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SUPERCHARACTERS, EXPONENTIAL SUMS, AND THE

UNCERTAINTY PRINCIPLE

J. L. BRUMBAUGH, MADELEINE BULKOW, PATRICK S. FLEMING, LUIS ALBERTO
GARCIA, STEPHAN RAMON GARCIA, GIZEM KARAALI, MATT MICHAL,

AND ANDREW P. TURNER

Abstract. The theory of supercharacters, which generalizes classical charac-
ter theory, was recently introduced by P. Diaconis and I.M. Isaacs, building

upon earlier work of C. André. We study supercharacter theories on (Z/nZ)d

induced by the actions of certain matrix groups, demonstrating that a variety
of exponential sums of interest in number theory (e.g., Gauss, Ramanujan,

and Kloosterman sums) arise in this manner. We develop a generalization of

the discrete Fourier transform, in which supercharacters play the role of the
Fourier exponential basis. We provide a corresponding uncertainty principle

and compute the associated constants in several cases.

1. Introduction

The theory of supercharacters, of which classical character theory is a special
case, was recently introduced by P. Diaconis and I.M. Isaacs in 2008 [6], gener-
alizing the basic characters studied by C. André [1–3]. We are interested here
in supercharacter theories on the group (Z/nZ)d induced by the action of certain
subgroups Γ of the group GLd(Z/nZ) of invertible d × d matrices over Z/nZ. In
particular, we demonstrate that a variety of exponential sums which are of interest
in number theory arise as supercharacter values. Among the examples we discuss
are Gauss sums, Ramanujan sums, and Kloosterman sums. Moreover, we also in-
troduce a class of exponential sums induced by the natural action of the symmetric
group Sd on (Z/nZ)d which yields some visually striking patterns.

In addition to showing that the machinery of supercharacter theory can be used
to generate identities for certain exponential sums, we also develop a generalization
of the discrete Fourier transform in which supercharacters play the role of the
Fourier exponential basis. For the resulting super-Fourier transform, we derive a
supercharacter analogue of the uncertainty principle. We also describe the algebra
of all operators which are diagonalized by our transform. Some of this is reminiscent
of the theory of Fourier transforms of characteristic function of orbits in Lie algebras
over finite fields [13, Lem. 3.1.10], [12, Lem. 4.2], [17].

Key words and phrases. Supercharacter, conjugacy class, superclass, circulant matrix, dis-

crete Fourier transform, DFT, Fourier transform, Gauss sum, Gaussian period, Ramanujan sum,

Kloosterman sum, symmetric group, uncertainty principle.
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Although it is possible to derive some of our results by considering the classical
character theory of the semidirect product (Z/nZ)d o Γ, the supercharacter ap-
proach is cleaner and more natural. The character tables produced via the classical
approach are typically large and unwieldy, containing many entries which are ir-
relevant to the study of the particular exponential sum being considered. This is
a reflection of the fact that (Z/nZ)d o Γ is generally nonabelian and possesses a
large number of conjugacy classes. On the other hand, our supercharacter tables
are smaller and simpler than their classical counterparts. Indeed, the supercharac-
ter approach takes place entirely inside the original abelian group (Z/nZ)d, which
possesses only a few superclasses.

We cover the preliminary definitions and notation in Section 2, before introducing
the super-Fourier transform in Section 3. A number of examples, including those
involving Gauss, Kloosterman, and Ramanujan sums, are discussed in Section 4.
We conclude this note with a few words concerning an extension of our technique
to more general matrix groups in Section 5.

2. Supercharacter theories on (Z/nZ)d

To get started, we require the following important definition.

Definition (Diaconis-Isaacs [6]). Let G be a finite group, let X be a partition of
the set IrrG of irreducible characters of G, and let Y be a partition of G. We call
the ordered pair (X ,Y) a supercharacter theory if

(i) Y contains {1}, where 1 denotes the identity element of G,

(ii) |X | = |Y|,

(iii) For each X in X , the character

σX =
∑
χ∈X

χ(1)χ (2.1)

is constant on each Y in Y.

The characters σX are called supercharacters and the elements Y of Y are called
superclasses.

If (X ,Y) is a supercharacter theory on G, then it turns out that each Y in Y
must be a union of conjugacy classes. One can also show that the partitions X and
Y uniquely determine each other and, moreover, that the set {σX : X ∈ X} forms
a basis for the space of superclass functions on G (i.e., functions f : G→ C which
are constant on each superclass).

Let us now say a few words about our notation. We let x = (x1, x2, . . . , xd) and

y = (y1, y2, . . . , yd) denote elements ofG := (Z/nZ)d and we write x·y :=
∑d
i=1 xiyi

so that Ax·y = x·ATy for all x,y inG and each A inGLd(Z/nZ). The symbol ξ will
frequently be used to distinguish a vector which is to be regarded as the argument
of a function on G. Since we will ultimately deal with a variety of exponential sums,
we also let e(x) := exp(2πix), so that the function e(x) is periodic with period 1.

In the following, Γ denotes a symmetric (i.e., ΓT = Γ) subgroup of GLd(Z/nZ).
For each such Γ, we construct a corresponding supercharacter theory on G using the
following recipe. The superclasses Y are simply the orbits Γy in G under the action
yA := Ay of Γ. Among other things, we note that {0} is an orbit of this action
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so that axiom (i) in the Diaconis-Isaacs definition is satisfied. The corresponding
supercharacters require a bit more work to describe.

We first recall that IrrG = {ψx : x ∈ G}, where

ψx(ξ) = e

(
x · ξ
n

)
. (2.2)

We now let Γ act upon IrrG by setting

ψAx := ψA−Tx, (2.3)

where A−T denotes the inverse transpose of A. In light of the fact that

ψABx = ψ(AB)−Tx = ψA−TB−Tx = ψAB−Tx = (ψBx )A,

it follows that (2.3) defines a group action. Since

ψAx (yA) = e

(
A−Tx ·Ay

n

)
= e

(x · y
n

)
= ψx(y),

it follows from a result of Brauer [10, Thm. 6.32, Cor. 6.33] that the actions of Γ
on G and on IrrG yield the same number of orbits. Letting X denote the set of
orbits in IrrG and Y denote the set of orbits in G, we set

N := |X | = |Y|.

In particular, condition (ii) holds.

Although the elements of each orbit X in X are certain characters ψx, we shall
agree to identify ψx with the corresponding vector x so that the set X is stable
under the action x 7→ A−Tx of Γ. Having established this convention, for each X
in X we follow (2.1) and define the corresponding character

σX(ξ) =
∑
x∈X

e

(
x · ξ
n

)
. (2.4)

We claim that the characters σX are constant on each superclass Γy. Indeed, if
y1 = Ay2 for some A in Γ, then

σX(y1) =
∑
x∈X

e
(x · y1

n

)
=
∑
x∈X

e

(
ATx · y2

n

)
=
∑
x′∈X

e

(
x′ · y2

n

)
= σX(y2).

Therefore condition (iii) holds. Putting this all together, we conclude that the pair
(X ,Y) constructed above is a supercharacter theory on G.

We henceforth refer to the characters σX as supercharacters and the sets Y as
superclasses. Expanding upon the notational conventions introduced above, we
choose to identify the set X, whose elements are the irreducible characters which
comprise σX , with the set of vectors {x : ψx ∈ X}. Having made this identification,
we see that X = Y since the condition Γ = ΓT ensures that the orbits in G under
the actions x 7→ Ax and x 7→ A−Tx coincide. In light of this, we shall frequently
regard the elements X of X as superclasses.

Since σX is constant on each superclass Y , if y belongs to Y we will often write
σX(Y ) instead of σX(y). Let us also note that the negative −X := {−x : x ∈ X}
of a superclass X is also a superclass. In particular,

σ−X(Y ) = σX(Y ), (2.5)
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so that the complex conjugate of a supercharacter is itself a supercharacter. Another
fact which we shall make use of is the obvious inequality

|σX(ξ)| ≤ |X|. (2.6)

In addition to (2.4), there is another description of the supercharacters σX which
is more convenient in certain circumstances. Letting

Stab(x) := {A ∈ Γ : Ax = x},
it follows that the orbit X = Γx contains |Stab(x)| copies of x whence

σX(ξ) =
1

|Stab(x)|
∑
A∈Γ

e

(
Ax · ξ
n

)
, (2.7)

since Γ is closed under inversion.

We now fix an enumeration X1, X2, . . . , XN of X = Y and we label the su-
percharacters corresponding to these sets σ1, σ2, . . . , σN . Recall that L2(G), the
space of complex-valued functions on G = (Z/nZ)d, can be endowed with the inner
product

〈f, g〉 =
∑
x∈G

f(x)g(x), (2.8)

with respect to which the irreducible characters (2.2) form an orthogonal set. We
then have

〈σi, σj〉 = nd|Xi|δi,j . (2.9)

On the other hand, since supercharacters are constant on superclasses, we also have

〈σi, σj〉 =

N∑
`=1

|X`|σi(X`)σj(X`). (2.10)

Comparing (2.9) and (2.10), we conclude that the N ×N matrix

U =
1√
nd

[
σi(Xj)

√
|Xj |√

|Xi|

]N
i,j=1

(2.11)

is unitary. The properties of this matrix are summarized in the following lemma.

Lemma 1. The unitary matrix U given by (2.11) satisfies the following.

(1) U = UT , or equivalently

σi(Xj)

|Xi|
=
σj(Xi)

|Xj |
, (2.12)

(2) U2 = P , the permutation matrix which interchanges positions i and j when-
ever Xi = −Xj and fixes position i whenever Xi = −Xi,

(3) U4 = I.

Proof. Letting Xi = Γxi and Xj = Γxj , we use (2.7) to find that

|Stab xi|σi(Xj) =
∑
A∈Γ

e

(
Axi · xj

n

)
=
∑
AT∈Γ

e

(
ATxj · xi

n

)
= |Stab xj |σj(Xi).

We conclude from the orbit-stabilizer theorem that

|Γ|
|Xi|

σi(Xj) =
|Γ|
|Xj |

σj(Xi),
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which implies that U = UT . In light of (2.5), it follows that U = PU . Noting that
P = P−1, we find that I = U∗U = UU = PU2, whence U2 = P and U4 = I. �

3. The super-Fourier transform

In this section we develop supercharacter generalizations of the discrete Fourier
transform (DFT). Maintaining the notation and conventions established in the pre-
ceding section, we let X = Y = {X1, X2, . . . , XN} and let σ1, σ2, . . . , σN denote the
corresponding supercharacters.

Let µ denote the measure on X which satisfies µ(X) = |X| for each superclass
X and define the space L2(X , µ) to be the set of all functions f : X → C, equipped
with the norm

‖f‖L2(X ,µ) :=
( N∑
`=1

|X`||f(X`)|2
) 1

2

.

If we regard a function f : X → C as a superclass function on G, then the preceding
norm coincides with the norm on L2(G). In other words, the norm on L2(X , µ) is
simply the norm which the set of superclass functions inherits as a subset of L2(G).
We therefore suppress the subscript L2(X , µ) in what follows.

By analogy with the discrete Fourier transform, we would like to find a superclass

function f̂ which satisfies the inversion formula

f =
1√
nd

N∑
`=1

f̂(X`)σ`, (3.1)

the normalization factor being included to ensure the unitarity of the map f 7→ f̂
(see Theorem 1 below). In light of (2.9) and the reciprocity formula (2.12), it
follows that

f̂(Xi) =
√
nd
〈f, σi〉
〈σi, σi〉

=

N∑
`=1

|X`|f(X`)σi(X`)√
nd|Xi|

=
1√
nd

N∑
`=1

f(X`)σ`(Xi).

We therefore define the super-Fourier transform of the superclass function f (in-
duced by the action of Γ on (Z/nZ)d) by setting

f̂ :=
1√
nd

N∑
`=1

f(X`)σ`. (3.2)

The linear operator F : L2(X , µ) → L2(X , µ) defined by Ff = f̂ will also be
referred to as the super-Fourier transform.

Although the formulas (3.1) and (3.2) resemble familiar formulas involving the
discrete Fourier transform, we have not yet justified that this resemblance is more
than superficial. We next show that the super-Fourier transform indeed enjoys
several of the standard algebraic properties of the DFT.

Normalizing each of the supercharacters σi, we obtain the orthonormal basis
{s1, s2, . . . , sN} of L2(X , µ) whose elements are defined by

si =
σi√
nd|Xi|

. (3.3)
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With respect to this basis we have the expansions

f =

N∑
`=1

√
|X`|f̂(X`)s`, f̂ =

N∑
`=1

√
|X`|f(X`)s`. (3.4)

Computing the (i, j) entry in the matrix representation of F with respect to the
basis {s1, s2, . . . , sN} shows that

〈Fsj , si〉 =

〈
N∑
`=1

√
|X`|sj(X`)s`, si

〉
by (3.4)

=

N∑
`=1

√
|X`|sj(X`) 〈s`, si〉

=
√
| −Xi|sj(−Xi) by (2.5)

=
σj(Xi)

√
|Xi|√

nd|Xj |
. by (3.3)

In other words, the matrix representation for F with respect to the orthonormal
basis (3.3) is precisely the unitary matrix U∗. At this point, most of the following
theorem is a direct consequence of Lemma 1.

Theorem 1. Let Γ = ΓT be a subgroup of GLd(Z/nZ) and let X = {X1, X2, . . . , XN}
denote the set of superclasses induced by the action of Γ on (Z/nZ)d. The super-
Fourier transform satisfies the following

(1) ‖f̂‖ = ‖f‖,

(2) [F 2f ](X) = f(−X) for every X in X ,

(3) F 4f = f .

Moreover, if f in L2(X , µ) is not identically zero, then⌈nd
M

⌉
≤ | supp f || supp f̂ |, (3.5)

where d · e denotes the ceiling function, M = max
1≤i≤N

|Xi|, and

supp f = {X ∈ X : f(X) 6= 0}
denotes the support of f .

Proof. In light of the preceding comments, it suffices to prove (3.5). For a function
f : X → C we shall let ‖f‖∞ = max1≤i≤N |f(Xi)|. Using (2.6), we find that

‖f̂‖∞ = max
1≤i≤N

|f̂(Xi)|

= max
1≤i≤N

∣∣∣∣∣ 1√
nd

N∑
`=1

f(X`)σ`(Xi)

∣∣∣∣∣
≤ 1√

nd
max

1≤i≤N

N∑
`=1

|f(X`)||σ`(Xi)|

≤
√
M

nd

N∑
`=1

|X`|
1
2 |f(X`)|
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≤
√
M

nd
| supp f | 12

(
N∑
`=1

|X`||f(X`)|2
) 1

2

=

√
M

nd
| supp f | 12 ‖f‖

=

√
M

nd
| supp f | 12 ‖f̂‖

≤
√
M

nd
| supp f | 12 | supp f̂ | 12 ‖f̂‖∞,

which implies the desired result since | supp f | and | supp f̂ | are positive integers. �

Recall that the classical Fourier-Plancherel transform f 7→ f̂ on L2(R) satisfies
the important identity

f̂ ′(ξ) = 2πiξf̂(ξ) (3.6)

on a dense subset of L2(R). To be more specific, the Fourier-Plancherel transform
provides us with the spectral resolution of the unbounded operator f 7→ f ′. This
observation is crucial, for instance, in the study of partial differential equations and
in the development of pseudo-differential operators.

We now consider analogues of the identity (3.6) for the super-Fourier trans-
form F : L2(X , µ) → L2(X , µ). Recalling that the unitary matrix U∗, defined by
(2.11), is the matrix representation of F with respect to the orthonormal basis
{s1, s2, . . . , sN} of L2(X , µ), we identify operators on L2(X , µ) with their matrix
representations with respect to this basis. We therefore seek to classify all N ×N
matrices T which satisfy

TU = UD (3.7)

for some diagonal matrix D. A complete characterization of such matrices is pro-
vided by our next theorem, which is inspired by a result from classical character
theory [5, Section 33], [7, Lem. 3.1], [11, Lem. 4]. Portions of the following proof
originate in [8], where a notion of superclass arithmetic is developed for arbitrary
finite groups. However, in that more general context the corresponding conclusions
are not as strong as those given below.

Theorem 2. Let Γ = ΓT be a subgroup of GLd(Z/nZ), let X = {X1, X2, . . . , XN}
denote the set of superclasses induced by the action of Γ on (Z/nZ)d, and let
σ1, σ2, . . . , σN denote the corresponding supercharacters. For each fixed z in Xk, let
ci,j,k denote the number of solutions (xi, yj) ∈ Xi ×Xj to the equation x+ y = z.

(1) ci,j,k is independent of the representative z in Xk which is chosen,

(2) The identity

σi(X`)σj(X`) =

N∑
k=1

ci,j,kσk(X`) (3.8)

holds for 1 ≤ i, j, k, ` ≤ N .

(3) The matrices T1, T2, . . . , TN , whose entries are given by

[Ti]j,k =
ci,j,k

√
|Xk|√
|Xj |

,
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each satisfy
TiU = UDi, (3.9)

where
Di = diag

(
σi(X1), σi(X2), . . . , σi(XN )

)
. (3.10)

(4) Each Ti is a normal matrix (i.e., T ∗i Ti = TiT
∗
i ) and the set {T1, T2, . . . , TN}

forms a basis for the algebra A of all N × N matrices T such that U∗TU
is diagonal.

Proof. The fact that the structure constants ci,j,k do not depend upon the repre-
sentative z of Xk is mentioned in passing in [6, Cor. 2.3]; a complete proof can
be found in [8]. Let us now focus our attention on (3.8). We work in the group
algebra C[(Z/nZ)d], noting that each character of (Z/nZ)d extends by linearity to
a function on the entire group algebra. For each superclass Xi we let

X̃i =
∑
x∈Xi

x

denote the corresponding superclass sum in C[(Z/nZ)d], remarking for emphasis

that X̃i is to be regarded as a formal sum of the elements of Xi. It is easy to see
that these superclass sums satisfy

X̃iX̃j =

N∑
k=1

ci,j,kX̃k. (3.11)

We now claim that for 1 ≤ j ≤ N , the irreducible characters (2.2) satisfy

ψx(X̃j) = ψx′(X̃j), (3.12)

whenever x and x′ belong to the same superclass. Indeed, under this hypothesis
there exists a matrix A in Γ such that ψx = ψA−Tx′ , whence

ψx(X̃j) =
∑
v∈Xj

ψx(v) =
∑
v∈Xj

ψA−Tx′(v) =
∑
v∈Xj

ψx′(A
−1v) =

∑
v′∈Xj

ψx′(v
′) = ψx′(X̃j)

since Xj is stable under the action of Γ. If x belongs to X`, then it follows from
(3.12) that

|X`|ψx(X̃j) =
∑

x′∈X`

ψx′(X̃j) = σ`(X̃j) = |Xj |σ`(Xj) (3.13)

since σ` is constant on the superclass Xj . Applying ψx to (3.11) we obtain

ψx(X̃i)ψx(X̃j) =

N∑
k=1

ci,j,kψx(X̃k),

from which

|Xi|σ`(Xi)

|X`|
· |Xj |σ`(Xj)

|X`|
=

N∑
k=1

ci,j,k
|Xk|σ`(Xk)

|X`|
follows by (3.13). In light of the reciprocity formula (2.12), we conclude that (3.8)
holds for 1 ≤ i, j, k, ` ≤ N .

In terms of matrices, we see that (3.8) is simply the (j, `) entry of the matrix
equation MiW = WDi where Mi = [ci,j,k]Nj,k=1 and W = [σj(Xk)]Nj,k=1. Conjugat-
ing all of the matrices involved by an appropriate diagonal matrix yields the desired
matrix identity (3.9).
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Since we are dealing with N × N matrices, it is clear that the algebra A of all
N ×N matrices T such that U∗TU is diagonal has dimension at most N . Because
the Di are linearly independent (this follows from the fact that the rows of W are
linearly independent since W is similar to the unitary matrix U), it follows that
A = span{T1, T2, . . . , TN}. �

4. Exponential sums

In this section we examine a number of examples of the preceding machinery.
In particular, we focus on several classes of exponential sums which are relevant in
number theory (e.g., Gauss, Ramanujan, and Kloosterman sums). Although it is
certainly possible to explore the properties of these sums using Theorems 1 and 2
(see [8]), that is not our purpose here. We simply aim to demonstrate how such
sums arise in a natural and unified manner from the theory of supercharacters.

4.1. Maximum collapse. If G = (Z/nZ)d and Γ = GLd(Z/nZ), then X = Y ={
{0}, G\{0}

}
. The corresponding supercharacter table and symmetric unitary

matrix are displayed below.

(Z/nZ)d {0} G\{0}
GLd(Z/nZ) 0 (1, 1, . . . , 1)

# 1 nd − 1

σ1 1 1

σ2 nd − 1 −1

1√
nd

[
1

√
nd − 1√

nd − 1 −1

]
︸ ︷︷ ︸

U

In this setting the uncertainty principle (3.5) takes the form 2 ≤ | supp f || supp f̂ |,
which is obviously sharp.

4.2. The discrete Fourier transform. If G = Z/nZ and Γ = {1}, then X =
Y =

{
{x} : x ∈ Z/nZ

}
. The corresponding supercharacter table and associated

unitary matrix are displayed below (where ζ = exp(2πi/n)).

Z/nZ {0} {1} {2} · · · {n− 1}
{1} 0 1 2 · · · n− 1

# 1 1 1 · · · 1

σ0 1 1 1 · · · 1
σ1 1 ζ ζ2 · · · ζn−1

σ2 1 ζ2 ζ4 · · · ζ2(n−1)

...
...

...
...

. . .
...

σn−1 1 ζn−1 ζ2(n−1) · · · ζ(n−1)2

1
√
n



1 1 1 · · · 1

1 ζ ζ2 · · · ζn−1

1 ζ2 ζ4 · · · ζ2(n−1)

...
...

...
. . .

...

1 ζn−1 ζ2(n−1) · · · ζ(n−1)2


︸ ︷︷ ︸

U

In particular, U is the discrete Fourier transform (DFT) matrix. If we agree to
identify each superclass {x} with the corresponding element x in Z/nZ, then the
super-Fourier transform is simply the discrete Fourier transform

[Ff ](ξ) =
1√
n

n∑
j=1

f(j)e−2πijξ/n

and (3.5) is the standard Fourier uncertainty principle n ≤ | supp f || supp f̂ |. More
generally, if G = (Z/nZ)d and Γ = {I}, then every superclass is again a singleton

whence (3.5) yields the familiar estimate |G| ≤ | supp f || supp f̂ | (see Subsection 4.7
for a relevant discussion).
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Turning our attention toward Theorem 2, we find that the matrices

[Ti]j,k =

{
0 if k − j 6= i,

1 if k − j = i,

each satisfy TiU = UDi where Di = diag(1, ζi, ζ2i, . . . , ζ(n−1)i). Moreover, the
algebraA generated by the Ti is precisely the algebra of all N×N circulant matrices

c0 cN−1 · · · c2 c1
c1 c0 cN−1 c2
... c1 c0

. . .
...

cN−2
. . .

. . . cN−1

cN−1 cN−2 · · · c1 c0

 .

4.3. Gauss sums. Let G = Z/pZ where p is an odd prime and let g denote a
primitive root modulo p. We let Γ =

〈
g2
〉
, the set of all nonzero quadratic residues

modulo p. The action of Γ on G results in three superclasses {0}, Γ, gΓ, with
corresponding supercharacter table and symmetric unitary matrix

Z/pZ {0} Γ gΓ〈
g2
〉

1 p−1
2

p−1
2

σ1 1 1 1

σ2
p−1

2 η0 η1

σ3
p−1

2 η1 η0

1
√
p


1

√
p−1

2

√
p−1

2√
p−1

2 η0 η1√
p−1

2 η1 η0


︸ ︷︷ ︸

U

where

η0 =
∑
h∈Γ

e

(
h

p

)
, η1 =

∑
h∈Γ

e

(
gh

p

)
, (4.1)

denote the usual quadratic Gaussian periods.

Clearly the preceding can be generalized to higher-order Gaussian periods in the
obvious way. If k|(p−1), then we may let Γ =

〈
gk
〉

to obtain the k+1 superclasses

{0},Γ, gΓ, g2Γ, . . . , gk−1Γ. The nontrivial superclasses gjΓ each contain (p − 1)/k
elements, whence (3.5) yields

k + 1 =
⌈ p

(p− 1)/k

⌉
≤ | supp f || supp f̂ |,

a reasonably strong inequality given that there are only k + 1 total superclasses.

Let us now return to the quadratic setting k = 2 and consider the matrices
T1, T2, T3 discussed in Theorem 2. We adopt the labeling scheme X1 = {0}, X2 =
Γ, and X3 = gΓ. Focusing our attention upon T2, we consider the constants
c2,j,k. A few short computations reveal that the corresponding matrix [c2,j,k]3j,k=1

of structure constants is given by 0 1 0
p−1

2
p−5

4
p−1

4

0 p−1
4

p−1
4


︸ ︷︷ ︸

if p ≡ 1 (mod 4)

or

 0 1 0

0 p−3
4

p+1
4

p−1
2

p−3
4

p−3
4


︸ ︷︷ ︸

if p ≡ 3 (mod 4)

. (4.2)
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For instance, we observe that c2,2,2 denotes the number of solutions (x, y) in
X2×X2 to the equation x+ y = 1 (we have selected the representative z = 1 from
the superclass X2 = Γ). Letting x = u2 and y = v2, the equation x+y = 1 becomes

u2 + v2 = 1. (4.3)

If t2 6= −1, then one can verify that

u = (1− t2)(1 + t2)−1, v = 2t(1 + t2)−1, (4.4)

is a solution to (4.3). Moreover, every solution (u, v) with v 6= 0 to (4.3) can be
parameterized in this manner by setting t = (1∓ u)v−1.

Since −1 is a quadratic residue modulo p if and only if p ≡ 1 (mod 4), we find
that (4.4) produces exactly p − 2 or p solutions to (4.3) depending upon whether
p ≡ 1 (mod 4) or p ≡ 3 (mod 4). However, we need x = u2 and y = v2 to belong to
X2 = Γ, the set of nonzero quadratic residues in Z/pZ. Thus t = 0,±1 are ruled
out, leaving only p − 5 (if p ≡ 1 (mod 4)) or p − 3 (if p ≡ 3 (mod 4)) acceptable
values of t which can be used in (4.4). Since there are four choices of sign pairs for
u, v leading to the same values of x, y, it follows that

c2,2,2 =


p−5

4 if p ≡ 1 (mod 4),

p−3
4 if p ≡ 3 (mod 4).

(4.5)

The remaining entries of the matrix (4.2) can be computed in a similar manner.
To obtain the matrix T2, we weight the numbers c2,j,k appropriately to obtain

T2 =




0

√
p−1

2 0√
p−1

2
p−5

4
p−1

4

0 p−1
4

p−1
4

 if p ≡ 1 (mod 4),


0

√
p−1

2 0

0 p−3
4

p+1
4√

p−1
2

p−3
4

p−3
4

 if p ≡ 3 (mod 4).

(4.6)

Now recall that Theorem 2 asserts that the eigenvalues of T2 are precisely p−1
2 , η0,

and η1. On the other hand, the eigenvalues of (4.6) can be computed explicitly.
Comparing the two results yields

η1 =


−1±√p

2 if p ≡ 1 (mod 4),

−1±i√p
2 if p ≡ 3 (mod 4),

η2 =


−1∓√p

2 if p ≡ 1 (mod 4),

−1∓i√p
2 if p ≡ 3 (mod 4).

Among other things, this implies the well-known formula

|Gp(a)| =

{
p if p|a,
√
p if p - a,

for the magnitude of the quadratic Gauss sum

Gp(a) =

p−1∑
n=0

exp

(
2πian2

p

)
.
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4.4. Kloosterman sums. In the following we fix an odd prime p. For each pair
a, b in Z/pZ, the Kloosterman sum K(a, b) is defined by setting

K(a, b) :=

p−1∑
`=1

e

(
a`+ b`−1

p

)
where `−1 denotes the inverse of ` modulo p. It is easy to see that Kloosterman sums
are always real and that the value of K(a, b) depends only on the residue classes of
a and b modulo p. In light of the fact that K(a, b) = K(1, ab) whenever p - a, we
focus our attention mostly on Kloosterman sums of the form K(1, u), adopting the
shorthand Ku := K(1, u) when space is at a premium. Let G = (Z/pZ)2 and let

Γ =

{[
u 0
0 u−1

]
: u ∈ (Z/pZ)×

}
.

Note that the action of Γ on G produces the superclasses

X1 =
{

(x, x−1) : x ∈ (Z/pZ)×
}
,

X2 =
{

(x, 2x−1) : x ∈ (Z/pZ)×
}
,

...
Xp−1 =

{
(x, (p− 1)x−1) : x ∈ (Z/pZ)×

}
,

Xp =
{

(0, 1), (0, 2), . . . , (0, p− 1)
}
,

Xp+1 =
{

(1, 0), (2, 0), . . . , (p− 1, 0)
}
,

Xp+2 =
{

(0, 0)
}
,

and the corresponding supercharacter table

(Z/pZ)2 X1 X2 · · · Xp−1 Xp Xp+1 Xp+2

Γ (1, 1) (1, 2) · · · (1, p− 1) (0, 1) (1, 0) (0, 0)
# p− 1 p− 1 · · · p− 1 p− 1 p− 1 1
σ1 K1 K2 · · · Kp−1 −1 −1 p− 1
σ2 K2 K4 · · · K2(p−1) −1 −1 p− 1
...

...
...

. . .
...

...
...

...
σp−1 Kp−1 K2(p−1) · · · K(p−1)2 −1 −1 p− 1
σp −1 −1 · · · −1 p− 1 −1 p− 1
σp+1 −1 −1 · · · −1 −1 p− 1 p− 1
σp+2 1 1 · · · 1 1 1 1

Since Xi = −Xi for all i, it follows that the permutation matrix P from Lemma 1
equals the identity. Among other things, this implies that the unitary matrix

1

p



K1 K2 · · · Kp−1 −1 −1
√
p− 1

K2 K4 · · · K2(p−1) −1 −1
√
p− 1

...
...

. . .
...

...
...

...
Kp−1 K2(p−1) · · · K(p−1)2 −1 −1

√
p− 1

−1 −1 · · · −1 p− 1 −1
√
p− 1

−1 −1 · · · −1 −1 p− 1
√
p− 1√

p− 1
√
p− 1 · · ·

√
p− 1

√
p− 1

√
p− 1 1


︸ ︷︷ ︸

U

(4.7)
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is real and symmetric (i.e., U2 = I). Moreover, every nontrivial orbit contains
exactly p− 1 elements whence

p+ 2 ≤ | supp f || supp f̂ |,

since p+ 1 < p2/(p− 1) < p+ 2. In light of the fact that |X | = p+ 2, the preceding
inequality is again quite respectable.

We remark that the matrix (4.7) is precisely the unitary matrix [7, eq. (3.13)],
from which dozens of identities for Kloosterman sums may be derived. The arti-
cle [7] employs the classical character theory of a somewhat contrived 4 × 4 non-
commutative matrix group to obtain the unitarity of this matrix. We are able
to accomplish this in less than a page using supercharacter theory. The matrices
Ti, their remarkable combinatorial properties, and their applications are treated in
great detail in [7]. We refer the reader there for more information.

4.5. Ramanujan sums. For integers n, x with n ≥ 1, the expression

cn(x) =

n∑
j=1

(j,n)=1

e

(
jx

n

)
(4.8)

is called a Ramanujan sum [15, Paper 21] (see [8] for historical references). To
generate Ramanujan sums as supercharacter values, we first let G = Z/nZ and
Γ = (Z/nZ)×, observing that there exists a u in Γ such that au = b if and only if
(a, n) = (b, n). Let d1, d2, . . . , dN denote the positive divisors of n and note that
the action of Γ on G yields the orbits

Xi = {x : (x, n) = n/di},

each of size φ(di), and corresponding supercharacters

σi(ξ) =
∑
x∈Xi

ψx(ξ) =

n∑
j=1

(j,n)= n
di

e

(
jξ

n

)
=

di∑
k=1

(k,di)=1

e

(
kξ

di

)
= cdi(ξ) (4.9)

(here φ denotes the Euler totient function). The associated supercharacter table is
displayed below.

Z/nZ X1 X2 · · · XN

(Z/nZ)× n/d1 n/d2 · · · n/dN
# φ(d1) φ(d2) · · · φ(dN )
σ1 cd1( nd1 ) cd1( nd2 ) · · · cd1( n

dN
)

σ2 cd2( nd1 ) cd2( nd2 ) · · · cd2( n
dN

)
...

...
...

. . .
...

σN cdN ( nd1 ) cdN ( nd2 ) · · · cdN ( n
dN

)

Although we have, by and large, avoided focusing on deriving identities and
formulas for various classes of exponential sums, we can resist the temptation no
longer. The fact that cn(ξ) is a superclass function immediately implies that

cn(x) = cn
(
(n, x)

)
(4.10)

for all x in Z. In other words, cn(x) is an even function modulo n [14, p. 79], [16,
p. 15]. A well-known theorem from the study of arithmetic functions [14, Thm. 2.9]
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asserts that if f : Z → C is an even function modulo n, then f can be written
uniquely in the form

f(x) =
∑
d|n

α(d)cd(x)

where the coefficients α(d) are given by

α(d) =
1

n

∑
k|n

f
(n
k

)
ck

(n
d

)
.

We now recognize the preceding as being a special case of super-Fourier inversion.
In contrast, the standard proof requires several pages of elementary but tedious
manipulations.

As another example, we note that the first statement in Lemma 1 immediately
tells us that if d and d′ are positive divisors of n, then

cd

( n
d′

)
φ(d′) = cd′

(n
d

)
φ(d). (4.11)

For our purposes, the importance of (4.11) lies in the fact that it provides a one-line
proof of von Sterneck’s formula (see [9, Thm. 272], [14, Cor. 2.4], [16, p. 40])

cn(x) =
µ
(

n
(n,x)

)
φ(n)

φ
(

n
(n,x)

) . (4.12)

Indeed, simply let d′ = n and d = n/(n, x) in (4.11) and then use (4.10) and the
obvious identity µ(k) = ck(1) where µ denotes the Möbius µ-function. We refer the
reader to [8] for the derivation of even more identities.

Unlike the Gaussian periods and Kloosterman sums, Ramanujan sums are some-
what problematic from the perspective of the uncertainty principle. Indeed, the de-
nominator of (3.5) depends upon the size of the largest orbit, namely φ(n), which
is often nearly as large as n (e.g., if p is prime, then φ(p) = p− 1). This results in
a nearly trivial inequality in (3.5).

4.6. Symmetric supercharacters. Let G = (Z/nZ)d and let Γ ∼= Sd be the set
of all d× d permutation matrices. Write d = qn+ r where 0 ≤ r < n and consider
the vector

x0 = (1, 2, . . . , n︸ ︷︷ ︸
repeated q times

, 1, 2, . . . , r),

for which

|Stab(x0)| =
(
(q + 1)!

)r
(q!)n−r = (q!)n(q + 1)r.

A brief combinatorial argument confirms that x0 minimizes |Stab(x)| whence the
largest orbit induced by the action of Γ on G has order

d!

(q!)n(q + 1)r
.

It now follows from (3.5) that⌈nd(q!)n(q + 1)r

d!

⌉
≤ | supp f || supp f̂ |. (4.13)

Values of these constants for small n, d are given in Table 1.
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d\n 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 1 2 5 8 13 18 25 32 41 50 61 72
3 1 3 5 11 21 36 58 86 122 167 222 288
4 1 3 7 11 27 54 101 171 274 417 611 864
5 1 4 9 18 27 65 141 274 493 834 1,343 2,074
6 1 4 9 23 44 65 164 365 739 1,389 2,461 4,148
7 1 4 11 27 63 112 164 417 950 1,985 3,867 7,110
8 1 4 12 27 78 167 286 417 1,068 2,481 5,317 10,665
9 1 5 12 35 87 223 445 740 1,068 2,756 6,498 14,219
10 1 5 15 42 87 267 623 1,184 1,922 2,756 7,148 17,063
11 1 5 16 46 118 291 793 1,722 3,145 5,011 7,148 18,614
12 1 5 16 46 147 291 925 2,296 4,717 8,351 13,105 18,614

Table 1. Values of the expression on the left-hand side of the
inequality (4.13) for the range 1 ≤ n, d ≤ 12.

Our interest in the exponential sums arising from the action of Sd stems partly
from the experimental observation that the plots of individual supercharacters σX
are often pleasing to the eye (see Figure 1). A careful study of these plots and their
properties is undertaken in [4].

-10 -5 5 10

(a) n = 12, x = (0, 0, 0, 1, 1)

-20 -10 10 20

(b) n = 12, x = (0, 0, 0, 1, 6)

-4 -2 2 4

-4

-2

2

4

(c) n=12, x = (5, 5, 5, 5, 12)

-10 -5 5 10

(d) n = 14, x = (0, 1, 1, 6)

-4 -2 2 4

-4

-2

2

4

(e) n = 15, x = (1, 1, 1, 3)

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

(f) n = 17, x = (1, 2, 3)

Figure 1. Image of the supercharacter σX : (Z/nZ)d → C where
X = Sdx for various n, d, and x.
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4.7. Upgrading the uncertainty principle? Before proceeding, we make a few
remarks about T. Tao’s recent strengthening of the uncertainty principle for cyclic
groups of prime order [18] and of the possibility of obtaining similar results in the
context of super-Fourier transforms. To be more specific, Tao showed that if p is
an odd prime, then the classical uncertainty principle for Z/pZ can be improved to

p+ 1 ≤ | supp f |+ | supp f̂ |.

We argue here, somewhat informally, that such a dramatic improvement cannot
be expected in the context of supercharacter theories on (Z/pZ)d. Indeed, Tao’s
proof relies in a fundamental way on an old result of Chebotarëv (see [18, Lem. 1.3]
and the references therein), which asserts that every minor of the DFT matrix is
invertible. This does not, in general, hold for the unitary matrix (2.11), whose
adjoint represents the super-Fourier transform F : L2(X , µ) → L2(X , µ). For
instance, the presence of the Möbius µ-function in von Sterneck’s formula (4.12)
indicates that Ramanujan sums frequently vanish. Similarly, the unitary matrix
obtained in the Kloosterman sum setting has many 2×2 minors which are singular.

5. J-symmetric groups

Throughout the preceding, we have assumed that the group Γ which acts on
G = (Z/nZ)d is symmetric, in the sense that Γ = ΓT . However, most of the
preceding results also hold if Γ is merely assumed to be J-symmetric, meaning that
there exists some fixed matrix J in GLd(Z/nZ) such that

J = JT , JΓ = ΓTJ. (5.1)

The reason that we have not pursued this level of generality all along is mostly due
to the added notational complexity and the fact that plenty of motivating examples
exist in the symmetric setting.

Let us now sketch the modifications necessary to handle the more general setting
where Γ is J-symmetric. The first major issue which presents itself is the fact that
X 6= Y. As before, the superclasses Y in Y are orbits Γy in G under the action
y 7→ Ay of Γ. Identifying the irreducible character ψx with the vector x as before,
the sets X in X which determine the supercharacters σX are orbits under the action
x 7→ A−Tx of Γ. Without the hypothesis that Γ = ΓT , we cannot conclude that
these two actions generate the same orbits.

Although X 6= Y in general, the matrix J furnishes a bijection between X and
Y. Indeed, suppose that Y = Γy is the superclass generated by the vector y in
(Z/nZ)d. Since J is invertible and Γ is a J-symmetric group, the set

X = JY = J(Γy) = Γ−T (Jy)

has the same cardinality as Y and belongs to X . We therefore enumerate X =
{X1, X2, . . . , XN} and Y = {Y1, Y2, . . . , YN} so that Xi = JYi and |Xi| = |Yi| for
i = 1, 2, . . . , N . As before, we let σi := σXi denote the supercharacters associated
to the partition X of IrrG.

In this setting, the unitary matrix (2.11) is replaced by the modified matrix

U =
1√
nd

[
σi(Yj)

√
|Yj |√

|Xi|

]N
i,j=1

,
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whose unitarity can be confirmed using essentially the same computation which we
used before. Showing that U = UT requires a little more explanation. If Yi = Γyi
and Xj = Γ−Txj = Γxj , then

|Stab xi|σi(Yj) =
∑
A∈Γ

e

(
Axi · yj

n

)
=
∑
A∈Γ

e

(
AJyi · yj

n

)

=
∑
B∈Γ

e

(
JBTyi · yj

n

)

=
∑
B∈Γ

e

(
BTyi · xj

n

)
=
∑
B∈Γ

e

(
Bxj · yi

n

)
= |Stab xj |σj(Yi),

where yj denotes the vector J−1xj in Yj . At this point, the remainder of the proof
follows as in the proof of Lemma 1. For each f : Y → C, we now define

f̂(Xi) =
1√
nd

N∑
`=1

f(Y`)(σ` ◦ J)(Xi),

so that f̂ : X → C. The corresponding inversion formula is thus

f(Yi) =
1√
nd

N∑
`=1

f̂(X`)σ`(Yi).

In particular, note that in the J-symmetric setting, a function and its super-Fourier
transform do not share the same domain.

Example. Let p be an odd prime, G = (Z/pZ)2, and

Γ =

{[
u a
0 u

]
: u ∈ (Z/pZ)×, a ∈ Z/pZ

}
.

Note that JΓ = ΓTJ where

J =

[
0 1
1 0

]
.

The actions x 7→ A−Tx and y 7→ Ay of a matrix A in Γ yield respective orbits

X1 = {(0, 0)}, Y1 = {(0, 0)},
X2 = {(0, u) : u ∈ (Z/pZ)×}, Y2 = {(u, 0) : u ∈ (Z/pZ)×},
X3 = {(u, a) : a ∈ Z/pZ, u ∈ (Z/pZ)×}, Y3 = {(a, u) : a ∈ Z/pZ, u ∈ (Z/pZ)×}.
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A few simple manipulations now reveal the associated supercharacter table and
unitary matrix.

Z/pZ Y1 Y2 Y3

Γ (0, 0) (1, 0) (1, 1)
# 1 p− 1 p(p− 1)
σ1 1 1 1
σ2 p− 1 p− 1 −1
σ3 p(p− 1) −p 0

1/p

 1
√
p− 1

√
(p− 1) p√

p− 1 p− 1
√
p√

(p− 1) p
√
p 0


︸ ︷︷ ︸

U

In particular, observe that U = UT , as expected.
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