contain full cells.

Examining the relationship between combinatorics and the Lefschetz number

yields some more profound questions as well. � � � � is determined by the homology

groups ��� � � � and the induced map ��� , and thus � � � � depends only on the homo-

topy class of � and the underlying space � � � . Hence, knowledge of the map � and

the Lefschetz number yields a good deal of information about the space � � � . For
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example, if the map � is simply the identity map, it can be shown that � � � � is equal

to the Euler characteristic of the complex
�

, � � � � . Now, � � � � can be determined

in a combinatorial fashion by examining a triangulation of the space � � � . It can be

shown that � � � � 	���+������ , where � , � , and � are the number of vertices,

edges, and faces of the triangulation, respectively. I would like to investigate ways

in which � � � � could be determined in a combinatorial fashion in the more general

situation where the map � is a simplicial map, or an arbitrary continuous map.

Finding combinatorial analogues of fixed point theorems is not only useful,

in that it provides a way to actually locate fixed points rather than just stating

their existence, but it also provides a means of investigating a potentially very

interesting and profound connection between combinatorics and topology.
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