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Abstract

An Eigenspace Approach to Isotypic Projections
for Data on Binary Trees

by Nathaniel Eldredge

May 2003

The classical Fourier transform is, in essence, a way to take data and extract com-

ponents (in the form of complex exponentials) which are invariant under cyclic

shifts. We consider a case in which the components must instead be invariant un-

der automorphisms of a binary tree. We present a technique by which a slightly

relaxed form of the generalized Fourier transform in this case can eventually be

computed using only simple tools from linear algebra, which has possible advan-

tages in computational efficiency.
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Chapter 1

Introduction

1.1 The Fourier transform

The Fourier transform is known to most scientists and engineers as a tool for data

analysis. Given a signal, the classical Fourier transform recovers its spectrum,

which describes how the signal can be broken into sines and cosines, or, equiv-

alently, complex exponentials. In the discrete case, where the signal consists of a

finite number of data points, there are well-known computational techniques for

this; most notable is the discrete fast Fourier transform (FFT) algorithm due to Coo-

ley and Tukey [4]. The FFT allows the Fourier transform to be computed efficiently,

and has become an extremely important tool for digital signal processing in fields

ranging from physics and engineering to electronic music.

However, complex exponentials are not the only “pieces” into which we might

wish to decompose a signal. The crucial feature of functions like eit is that they

are in a sense invariant under translation; shifting t changes the function only by

a (complex) constant multiple. So the classical Fourier transform extracts from the

signal components which fit nicely into this translational structure. But there are

other sorts of structure we might seek. In fact, this structure can be described by a

group, and the idea of the Fourier transform generalizes to cover the case of an ar-

bitrary group. Unfortunately, though, if computational efficiency is needed, more

work must be done. Although the Cooley-Tukey FFT algorithm can be generalized

to some extent (see for instance [18]), for many groups, efficient Fourier transform
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algorithms are not obvious or not known.

The Fourier transform can be thought of as a change of basis; in fact, this is

how it is often characterized in analysis. In essence, we are decomposing our signal

space into one-dimensional subspaces, and looking at the components of the signal

that lie in these subspaces. In some cases, it can be helpful if we relax this condition

somewhat, and decompose the signal into larger components which nevertheless

retain the important structural information we seek. This is the idea of isotypic

projections, which we discuss in Chapter 2.

1.2 Eigenspaces and our approach

One disadvantage of generalizations the Cooley-Tukey FFT is that it relies heav-

ily on algebraic facts about the group involved, making it rather complicated to

implement. We shall describe an approach to isotypic projections which relies on

straightforward techniques from linear algebra. In particular, it can be possible to

compute isotypic projections with respect to some group via an algorithm for ei-

genspace projections, if the appropriate eigenspaces are used. The goal, then, is

to find a “separating set” of simultaneously diagonalizable linear transformations

whose eigenspaces are the subspaces we seek. Chapter 3 explains the details of

this approach. Of course, finding such a set will necessarily require an algebraic

understanding of the group in question; but once it is found, implementation of

the projection algorithm becomes elementary.

We will be working with the automorphism groups of binary trees, to be de-

scribed in Chapter 4. These groups are of interest for several tasks in signal pro-

cessing; see for instance Section 4.4, as well as [9] and [25]. In addition, the decom-

position of their signal spaces has interesting combinatorial properties; see Section

4.3 and [22].
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1.3 Previous work

The idea of using eigenspaces to compute isotypic projections was explored in de-

tail in [23]. Its inspiration comes from the one of the myriad properties of the

Jucys-Murphy elements from the symmetric group (Section 3.5 and [6]), which can

be applied for just this purpose. Generalizations of these elements exist ([6], [21],

[24]), but by no means have they been generalized to all groups.

Much is known about the structure of the automorphism groups of binary trees,

and wreath product groups in general (see Section 4.2). Their representation theory

is examined in [16] and [17], and more recently a combinatorial approach to the

more specific case of iterated wreath products of cyclic groups is in [22]. Spectral

analysis on these groups has been considered in [9] and [25], with applications to

signal and image processing.

Computational details about the linear algebra involved have also been con-

sidered. [23] gives bounds on the computational complexity of using separating

sets for several groups. [20] presents an important optimization in the case of the

symmetric group, which is generalized in [1].

1.4 Structure of this paper

In Chapter 2 we review necessary concepts and facts from the representation the-

ory of finite groups. Chapter 3 discusses the “eigenspace approach” to isotypic

projections, through which the necessary computations for isotypic projections can

be done using simple linear algebra tools. Chapter 4 describes the automorphism

groups with which we shall concern ourselves. Finally, Chapter 5 constructs some

separating sets for small cases.



Chapter 2

Representation Theory

In this chapter we give a review of the necessary elements of representation

theory that are needed to read this paper, and lay out the terminology and notation

we shall use. An excellent introduction to the subject is [14]. For readers already

acquainted with representation theory, the first chapter of [26] has a good concise

review. [8] is a very complete reference for any unfamiliar concepts from group

theory.

2.1 Group representations

Representation theory is, in essence, the idea of expressing abstract algebra in

terms of linear algebra. Operations in a group are transformed into operations

in a vector space.

Let G be a finite group.

Definition 2.1.1. A G-module or representation of G is a finite-dimensional com-

plex vector space V on which G acts linearly. That is, for any g, h ∈ G, v,w ∈ V ,

and α, β ∈ C, we have:

1. gv is some element of V ;

2. If e is the identity of G, then ev = v;

3. g(hv) = (gh)v (1, 2, and 3 together define an action of G on V );

4. g(αv + βw) = α(gv) + β(gw) (the action respects the linear structure of V ).
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What we have, then, is that each g ∈ G becomes a linear transformation of V ,

and these transformations compose in the same way that elements of G multiply.

Since elements of G have inverses, so do these transformations. So we can also

think of this correspondence as a homomorphism ϕ from G to GL(V ), the set of in-

vertible linear transformations of V . (Many authors use the word “representation”

to refer to this homomorphism instead of the corresponding module.)

Once a basis for V is fixed, each ϕ(g) can be represented as an n × n matrix,

where n = dimV . By taking the traces of these matrices, we obtain the character

χ corresponding to ϕ, defined by χ(g) = trϕ(g). Since similar matrices have the

same trace (that is, trABA−1 = trB), we see that the character is independent of

the basis chosen for V . In fact, two representations have the same character if and

only if they are isomorphic. Also, χ(ghg−1) = tr[ϕ(g)ϕ(h)ϕ(g)−1] = trϕ(h) = χ(h),

so that χ takes the same value on conjugate elements of G. A function f : G → C

with this property is called a class function, since it can be considered a function

on the set of conjugacy classes of G.

We now consider how modules decompose.

Definition 2.1.2. Let V be a G-module. A subspace U ⊂ V is a submodule of V if

for each g ∈ G, u ∈ U , we have gu ∈ U (that is, U is closed under the action of G).

We say V is irreducible if it has no submodules other than the trivial one {0} and

itself.

Irreducible modules are the most fundamental modules, as is shown by the

following central theorem.

Theorem 2.1.3 (Maschke’s Theorem). If V is a nontrivialG-module, then we can write

V = W1 ⊕ · · · ⊕Wk

where W1, . . . ,Wk are irreducible G-modules.
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In other words, every G-module can be decomposed into irreducible modules.

See [26] for a proof.

Using characters, we can say more about this decomposition.

Definition 2.1.4. Let χ and ψ be characters associated to representations of G. De-

fine the inner product 〈χ, ϕ〉 by

〈χ, ψ〉 =
1

|G|
∑

g∈G

χ(g)ψ(g). (2.1)

Theorem 2.1.5. Let V be a representation of G, with associated character χ, which decom-

poses into irreducible submodules as

V = m1W1 ⊕m2W2 ⊕ · · · ⊕mkWk

where miWi denotes the direct sum of mi copies of Wi, and the Wi are pairwise nonisomor-

phic. If χi is the character associated with Wi, then

〈χ, χi〉 = mi. (2.2)

It also can be shown that irreducible characters are orthonormal with respect to

this inner product. Using this fact, it is possible to show that the set of irreducible

characters forms a basis for the space of all class functions on G. As the dimen-

sion of this space is equal to the number of conjugacy classes of G, we have the

following theorem:

Theorem 2.1.6. The number of irreducible representations of G is equal to the number of

conjugacy classes of G.

Now, when decomposing a representation into irreducible submodules, it may

happen that some of these submodules are isomorphic to each other. In this case,

the decomposition is not unique; in fact, there are infinitely many ways to write

such a decomposition. To remedy this defect, we introduce the notion of an iso-

typic submodule, which is simply the direct sum of one isomorphism class of ir-

reducible submodules of V . In other words, given one irreducible submodule, we
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collect together all the irreducible submodules isomorphic to it into one larger sub-

space. When this is done, the decomposition is in fact unique.

Theorem 2.1.7. If V is a nontrivial G-module, then there is a decomposition

V = W1 ⊕ · · · ⊕Wk

where W1, . . . ,Wk are isotypic G-modules. Furthermore, this decomposition is unique up

to ordering.

2.2 Examples

Now let us see some examples of representations.

Example 2.2.1 (The permutation representation). Suppose G acts on a finite set

S with n elements. Let CS be the set of all formal linear combinations
∑n

i=1 aisi,

where ai ∈ C, si ∈ S. With componentwise addition and scalar multiplication, CS

becomes a vector space. Then we can make CS into a G-module by defining

g

n
∑

i=1

aisi =
n
∑

i=1

ai(gsi).

This is called the permutation representation of G corresponding to its action on

S.

Example 2.2.2 (The regular representation). If, in the previous example, we con-

sider G acting on itself by left multiplication, we obtain the regular representation

CG.

Now an element of G becomes a linear transformation on CG. Then each ele-

ment of CG is just a linear combination of linear transformations, which is again a

linear transformation. Hence each element of CG is itself a linear transformation

of CG, as follows:
(

∑

i

aigi

)(

∑

j

bjhj

)

=
∑

i

∑

j

aibjgihj.
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It’s easy to show that this puts a multiplicative structure on CG, and for this reason

CG is also called the group algebra or group ring of G.

The same extension works for any G-module V . Since each element of G is a

linear transformation of V , so is any element of CG, since a linear combination of

linear transformations is again a linear transformation:
(

∑

i

aigi

)

v =
∑

i

ai(giv).

For this reason, many authors prefer to think of V as actually being acted on by

CG (since this action also respects the ring structure of CG), and call it instead a

CG-module.

The regular representation CG has the important property that it contains every

irreducible representation. In fact, if CG is written as a direct sum of irreducible

submodules, then each irreducible representation W appears dimW times. This

yields the identity

|G| = dim CG =
∑

(dimW )2 (2.3)

where the sum is taken over all non-isomorphic irreducible representations W .

The regular representation can also be viewed as the set of all functions f :

G → C, with pointwise addition and scalar multiplication, and the group action

(gf)(a) = f(g−1a) for g, a ∈ G. This can be a useful formulation for signal process-

ing, where we may think of an element of CG as a signal on |G| points.

2.3 Tensor products of representations

The tensor product allows us to construct representations of direct products of

groups. We describe it in terms of matrices, but as we saw in Section 2.1, we could

also describe it in terms of G-modules; the two formulations are completely equiv-

alent. This material comes directly from [26] and is included here mainly for later

reference.
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Definition 2.3.1. Let A = (aij) and B be matrices. Their tensor product is the block

matrix

A⊗B = (aijB) =











a11B a12B · · ·
a21B a22B · · ·

...
... . . .











. (2.4)

Now let G and H be groups, with representations ρ : G→ GL(Cn) and ϕ : H →
GL(Cm) respectively. Then their tensor product ρ ⊗ ϕ : G × H → C

nm, where we

define (ρ ⊗ ϕ)(g, h) = ρ(g) ⊗ ϕ(h), is a representation of G × H . It can be shown

[26] that if ρ and ϕ are irreducible, then so is ρ ⊗ ϕ. Thus the representations of a

direct product of two groups are completely determined by the representations of

the factors.

2.4 Induced and restricted representations

It is natural to ask how the subgroup structure of a group influences its representa-

tions. In fact, if we have H ≤ G, we can construct representations of G from those

of H , and vice versa. We again use the matrix formulation of a representation. This

material also comes from [26].

Definition 2.4.1. Suppose H ≤ G, and ρ : H → GL(Cn) is a representation of H .

Let t1, . . . , tk be a set of representatives for the cosets ofH inG (where k = |G| / |H|).
Then the induced representation ρ ↑G

H : G→ GL(Cnk) maps each g ∈ G to the block

matrix

ρ ↑G
H (g) =

















ρ(t−1
1 gt1) ρ(t−1

1 gt2) · · · ρ(t−1
1 gtk)

ρ(t−1
2 gt1) ρ(t−1

2 gt2) · · · ρ(t−1
2 gtk)

...
... . . . ...

ρ(t−1
k gt1) ρ(t−1

k gt2) · · · ρ(t−1
k gtk)

















(2.5)

where ρ(x) = 0 for x /∈ H .
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It is shown in [26] that this actually yields a representation of G, and that any

two choices of coset representatives yield isomorphic representations, so that the

induced representation is well-defined.

The other direction is much simpler: given a representation ρ for G, we can

produce the restricted representation ρ ↓G
H of H simply by taking the restriction of

the map ρ to H . It is obvious that this remains a representation.

We should note that the induced or restricted representations of an irreducible

representation are not necessarily themselves irreducible. See [3] for more details

on when this is true.

2.5 Representation theory and the Fourier transform

Consider the case where G = Zn is the cyclic group of order n. Then CG con-

sists of n-dimensional complex vectors, and the action of G cyclically permutes the

components. Its irreducible submodules are all one-dimensional (this always hap-

pens for abelian groups [8]), so they will be spaces of vectors which are only scaled

when their components are cyclically permuted. One such submodule is that in

which all components are equal. Others are given by vectors whose components

vary in some sense periodically. In fact, each irreducible submodule is spanned by

a vector of the form

vk = (1, e2πik/n, e4πik/n, . . . , e2(n−1)πik/n) (2.6)

Also, since these submodules are non-isomorphic, they are in fact the isotypic sub-

modules of CG.

So by decomposing a vector into components lying in these subspaces, we

break it into parts that look like complex exponentials. If we think of vectors in

CG as functions f : G → C (where the n elements of G can be thought of as n dis-

crete points in time), then this looks very much like a discrete Fourier transform. In
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fact, expressing a vector in the basis {vk}n
k=1 yields the coefficients of the classical

discrete Fourier transform on n points.

If we consider the group algebra as functions on the n elements of Zn, then iso-

typic submodules will consist of functions whose values change only by a (com-

plex) scalar when their domains are cycled.

This notion extends to arbitrary groups G ([2], [18]). Although for nonabelian

groups the isotypics will not all be 1-dimensional, projections onto isotypic sub-

spaces of CG (or another G-module) can still yield important information about

the original vector. To give just one example, the case G = Sn has been exploited to

analyze ranked data [5], such as survey results and voter preferences, in much the

same way as the case G = Zn is used to analyze time-series data. One particularly

interesting application uses these techniques to analyze approval voting, detecting

coalitions in judicial and legislative bodies [28].

The problem then becomes: how should we compute isotypic projections? Ob-

viously, since projection onto a subspace is a linear transformation, it has a matrix

representation, so we could just compute the projection directly. However, the cost

of doing this is that of multiplying an n × n matrix by a vector, which in general

requires O(n2) operations, since there is no reason why this matrix should be par-

ticularly “nice.”

A better approach comes from an algorithm described in [1] and [23]. If we

can find diagonalizable linear operators whose eigenspaces correspond well with

the isotypic submodules we seek, then we can compute isotypic projections via

eigenspace projections. The next chapter describes how we go about this search.



Chapter 3

Eigenspace Approaches to Isotypic Decomposition

As mentioned previously, isotypic projections can be computed via eigenspace

projections, given an appropriate set of linear operators. This chapter describes the

process.

3.1 Separating sets

Let us precisely state the properties we seek in our operators.

Definition 3.1.1. Let V be a G-module which decomposes into isotypic submod-

ules as V = W1⊕· · ·⊕Wk. A separating set for V is a set S = {A1, . . . , Am : V → V }
of simultaneously diagonalizable linear operators on V satisfying the following:

For each isotypic submodule Wj there exists a subset Sj = {Ai1 , Ai2 , . . . } ⊂ S, and

a corresponding set of eigenspaces {Ei1 , Ei2 , . . . }, whereEi1 is an eigenspace ofAi1 ,

and so on. This set has the property that

Wj = Ei1 ∩ Ei2 ∩ . . . . (3.1)

That is, each isotypic can be written as an intersection of eigenspaces of some of

the operators A1, . . . , Am.

It should be clear that a separating set suffices to compute isotypic projections.

For if Wj = Ei1 ∩Ei2 ∩ . . . , then to project v onto Wj , we need simply project it onto

Ei1 (Section 3.3 discusses how this can be done), project the result onto Ei2 , and so

on until we have iteratively projected onto each eigenspace. Then what we have is

a projection onto their intersection; namely, Wj .
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Separating sets are considered at length in [23], in which examples are given for

several classes of groups.

3.2 Conjugacy classes

One particularly nice separating set for any group comes from its conjugacy classes.

Let C be a conjugacy class of G, and let V be a G-module. As each g ∈ C is a linear

operator on V , so is their sum; namely, the map

v 7→
∑

g∈C

gv.

This operator is called the class sum of C.

It can be shown (see for instance [23]) that all these operators are simultane-

ously diagonalizable, and that every irreducible submodule W ⊂ V is contained

in an eigenspace of the class sum of each C. Furthermore, if W has character χ,

then the corresponding eigenvalue is given by

λ(C,W ) = |C| χ(C)

dimW
(3.2)

where by χ(C) we mean the value of χ at any element of C (recall that characters

are class functions, so it does not matter which element is used).

Notice that isomorphic irreducible submodules get the same eigenvalue, and

hence reside in the same eigenspace. Thus, since an isotypic submodule is a direct

sum of isomorphic irreducible submodules, each isotypic submodule also lies in

an eigenspace of a class sum.

Thus, to build a separating set S out of class sums, we only require that for

every pair W1,W2 of irreducibles, S contains some class sum c whose conjugacy

class C has λ(C,W1) 6= λ(C,W2); that is, that W1 and W2 lie in distinct eigenspaces

of c. If this is so, then when all eigenspaces containing some W are intersected, no

other irreducible W ′ can lie in that intersection, since for some class sum W and
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W ′ are in distinct eigenspaces. It can be shown (see for instance [23]) that the set of

all class sums is sufficient to form a separating set. However, in many important

cases not all of them are actually needed, and a much smaller subset suffices.

Notice, in fact, that the above condition is equivalent to having some C with
χi(C)
dim Wi

6= χj(C)

dim Wj
for each Wi,Wj (as the |C|’s cancel). And furthermore, since the

identity ι of the group must correspond to the identity transformation on V , we

have dimW = χ(ι) for every representation W . Thus these eigenvalues may be

computed by simply examining χ(C) for each class sum C and irreducible charac-

ter χ. These are given by the character table of G: if G has irreducible characters

χ1, . . . , χk and conjugacy classes C1, . . . , Ck, the character table is the k × k matrix

whose ijth entry is aij = χi(Cj). The order chosen for the characters and conju-

gacy classes is unspecified, but usually C1 is the conjugacy class of the identity. As

such, given a character table, our eigenvalues appear as the entries of a modified

character table whose ijth entry is bij = aij/ai1.

Now, it might appear that this makes the problem of finding a separating set

rather easy: all we have to do is generate the modified character table, and search

for a set of columns (conjugacy classes) such that for every pair of rows (irre-

ducibles), there is a column in the set in which those two rows have different en-

tries. The number of projections required is certainly related to the number of class

sums used, so it is reasonable to look for a separating set which is as small as pos-

sible. (Note, however, that the smallest separating set does not always yield the

fastest projections; see Section 3.4 for an example.) Unfortunately, we have shown

that finding a minimum-size separating set of class sums from the modified char-

acter table is an NP-complete problem; there is probably no algorithm to do this in

polynomial time in the size of this table. For a further explanation and a proof of

this fact, see Appendix A.

However, it is possible to approximate this problem rather well, if we require

only a near-optimal solution. We could use the following greedy algorithm: start
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by taking the conjugacy class that distinguishes the most pairs of irreducibles. If

some pairs remain undistinguished, take the class that distinguishes the most of

the remaining pairs. Repeat this until all pairs are distinguished.

This greedy algorithm certainly runs in polynomial time. It may be possible to

show that the set thus obtained is in some sense “close” to the size of a smallest set,

thereby placing bounds on how accurately the greedy algorithm approximates an

optimal solution. See Appendix A for further details.

3.3 Isotypic projections via eigenspaces

Suppose, then, that we want to compute the projections of a vector v of dimension

n onto the k eigenspaces of a diagonalizable matrixA. The naive approach is just to

compute the matrix of each projection operation (which is a linear transformation)

and multiply it by v. But the projection matrix may be arbitrarily complicated,

hence multiplying it by a vector requiresO(n2) operations. If we have k projections

to compute, we need a total of O(kn2) operations. When n is large (and for our

purposes it is), this is prohibitive.

However, there is an algorithm that can take advantage of nice structure in A.

IfA is a general matrix, then multiplying it by an arbitrary vector takesO(n2) oper-

ations. But perhaps A is sparse, or block diagonal, or factors into smaller matrices.

In this case, it can be multiplied by an arbitrary vector using fewer operations. We

use Aop to denote this number of operations.

Theorem 3.3.1. Given a vector v of dimension n and a diagonalizable n × n matrix A,

the projections of v onto the k eigenspaces of A can be computed with O(kAop + k2n)

operations.

The algorithm for this is based on a technique called the Arnoldi iteration. A

description of the algorithm with a view to this application can be found in [1].
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In our case, we will usually have Aop = O(n), and k � n, so this will allow us

to do projections with O(n) operations.

3.4 Example: Isotypic projections for the cyclic group

Let us consider an example of the eigenspace method in action, in the case of the

cyclic group. The isotypic projections we recover will correspond to the coefficients

of the discrete Fourier transform, as described in Section 2.5. As Fourier transform

algorithms often do, we restrict ourselves to the case where the number of “points”

is a power of 2.

Let G = Z2n = {z0, z1, . . . , z2n
−1} be the cyclic group of order 2n with generator

z, and consider the regular representation CG. As we saw in Section 2.2, we can

view this as the space of functions f : G → C, which we can think of as signals on

2n points corresponding to the elements of G (in order). In applications, this might

correspond to some sort of time-series data sampled at 2n equally spaced points in

time, so we will write the elements of CG as complex 2n-tuples.

Since G is abelian, each element is its own conjugacy class. So by Theorem 2.1.6

there are 2n distinct irreducible representations, all of which are contained in CG.

It follows that each irreducible representation has dimension 1, and appears only

once in the decomposition of CG, so in this case the isotypic submodules of CG are

exactly the irreducible submodules.

Now each element of G is its own class sum, and hence a candidate for inclu-

sion in a separating set. (Notice also that its matrix representation is a 2n × 2n

permutation matrix, so in this case Aop = O(2n)). In fact, in this case the smallest

separating set of class sums has only one element! The eigenspaces of the linear

transformation z1 (the generator of G) are precisely the irreducibles. Thus, if we fix

ω as a primitive 2nth root of unity, it is not difficult to see that the eigenvalues of z1
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are

λj = ωj (3.3)

and have corresponding eigenspaces

Ej = span {(1, ωj, ω2j, . . . , ω(2n
−1)j)}, (3.4)

for j = 0, . . . , 2n − 1. Comparing (2.6), we see that these eigenspaces are in fact the

isotypic submodules of CG.

However, this tiny (one element) separating set is not ideal for our purposes.

Recall from Theorem 3.3.1 that if there are k eigenspaces, the time required to com-

pute eigenspace projections is of order k2, and for this element, we have k = 2n. We

can get better efficiency by choosing more elements with fewer eigenspaces each.

Let us consider instead the element z2n−1 , which essentially interchanges the

first and last “halves” of the coordinates of a vector. It has eigenvalues 1 and −1,

corresponding to eigenspaces E1, E2 where the last half is equal to or the negative

of the first half. Computing these projections thus takes O(2n) operations. Now

consider the element z2n−2 . It has eigenvalues 1, i,−1,−i (where i =
√
−1), and

hence four eigenspaces. However, when we restrict z2n−2 to E1, we find that the

restriction has only two eigenspaces of its own; the same happens with E2. Fur-

thermore, E1 and E2 each have dimension 2n−1; if we do our computations in these

spaces (with an appropriate change of basis 1), we can project onto eigenspaces

of the element z2n−2 with only O(2n−1) operations for each of E1, E2; again requir-

ing a total of O(2n) operations. We have now split CG into 4 eigenspaces. We

repeat the process with z2n−3 ; now we work in each of 4 eigenspaces, and require

a total of O(2n) operations. Continuing the process until we reach the element z1,

we find that each of our n steps has required O(2n) operations, for a grand total

of O(n2n). This may seem high, but in terms of the number of points m = 2n,

1A significant amount of work has been swept under the rug here. However, it can be shown
that an appropriate change of basis can always be computed quickly. See [1] for details.
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this is only O(m logm) operations. In fact, what we have described is in essence

an algorithm for the fast Fourier transform. It is equivalent [23] to the so-called

Gentleman-Sande FFT [12].

By using a divide-and-conquer approach, we can achieve the same results in

far less time. This is a common theme in Fourier transform algorithms.

We observe in passing that that our “better” separating set actually contains

the first one! The key is that we use it last, after the space is already mostly de-

composed, rather than trying to use its full power right at the beginning of the

process. This demonstrates that in considering a separating set, we must also con-

sider the order in which the elements are to be applied. Had we used our “better”

separating set in the reverse order, it would have been no improvement at all.

3.5 Jucys-Murphy elements

In the example of Section 3.4, we saw a separating set for which the intersections

of the eigenspaces were exactly the isotypic submodules we sought. We do not

actually need the full strength of this condition. It is perfectly all right for a sepa-

rating set to decompose the space more finely than the isotypics. In particular, it

suffices that the intersections of the eigenspaces are merely all contained in the iso-

typic submodules, since if this holds, we can compute our eigenspace projections

and merely add up all the projections which lie in a single isotypic submodule.

As we noted in Section 3.2, this will never be necessary when our separating

set consists of class sums. However, there are other possibilities. For instance, we

could intersect conjugacy classes with subgroups of our group G, and take our ele-

ments to be the sums of the resulting sets. In the symmetric group Sn, a particularly

nice set of this kind is supplied by the so-called Jucys-Murphy elements.

Definition 3.5.1. For 2 ≤ j ≤ n, the jth Jucys-Murphy element of CSn is given by
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the sum of transpositions

Rj = (1 j) + (2 j) + · · · + ((j − 1) j). (3.5)

Recalling [8] that two elements of Sn are conjugate if and only if they have the

same cycle type, we see that the set of all transpositions in Sn form a conjugacy

class K(2). Furthermore, for j ≤ n, we have Sj ≤ Sn in a very natural way (if

Sn is the group of permutations of {1, . . . , n}, then consider Sj as the subgroup

consisting of permutations which fix j + 1, j + 2, . . . , n). Then Rj is simply the sum

of the subset (K(2) ∩ Sj) − Sj−1 of Sn.

It can be shown [23] that we can get the separating set we desire by taking all

of the Jucys-Murphy elements; namely, the set {Rj | 2 ≤ j ≤ n}. Moreover, their

matrix representations in the standard basis for CSn are quite simple: there are

only j nonzero entries in each row and column (and these are 1s). As j ≤ n� n! =

dim CSn, these matrices are computationally very inexpensive to multiply, which

is desirable in view of Theorem 3.3.1.

A further, extremely useful property of the Jucys-Murphy elements appears

when we consider them as acting on CSn not only by left multiplication, but also

by right multiplication. Then the right action of Rj gives rise to a different linear

transformation on CSn, which we may call R′

j . As mentioned by [23] (with refer-

ence to [7] and [19]), if we include these right-acting elements in our set (to obtain

{Rj, R
′

j | 2 ≤ j ≤ n}), the resulting decomposition is so fine that all of the (nontriv-

ial) eigenspace intersections are 1-dimensional. As such, computing the projec-

tions of a vector onto these intersections amounts to a change of basis—much as

the Fourier transform in the Zn case. In fact, what we recover is exactly the discrete

Fourier transform on Sn.

Much work has been done on generalizing these elements to other groups; see

[6], [21], and [24]. However, we are not aware of any analogue of the Jucys-Murphy

elements for the groups in which we shall be interested (see Chapter 4).



Chapter 4

Automorphism Groups of Binary Trees

4.1 Binary trees

For the rest of this thesis, we shall be interested in the following class of groups.

Definition 4.1.1. Wn is the group of all automorphisms (or symmetries) of a com-

plete binary tree Tn of height n+ 1.

As seen in the following example, an automorphism of such a tree corresponds

to a permutation of its leaves, and this correspondence is one-to-one. In this sense,

Wn is isomorphic to a subgroup of the symmetric group S2n .

Example 4.1.2. Consider the following tree T3:

A
PPPP

����
B
Q

Q
�

�
D
SS��

1 2

E
SS��

3 4

C
Q

Q
�

�
F
SS��

5 6

G
SS��

7 8

We can see that the permutation (1 2) (written in cycle notation) corresponds to an

automorphism of T3, but that (1 3) does not.

We can get automorphisms of G by swapping the subtrees of any of the non-

leaf nodes A–G, and all automorphisms can be obtained by composing these. In

fact, the group W3 of all automorphisms of T3 is generated by the elements (1 2),

(1 3)(2 4), (1 5)(2 6)(3 7)(4 8), which correspond respectively to swaps at D, B and

A.
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The recursive structure of these groups is obvious. In particular, notice that Tn

consists of two copies of Tn−1 under a root node. Any automorphism of Tn can

be written as a product (composition) of an automorphism of the left-hand Tn−1,

an automorphism of the right-hand Tn−1, and possibly a swap of the two copies.

Thus we see that |Wn| = 2 |Wn−1|2, and since |W1| = 2, we have by induction that

|Wn| = 2(2n
−1). This extremely rapid growth of the group with respect to n is the

fundamental cause of computational difficulties: the group is just too big.

4.2 Wreath products

A nice description of Wn can be given in terms of wreath products, which we now

define.

Definition 4.2.1. Let G be a finite group, and let H ≤ Sn be a permutation group.

Let Gn = G× · · · ×G (n times) be the set of ordered n-tuples of elements of G. The

wreath product G oH of G with H is the set Gn ×H with the following multiplica-

tion:

(g, σ)(h, π) = (ghσ, σπ) (4.1)

= ((g1hσ−1(1), . . . , gnhσ−1(n)), σπ) (4.2)

where g = (g1, . . . , gn), h = (h1, . . . , hn) are in Gn, and σ and π are in H .

To understand this, imagine that the components of h are “twisted” by σ before

being multiplied by g.

It is easy to show that G o H is a group under this multiplication. It is also not

hard to show that the wreath product is associative, but generally not commuta-

tive. Furthermore, it is apparent that the wreath product is a semidirect product

Gn
oH .

In our case, we take G = Wn−1 and H = Z2. Then Wn−1 o Z2 consists of two

copies of Wn−1 which can be “twisted” together. These copies of Wn−1 correspond
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to automorphisms of two copies of Tn−1, and the twisting corresponds to the pos-

sibility of interchanging the copies of Tn−1, as if they were subtrees of a root node.

In fact, what we obtain is all automorphisms of Tn, and we have Wn = Wn−1 o Z2.

Since W1 = Z2, we can write

Wn = Z2 o · · · o Z2 (n times). (4.3)

In general, the group of all automorphisms of a complete regularly branching r-

ary tree of height n+1 is given by Sr o· · ·oSr (n times). By choosing at each step some

subgroup of Sr, we obtain a more restricted set of automorphisms. [9] describes

applications of the group Wn,r = Zr o · · · o Zr (n times), with particular interest in

the case r = 4, in which a “wreath product transform” for image processing can be

obtained.

4.3 Representation theory

Given the recursive structure of Wn, it should come as no surprise that its repre-

sentations arise recursively. This section follows a construction from [22], which

generalizes to wreath products of arbitrary cyclic groups; a discussion of the rep-

resentation theory of wreath product groups in general may be found in [16]. The

process of constructing representations of a semidirect product is the purview of

Clifford theory [3]; a good source on the subject is [15]. Tensor products ρ ⊗ ϕ of

representations are defined in Section 2.3; induced representations ρ ↑G
H are defined

in Section 2.4.

We start with the irreducible representations {ρi} of Wn−1, and consider the

normal subgroup Wn−1 ×Wn−1 E Wn which corresponds to automorphisms of Tn

which do not swap the right and left subtrees of the root. As shown in Section 2.3,

the irreducible representations of Wn−1 ×Wn−1 are of the form ρi ⊗ ρj .

If i = j, then ρi⊗ρi is actually an irreducible representation ofWn which simply

disregards the swap at the root. To take this swap into account, we tensor an irre-
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ducible representation of Z2. There are two of these—the trivial representation ϕ0

and the alternating representation ϕ1—and thus we obtain irreducible representa-

tions for Wn of the form ρi ⊗ ρi ⊗ ϕk.

If i 6= j, then ρi⊗ρj is not a representation ofWn. However, sinceWn−1×Wn−1 ≤
Wn, we can induce this representation of the former to a representation of the latter,

as described in Section 2.4. It can be shown that the resulting representation ρi ⊗
ρj ↑Wn

Wn−1×Wn−1
of Wn is irreducible. Furthermore, the representations which arise

from ρi ⊗ ρj and ρj ⊗ ρi are isomorphic to one another, so that the ordering of i and

j can be ignored.

We summarize this construction in the following theorem, which is proved in

[22].

Theorem 4.3.1. Suppose {ρi} are all the irreducible representations of Wn−1. Let ϕ0 and

ϕ1 be the trivial and alternating representations of Z2. Then every irreducible representa-

tion of Wn takes exactly one of the following forms:

1. ρi ⊗ ρi ⊗ ϕk, or

2. ρi ⊗ ρj ↑Wn

Wn−1×Wn−1
, for i < j.

This gives us a nice recursive way to index irreducible representations of Wn,

using labeled trees of height n. For W1
∼= Z2, there are only two irreducible rep-

resentations, the trivial representation ρ0 and the alternating representation ρ1. To

these, we associate trees of height 1, whose single node is labeled 0 for trivial or 1

for alternating. Otherwise, an irreducible representation of Wn is associated with

a labeled tree consisting of a root and two subtrees, each of which correspond to

an irreducible representation of Wn−1. If the two subtrees are the same, the root

may be labeled with a 0 or a 1 (this corresponds to the first case of Theorem 4.3.1).

Otherwise, if they are different, the root must be labeled 0 (this corresponds to the

second case). Notice that isomorphic trees yield isomorphic representations. [22]
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calls these trees 2-trees (a special case of r-trees for iterated wreath products of any

Zr), and we shall follow this terminology.

Example 4.3.2. The 2-tree

0
Q

Q
�

�
1
SS��

0 0

0
SS��

0 1
corresponds to the following irreducible representation for W3:

(ρ0 ⊗ ρ0 ⊗ ϕ1) ⊗ (ρ0 ⊗ ρ1 ↑W2

W1×W1
) ↑W3

W2×W2
.

This bijection between 2-trees and irreducible representations lets us count the

irreducible representations of Wn. In fact, the following recurrence is easy to see:

Theorem 4.3.3. Let kn be the number of irreducible representations of Wn. Then k1 = 2,

and

kn+1 = 2kn +

(

kn

2

)

=
k2

n + 3kn

2
. (4.4)

Proof. We count the 2-trees of height n + 1. Given an 2-tree, suppose its root is

labeled with a = 0 or 1, and the two subtrees of the root are the 2-trees A and B of

height n. We have the following possibilities:

1. A = B; that is, the two subtrees are equivalent. Then there are kn choices for

the subtree A = B, and the root may be labeled with either a 0 or a 1. This

gives us 2kn possibilities.

2. A 6= B. The root is then forced to be labeled with a 0. Since order does not

matter, there are
(

kn

2

)

choices for A,B.

As these cases are disjoint and cover every 2-tree of height n+ 1, (4.4) follows.

We are not aware of any closed-form solution of this recurrence. However, since

for n ≥ 2 we have kn > 3, it follows that kn+1 < k2
n, and so kn ≤ 22n−1 . In fact, it

seems empirically that the growth is rather slower than this.
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4.4 Permutation representation and Haar wavelets

As we saw, each element of Wn induces a permutation on the 2n leaves of Tn (see

Section 4.1). This gives rise to a group action of Wn on the set of leaves L, and

as discussed in Section 2.2, this action in turn gives rise to a permutation repre-

sentation of Wn. The permutation representation can be thought of as the vector

space CL of linear combinations of L, or alternatively as complex-valued functions

f : L → C. In either case it can be viewed as a space of signals, and the structure

of the representation gives us a way to decompose these signals. In particular, we

are interested in their isotypic projections.

It can be shown [9] that these projections correspond to the 1-D discrete Haar

wavelet transform of the signal. This transform essentially involves decomposing

the signal as a sum of smaller and smaller square waves. One particular advan-

tage of the Haar wavelet transform is that it can very effectively “zoom in” on

short-term, transient parts of the signal, without losing the signal’s overall shape.

Further details can be found in [29], which discusses applications including com-

pression and denoising of signals.

4.5 Conjugacy classes

In the course of this work, we found it useful to explicitly derive some results about

the conjugacy classes of G oZ2, of which Wn = Wn−1 oZ2 is a special case. We record

them here.

Let G be a finite group with identity ι and Z2 = {0, 1} be the cyclic group of

order 2. We write elements of G o Z2 as ordered triples (a, b, z) where a, b ∈ G and

z ∈ Z2.

For readers who prefer to think of trees, think of G = Wn−1. Then (a, b, z)

corresponds to an automorphism of Tn constructed as follows:
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1. Apply the automorphism a to the left-hand subtree of the root (this subtree

is a copy of Tn−1).

2. Apply the automorphism b to the right-hand subtree.

3. If z is the generator of Z2, exchange the two subtrees; if z is the identity of Z2,

do nothing.

Recall that in general for wreath product groups G o H where H ≤ Sn, multi-

plication is given by (a, π) · (b, σ) = (abπ, πσ) (where a, b ∈ Gn and bπ denotes per-

muting the “coordinates” of b according to π). It follows that inverses are given by

(a, π)−1 = ((a−1)π−1

, π−1), and conjugation by (a, π)(b, σ)(a, π)−1 = (abπ(a−1)σ, πσπ−1).

Notice that when H is abelian (as in our case), the last coordinate of an element is

unchanged by conjugation.

Let ∼ denote the conjugacy relation (i.e. a ∼ b if a = xbx−1 for some x).

Proposition 4.5.1. (a, b, 0) ∼ (c, d, 0) if and only if a ∼ c and b ∼ d, or a ∼ d and b ∼ c.

Proof. Suppose (a, b, 0) ∼ (c, d, 0). There are two cases:

1. (x, y, 0)(a, b, 0)(x, y, 0)−1 = (c, d, 0). Expanding, (xax−1, yby−1, 0) = (c, d, 0).

Thus xax−1 = c, yby−1 = d, and we have a ∼ c and b ∼ d.

2. (x, y, 1)(a, b, 0)(x, y, 1)−1 = (c, d, 0). Expanding, (xbx−1, yay−1, 0) = (c, d, 0).

Thus xbx−1 = c, yay−1 = d, and we have b ∼ c and a ∼ d.

Note that each step is reversible, so the converse is also established.

Proposition 4.5.2. (a, ι, 1) ∼ (c, d, 1) if and only if a ∼ cd.

Proof. (⇒) Suppose (a, ι, 1) ∼ (c, d, 1). There are two cases:

1. (x, y, 0)(a, ι, 1)(x, y, 0)−1 = (c, d, 1). Expanding, (xay−1, yx−1, 1) = (c, d, 1).

Thus c = xay−1, d = yx−1, and then cd = xax−1, so that a ∼ cd.
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2. (x, y, 1)(a, ι, 1)(x, y, 1)−1 = (c, d, 1). Expanding, (xy−1, yax−1, 1) = (c, d, 1).

Thus c = xy−1, d = yax−1, and then cd = xax−1, so that again a ∼ cd.

(⇐) Suppose a ∼ cd, so that a = z(cd)z−1 for some z ∈ G. Let x = z−1, y = dz−1.

Then

(x, y, 0)(a, ι, 1)(x, y, 0)−1 = (xay−1, yx−1, 1)

= ((z−1)(zcdz−1)(zd−1), (dz−1)z, 1)

= (c, d, 1).

Thus (a, ι, 1) ∼ (c, d, 1).

Corollary 4.5.3. Every element of G oZ2 is conjugate to an element of the form (a, b, 0) or

(a, ι, 1) (and never both).

This gives us a way to count the conjugacy classes of G o Z2.

Proposition 4.5.4. IfG has k conjugacy classes, thenGoZ2 has
(

k
2

)

+2k conjugacy classes.

Proof. Let {c1 = ι, c2, . . . , ck} be a complete set of representatives for the conjugacy

classes of G. Given Corollary 4.5.3 and the fact that (ci, cj, 0) ∼ (cj, ci, 0) (from

Proposition 4.5.1), we find that a complete set of representatives for the conjugacy

classes of G o Z2 is given by

{(ci, cj, 0) | i < j } ∪ {(ci, ci, 0)} ∪ {(ci, ι, 1)}. (4.5)

The first set contains
(

k
2

)

elements, while the second and third contain k elements

each. As the union is obviously disjoint, the conclusion follows.

In the case G = Wn−1, the fact that the number of conjugacy classes equals

the number of irreducible representations means that Proposition 4.5.4 gives an

alternate proof of Theorem 4.3.3. On the other hand, comparing the set of class
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representatives given in Proposition 4.5.4 with the 2-tree construction given in Sec-

tion 4.3 shows us that 2-trees correspond in a very natural way with conjugacy

classes. So there are natural bijections between 2-trees, irreducible representations,

and conjugacy classes.

We can now compute the sizes of the conjugacy classes of G o Z2. For g ∈ G, let

Cg denote the conjugacy class of g in G.

Proposition 4.5.5. 1. The conjugacy class of an element (a, b, 0), where a ∼ b, has size

|Ca|2.

2. The conjugacy class of an element (a, b, 0), where a � b, has size 2 |Ca| |Cb|.

3. The conjugacy class of an element (a, ι, 1) has size |Ca| |G|.

Proof. 1. If (c, d, 0) ∼ (a, b, 0), where a ∼ b, by Proposition 4.5.1 a ∼ c and d ∼
b ∼ a. Hence c and d may each be any element of Ca, so there are a total of

|Ca| elements conjugate to (a, b, 0).

2. If (c, d, 0) ∼ (a, b, 0), where a � b, by Proposition 4.5.1 either a ∼ c and

b ∼ d, or a ∼ d and b ∼ c. In the former case there are |Ca| possibilities for c

and |Cb| possibilities for d, for a total of |Ca| |Cb|. In the latter case there are

|Ca| possibilities for d and |Cb| possibilities for c, again for a total of |Ca| |Cb|.
Furthermore, as a � b, these cases must be disjoint. Hence there are a total of

2 |Ca| |Cb| elements conjugate to (a, b, 0).

3. If (c, d, 1) ∼ (a, ι, 1), then by Proposition 4.5.2 we have a ∼ cd. Choose an

element a′ ∈ Ca; we want to have cd = a′. Now d may be any element of

G, but then we are forced to have c = a′d−1. As there are |Ca| choices for a′

and |G| choices for d, there must be a total of |Ca| |G| elements conjugate to

(a, ι, 1).
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Separating Sets

5.1 Regular representations

5.1.1 Separating sets for CWn

Using the techniques described in Section 3.2, we have computed separating sets

of class sums for the regular representation of Wn, n ≤ 4. The relevant program

code is contained in Appendix B. We used character tables generated by the GAP

software package for computational algebra [10], modified as described in Section

3.2. The results are summarized in Table 5.1.

The reason for the cutoff at n = 4 is that W5 is so large that GAP was unable to

compute its character table in a reasonable amount of time. Running for 12 hours

on a 1.2 GHz Pentium III workstation resulted in no apparent progress.

n |Wn| Irreducibles Minimal set size Method

1 2 2 1 Trivial

2 8 5 2 Inspection

3 128 20 4 Brute force

4 32768 230 ≤ 9 Greedy algorithm

Table 5.1: Separating set sizes for the regular representation of Wn, n ≤ 4

The sizes of separating sets appear to us to grow suspiciously like powers of 2.

This suspicion would be strengthened if we were able to find a separating set of
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size 8 for W4; unfortunately, the greedy algorithm only yields one of size 9, and the

number of representations is so large as not to be susceptible to brute force tech-

niques. Nevertheless, based on the recursive nature of these groups, we would not

be surprised if Wn+1 should have a separating set of twice the size of the smallest

one for Wn. Specifically:

Conjecture 5.1.1. Wn has a separating set consisting of 2n class sums.

We have examined the structure of the separating sets we found in hopes of

finding a pattern, but have so far been unsuccessful. We list here the separating

sets we have found.

5.1.2 Separating sets for CW2

There are 3 separating sets of class sums of size 2 for W2. They can easily be found

by inspection of the character table. Inspection also shows that there is no separat-

ing set of size 1, and thus the separating sets of size 2 are minimal.

First, Table 5.2 lists the conjugacy classes of W2, in the order used by GAP. We

list a representative for each, in cycle notation, and the corresponding 2-tree (see

Section 4.5).

Given the indexing of Table 5.2, Table 5.3 lists all 3 separating sets of size 2 for

the regular representation of W2.

5.1.3 Separating sets for CW3

Again, we begin by listing the conjugacy classes of W3, in Table 5.4. Using its in-

dexing, Table 5.5 gives all 40 separating sets of class sums of size 4 for the regular

representation of W3. There are none of size 3, so these are minimal. These separat-

ing sets were obtained by brute force search of a character table generated by GAP

[10].
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Index Representative 2-tree

1 ι 0
SS��

0 0

2 (1 2) 0
SS��

1 0

3 (1 2)(3 4) 0
SS��

1 1

4 (1 3)(2 4) 1
SS��

0 0

5 (1 4 2 3) 1
SS��

1 1

Table 5.2: Conjugacy classes of W2

{2, 4} {2, 5} {4, 5}

Table 5.3: Minimal separating sets for CW2
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Table 5.4: Conjugacy classes of W3

Index Representative 2-tree

1 ι 0
Q

Q
�

�
0
SS��

0 0

0
SS��

0 0

2 (1 2) 0
Q

Q
�

�
0
SS��

1 0

0
SS��

0 0

3 (1 2)(3 4) 0
Q

Q
�

�
0
SS��

1 1

0
SS��

0 0

4 (1 3)(2 4) 0
Q

Q
�

�
1
SS��

0 0

0
SS��

0 0

5 (1 4 2 3) 0
Q

Q
�

�
1
SS��

1 1

0
SS��

0 0

6 (1 2)(5 6) 0
Q

Q
�

�
0
SS��

1 0

0
SS��

1 0

7 (1 2)(3 4)(5 6) 0
Q

Q
�

�
0
SS��

1 1

0
SS��

1 0
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Table 5.4: Conjugacy classes of W3 (continued)

Index Representative 2-tree

8 (1 2)(5 7)(6 8) 0
Q

Q
�

�
0
SS��

1 0

1
SS��

0 0

9 (1 4 2 3)(5 6) 0
Q

Q
�

�
1
SS��

1 1

0
SS��

1 0

10 (1 2)(3 4)(5 6)(7 8) 0
Q

Q
�

�
0
SS��

1 1

0
SS��

1 1

11 (1 2)(3 4)(5 7)(6 8) 0
Q

Q
�

�
0
SS��

1 1

1
SS��

0 0

12 (1 4 2 3)(5 6)(7 8) 0
Q

Q
�

�
1
SS��

1 1

0
SS��

1 1

13 (1 3)(2 4)(5 7)(6 8) 0
Q

Q
�

�
1
SS��

0 0

1
SS��

0 0

14 (1 4 2 3)(5 7)(6 8) 0
Q

Q
�

�
1
SS��

1 1

1
SS��

0 0
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Table 5.4: Conjugacy classes of W3 (continued)

Index Representative 2-tree

15 (1 4 2 3)(5 8 6 7) 0
Q

Q
�

�
1
SS��

1 1

1
SS��

1 1

16 (1 5)(2 6)(3 7)(4 8) 1
Q

Q
�

�
0
SS��

0 0

0
SS��

0 0

17 (1 6 2 5)(3 7)(4 8) 1
Q

Q
�

�
0
SS��

1 0

0
SS��

1 0

18 (1 6 2 5)(3 8 4 7) 1
Q

Q
�

�
0
SS��

1 1

0
SS��

1 1

19 (1 7 3 5)(2 8 4 6) 1
Q

Q
�

�
1
SS��

0 0

1
SS��

0 0

20 (1 8 4 6 2 7 3 5) 1
Q

Q
�

�
1
SS��

1 1

1
SS��

1 1

5.1.4 Separating set for CW4

Table 5.6 gives a separating set of size 9 of class sums for the regular representa-

tion of W4. This was obtained by greedily searching the character table of W4, as
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{2, 4, 5, 16} {2, 4, 5, 18} {2, 4, 8, 16} {2, 4, 8, 18}
{2, 4, 12, 16} {2, 4, 12, 18} {2, 5, 9, 16} {2, 5, 9, 18}
{2, 5, 11, 16} {2, 5, 11, 18} {2, 8, 11, 16} {2, 8, 11, 18}
{2, 9, 12, 16} {2, 9, 12, 18} {2, 11, 12, 16} {2, 11, 12, 18}
{4, 5, 7, 16} {4, 5, 7, 18} {4, 5, 14, 16} {4, 5, 14, 18}
{4, 7, 8, 16} {4, 7, 8, 18} {4, 7, 12, 16} {4, 7, 12, 18}
{4, 12, 14, 16} {4, 12, 14, 18} {5, 7, 9, 16} {5, 7, 9, 18}
{5, 7, 11, 16} {5, 7, 11, 18} {5, 11, 14, 16} {5, 11, 14, 18}
{7, 8, 11, 16} {7, 8, 11, 18} {7, 9, 12, 16} {7, 9, 12, 18}
{7, 11, 12, 16} {7, 11, 12, 18} {11, 12, 14, 16} {11, 12, 14, 18}

Table 5.5: Minimal separating sets for CW3

described in Section 3.2. As such, this set is not known to be minimal; in fact, we

conjecture (5.1.1) that it has one of size 8. It is also presumably not the only set of

size 9. Unfortunately, brute force search is infeasible for checking this.

As W4 has 230 conjugacy classes, we do not list all of them; only those involved

in the separating set. As before, we index them as returned by GAP [10].
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Table 5.6: Separating set for CW4

Index Representative 2-tree

4 (1 2)(5 6) 0
PPPP

����
0
Q

Q
�

�
0
SS��

1 0

0
SS��

1 0

0
Q

Q
�

�
0
SS��

0 0

0
SS��

0 0

20 (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14) 0
PPPP

����
0
Q

Q
�

�
0
SS��

1 1

0
SS��

1 1

0
Q

Q
�

�
0
SS��

1 1

0
SS��

1 0

32 (1 2)(3 4)(5 6)(7 8)(9 11)(10 12) 0
PPPP

����
0
Q

Q
�

�
0
SS��

1 1

0
SS��

1 1

0
Q

Q
�

�
1
SS��

0 0

0
SS��

0 0

57 (1 4 2 3)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16) 0
PPPP

����
0
Q

Q
�

�
1
SS��

1 1

0
SS��

1 1

0
Q

Q
�

�
0
SS��

1 1

0
SS��

1 1

62 (1 2)(5 7)(6 8)(9 12 10 11) 0
PPPP

����
0
Q

Q
�

�
0
SS��

1 0

1
SS��

0 0

0
Q

Q
�

�
1
SS��

1 1

0
SS��

0 0
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Table 5.6: Separating set for CW4 (continued)

Index Representative 2-tree

128 (1 6 2 5)(3 7)(4 8)(9 10)(11 12) 0
PPPP

����
1
Q

Q
�

�
0
SS��

1 0

0
SS��

1 0

0
Q

Q
�

�
0
SS��

1 1

0
SS��

0 0

133 (1 6 2 5)(3 8 4 7) 0
PPPP

����
1
Q

Q
�

�
0
SS��

1 1

0
SS��

1 1

0
Q

Q
�

�
0
SS��

0 0

0
SS��

0 0

158 (1 4 2 3)(5 6)(9 14 10 13)(11 15)(12 16) 0
PPPP

����
0
Q

Q
�

�
1
SS��

1 1

0
SS��

1 0

1
Q

Q
�

�
0
SS��

1 0

0
SS��

1 0

216 (1 10 2 9)(3 12 4 11)(5 14 6 13)(7 16 8 15) 1
PPPP

����
0
Q

Q
�

�
0
SS��

1 1

0
SS��

1 1

0
Q

Q
�

�
0
SS��

1 1

0
SS��

1 1

5.2 Permutation representations

In Section 4.4 we described a permutation representation for Wn, derived from the

action of Wn on the leaves of Tn. We shall use Vn to denote this representation. We

now describe separating sets of class sums for Vn.

Notice that dimVn = 2n, so this representation is quite small compared to the
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group itself. Furthermore, the number of irreducibles into which it decomposes is

even smaller. It can be shown in general [9] that Vn is the direct sum of n+1 noniso-

morphic irreducible submodules, and each appears in the sum with multiplicity 1.

Since there are fewer submodules to be separated, separating sets are much easier

to find, and much smaller.

The algorithm for finding these separating sets is much as before, except the ta-

ble we use contains only the characters for those irreducible representations which

make up Vn. These can easily be found using the inner product relation described

in Theorem 2.1.5. The character for Vn is easy to compute: since a permutation ma-

trix contains a 1 on the diagonal for each fixed point, the character of an element g

is equal to the number of leaves of Tn which it fixes. Once we have identified the

irreducible representations involved, which correspond to rows in the character

table, we can remove all other rows and perform a brute force or greedy search on

the remaining table.

Table 5.7 lists some separating sets for these permutation representations. Due

to their small size, they were all found using brute-force search. As there are usu-

ally many, we do not list them all. We give only an example or two for each. The

numbers refer to our previous indexing of conjugacy classes, and the following

column lists where this indexing can be found.
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n dimVn

Number
of

isotypic
subspaces

Minimal
set size

Number
of sets Example See table

2 4 3 1 2 {4}, {5} 5.2

3 8 4 2 60 {2, 16} 5.4

4 16 5 2 1940 {32, 216} 5.6

n 2n n+ 1 ? ? — —

Table 5.7: Separating sets for the permutation representation of Wn, n ≤ 4



Chapter 6

Conclusion

6.1 Closing remarks

This area of mathematics has proven for us to be a very intriguing one, uniting

elements of algebra and combinatorics from “pure” mathematics with “applied”

ideas from spectral analysis, algorithms, and computational linear algebra. We

hope that our exposition and results can spur, in some small way, further interest

in the field.

6.2 Future work

Our research in this area has raised many more questions than it has answered. We

will list several problems which we feel are worthy of future investigation.

6.2.1 Conjecture 5.1.1

A proof of Conjecture 5.1.1 would be very nice to have, especially if it is construc-

tive. Armed with separating sets for all Wn, we would immediately have an iso-

typic projection algorithm.

It would also be useful to find a bound for the sizes of minimal separating sets

for the permutation representation of Wn, as described in Section 5.2.
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6.2.2 Other separating sets

We considered only separating sets consisting of class sums. Although these have

many nice properties, they are not necessarily optimal. Other possibilities should

be considered. In particular, thinking of the Jucys-Murphy elements for Sn (see

Section 3.5), one could consider conjugacy classes intersected with subgroups, or

some similar construction. It is especially suggestive that S1 ≤ S2 ≤ . . . ≤ Sn and

W1 ≤ W2 ≤ . . . ≤ Wn both have a strongly recursive structure. Also, the Jucys-

Murphy elements separate representations into finer pieces than isotypic submod-

ules, and can even be used to compute a genuine discrete Fourier transform; it

would be very helpful to be able to duplicate these properties for Wn.

6.2.3 Computational bounds

We concentrated on finding minimal-size separating sets. However, as we saw in

Section 3.4, minimal size is not always best when we actually want to compute

projections. In fact, in order to say anything about the computational properties of

the separating sets we found, we would have to look at how the eigenspaces of our

elements interact, considering the dimensions of their intersections as they decom-

pose the space. Once computational bounds are established for isotypic projections

using our separating sets, we could evaluate them with respect to other possible

separating sets to find one with the best computational properties.

6.2.4 Greedy algorithm

In Section 3.1, we described a greedy algorithm for quickly finding separating sets

from a character table. It would be useful to know how optimal its results are. As

mentioned in Appendix A, a greedy algorithm for a related problem (MINIMUM

TEST COLLECTION) has been well studied, and it seems likely that these results

could be brought to bear on the separating set problem. Since this method bounds
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separating set sizes, it is possible that we could thus obtain a (nonconstructive)

proof for Conjecture 5.1.1.

6.2.5 Extensions to iterated wreath products of cyclic groups

We have only examined the group Wn = Z2 o · · · o Z2. More generally, the groups

Wn,r = Zr o · · · o Zr are also of great interest. Many of our results about the groups

extend to this case (especially when r is prime); see also [22] and [9]. In particular,

the case r = 4 gives rise to a so-called “wreath product transform” with useful

applications in image processing (see [9]).



Appendix A

NP-Completeness of Finding Separating Sets of Class Sums From

Character Tables

We mentioned in Section 3.2 that a separating set of class sums for any given

group can be found by examining a modified character table. The problem, pre-

cisely stated, is the following.

Problem (SEPARATING SET)

Given an n × m matrix (bij) (in our case, the table of eigenvalues) and an integer

k, do there exist integers 1 ≤ c1, . . . , ck ≤ m such that for every pair 1 ≤ i1, i2 ≤ n,

there exists 1 ≤ j ≤ k such that bi1cj
6= bi2cj

? In other words, can we tell any two

rows apart by looking only in columns c1, . . . , ck?

This problem boils down to “does there exist a separating set of size k?” If

we can solve this problem efficiently, we can find a minimal-size separating set by

attempting it for ever-increasing k until we find one that works.

Unfortunately, we will show that SEPARATING SET is NP-complete. This

means that if it has a polynomial-time solution, then so does every other problem

in the class NP of problems whose solutions can be verified in polynomial time.

This would imply that NP is equal to P, the class of problems with polynomial-

time solutions. It is universally believed (though not proven, remaining a famous

open conjecture) that this is not the case. For more details on the theory of NP-

completeness, see [11].

Our proof of this assertion is by reduction from a problem called MINIMUM
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TEST COLLECTION, which we describe here.

Problem (MINIMUM TEST COLLECTION)

Given a finite set A, a collection C ⊂ P(A), and a number J ≤ |A|, does there exist

a subcollection C ′ ⊂ C with |C ′| ≤ J such that for every pair a1, a2 ∈ A, there

exists a set S ∈ C ′ such that S contains exactly one of a1 and a2 (in other words,

|{a1, a2} ∩ S| = 1)?

This problem can be considered as one of medical diagnosis: imagine A is a set

of diseases, and C is a collection of tests, each of which will return “positive” in the

presence of some diseases, and “negative” for the rest. As such, each test may be

associated with the set of diseases for which it returns “positive.” The question is,

do k tests suffice to narrow the diagnosis to a single disease?

It is shown in [11] (page 71) that MINIMUM TEST COLLECTION is NP-

complete. We now show that SEPARATING SET is as well.

Theorem A.0.1. SEPARATING SET is NP-complete.

Proof. First, it is obvious that SEPARATING SET is in NP, since a solution can be

verified in polynomial time. Given the integers c1, . . . , ck, we can test that any pair

of rows i1, i2 is “separated” by looking at the k pairs ai1cj
, ai2cj

for 1 ≤ j ≤ k.

Repeating this for each of the
(

n
2

)

≤ n2 pairs of rows and noticing that k ≤ m, we

find that verification requires only O(n2m) time.

Now, suppose we have an instance (A = {a1, . . . , an}, C = {C1, . . . , Cm}, J)

of MINIMUM TEST COLLECTION. We can convert it in polynomial time to an

instance of SEPARATING SET. Construct a n×m matrix (bij) where

bij =











1, ai ∈ Cj

0, ai /∈ Cj

.
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Set k = J . We show that our instance of SEPARATING SET has a solution if and

only if our instance of MINIMUM TEST COLLECTION did.

Suppose that the constructed instance of SEPARATING SET has a solution

c1, . . . , ck. Then for any pair 1 ≤ i1, i2 ≤ n, there is some 1 ≤ j ≤ k such that

bi1cj
6= bi2cj

. Suppose without loss of generality that bi1cj
= 0 and bi2cj

= 1. Then

ai1 ∈ Ccj
and ai2 /∈ Ccj

. As we can do the same for every pair i1, i2, it follows that

the set C ′ = {Cc1 , . . . , Cck
} is of size k = J and satisfies the conditions required by

MINIMUM TEST COLLECTION.

Suppose that the given instance of MINIMUM TEST COLLECTION has a so-

lution C ′ = {Sc1 , . . . , ScJ
}. Then for every pair ai1 , ai2 ∈ A, there exists some

Scj
∈ C ′ such that (without loss of generality) ai1 ∈ Scj

but ai2 /∈ Scj
. Then we

have bi1cj
= 1 6= 0 = bi2cj

. As this is true for every pair i1, i2, the set c1, . . . , cJ is of

size J = k and satisfies the conditions required by SEPARATING SET.

Thus, a polynomial-time solution for SEPARATING SET would immediately

yield one for MINIMUM TEST COLLECTION, and thus (since MINIMUM TEST

COLLECTION is NP-complete) for every other problem in NP. Hence, since SEP-

ARATING SET is also in NP, we have that SEPARATING SET is NP-complete.

Notice that we do not claim that a minimal separating set can never be found in

polynomial time. For one thing, we have assumed nothing about the structure of

the table (bij). It is possible that when (bij) is actually a modified character table for

some group, it has properties which could allow us to find a separating set more

efficiently. Also, there may be other ways to find a separating set besides simply

examining the character table.

It is mentioned in [13] that MINIMUM TEST COLLECTION has a greedy ap-

proximation algorithm which produces a collection within 1 + 2 ln |S| of optimal.

It is further shown that improving upon this approximation is NP-complete. In

Section 3.1 we mention a greedy algorithm for SEPARATING SET; it would be in-
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teresting to consider whether a similar bound can be shown to apply for it.



Appendix B

Program for Computing r-trees and Separating Sets for Wn

B.1 sepset.cc

Given a character table, computes separating sets. Contains functions for compu-

tation by either brute force or a greedy algorithm.

#include <bitset>
#include <vector>
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <sys/time.h>

#if (__GNUC__ < 3)
#error g++ 2.x miscompiles bitset!
#endif

// #define QUIET

using namespace std;

// Due to limitations of the bitset class, the size of the character
// table must be defined at compile time.

#define CLASSES 5
#define REPS 5

#define CHOOSE2(n) (((n)*((n)-1))/2)

int table[REPS][CLASSES];

typedef bitset<CHOOSE2(REPS)> bs;

bs seps[CLASSES];

int get_int(istream& is) {
while (is) {

char c;
is.get(c);
switch (c) {
case ’0’ ... ’9’ :
case ’+’:
case ’-’:
case ’.’:
is.putback(c);
goto done;
break;
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default:
break;

}
}
done:
int i;
is >> i;
return i;

}

void get_table (void) {
for (int i = 0; i < REPS; i++)

for (int j = 0; j < CLASSES; j++)
table[i][j] = get_int(cin);

}

int gcd(int a, int b) {
if (b == 0)

return a;
else

return gcd(b, a % b);
}

int lcm(int a, int b) {
return a * b / gcd(a,b);

}

int get_lcm (void) {
int k = 1;
for (int i = 0; i < REPS; i++)

k = lcm(k,table[i][0]);
return k;

}

void make_eigenvalues (void) {
int k = get_lcm();

#ifndef QUIET
printf("LCM = %d\n", k);

#endif
for (int i = 0; i < REPS; i++) {

int dim = table[i][0];
assert(k % dim == 0);
for (int j = 0; j < CLASSES; j++) {
table[i][j] *= (k / dim);

}
}

}

void make_seps (void) {
for (int cl = 0; cl < CLASSES; cl++) {

int serial = 0;
seps[cl].reset();
for (int i = 0; i < REPS; i++) {
for (int j = i + 1; j < REPS; j++) {

assert(serial < seps[cl].size());
seps[cl].set(serial++, table[i][cl] == table[j][cl]);

}
}

}
}

void find_sep_set_2 (void) {
for (int a = 0; a < CLASSES; a++) {
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for (int b = a+1; b < CLASSES; b++) {
bs x = seps[a] & seps[b];
if (x.none()) {

printf("Found %d,%d\n",a+1,b+1);
//cout << x << endl;

}
}

}
}

// brute force for a 3-size set

void find_sep_set_3 (void) {
for (int a = 0; a < CLASSES; a++) {

for (int b = a+1; b < CLASSES; b++) {
for (int c = b+1; c < CLASSES; c++) {

bs x = seps[a] & seps[b] & seps[c];
if (x.none()) {

printf("Found %d,%d,%d\n",a+1,b+1,c+1);
//cout << x << endl;

}
}

}
}

}

void find_sep_set_4 (void) {
int i = 0;
for (int a = 0; a < CLASSES; a++) {

for (int b = a+1; b < CLASSES; b++) {
for (int c = b+1; c < CLASSES; c++) {

for (int d = c+1; d < CLASSES; d++) {
bs x = seps[a] & seps[b] & seps[c] & seps[d];
if (x.none()) {
printf("$\\{ %d,%d,%d,%d \\}$",a+1,b+1,c+1,d+1);
if (++i % 4 == 0)

printf(" \\\\ \\hline\n");
else

printf(" &\n");
}

}
}

}
}

}

bs already_got;

bool bs_comp(const bs *a, const bs *b) {
if (!a)

return false;
if (!b)

return true;
bs aa = ˜*a & already_got;
bs bb = ˜*b & already_got;
return aa.count() > bb.count();

}

int greedy(void) {
bs *s[CLASSES];
int sepset[CLASSES];
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int sepsetsize = 0;
int size = 0;
for (int i = 0; i < CLASSES; i++) s[i] = &seps[i];
already_got.set();
while (already_got.any()) {

sort(s, s + CLASSES, bs_comp);
assert(s[0]);
bs **p = &s[0];
while (!*p) p++;

already_got &= **p;
sepset[sepsetsize++] = *p - seps;
printf("Using number %d\n", *p - seps + 1);
cout << "Added\t\t" << **p << endl;
cout << "Now have\t" << already_got << endl;
cout << "Any left:\t" << already_got.any() << endl;
*p = NULL;
size++;

}
printf("Found separating set of size %d:", size);
for (int j = 0; j < sepsetsize; j++)

printf(" %d", sepset[j]+1);
printf("\nRelevant columns:\n");
for (int i = 0; i < REPS; i++) {

for (int j = 0; j < sepsetsize; j++)
printf("%2d ", table[i][sepset[j]]);

printf("\n");
}
return sepsetsize;

}

int main(void) {
get_table();

#ifndef QUIET
for (int i = 0; i < REPS; i++) {

for (int j = 0; j < CLASSES; j++)
printf("%2d ", table[i][j]);

printf("\n");
}
printf("\n");

#endif
make_eigenvalues();

#ifndef QUIET
for (int i = 0; i < REPS; i++) {

for (int j = 0; j < CLASSES; j++)
printf("%2d ", table[i][j]);

printf("\n");
}

#endif
make_seps();
for (int cl = 0; cl < CLASSES; cl++) {

//cout << cl << ":\t\t" << seps[cl] << endl;
}
find_sep_set_2();
//greedy();
return 0;

}
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B.2 Makefile

Controls compilation of all other files.

CXX = g++32
CFLAGS = -Wall -g -W -I /usr/local/include # -pg
LDFLAGS = -L /usr/local/lib -lgmp

PROGS = gen_rtrees count_rtrees conjclasses_main

all : $(PROGS)

sepset : sepset.o
$(CXX) -o $@ $> $(LDFLAGS)

#compute_reps : compute_reps.o rtree.o wreath.o conjclasses.o
# $(CXX) -o $@ $> $(LDFLAGS)

gen_rtrees : gen_rtrees.o rtree.o wreath.o
$(CXX) -o $@ $> $(LDFLAGS)

count_rtrees : count_rtrees.o rtree.o wreath.o
$(CXX) -o $@ $> $(LDFLAGS)

conjclasses_main : conjclasses_main.o conjclasses.o rtree.o wreath.o
$(CXX) -o $@ $> $(LDFLAGS)

clean :
rm -f $(PROGS) *.o

deps : *.cc *.h
$(CXX) -MM *.cc >deps

.include "deps"

B.3 wreath.h

Header file for wreath product-related utility functions.

#ifndef WREATH_H
#define WREATH_H

#include <vector>

using namespace std;

extern const int primes[];
extern const int nprimes;
extern const int maxprime;
bool isprime(int n);
int gcd(int a, int b);
int lcm(int a, int b);
int compute_mu(int n);

void compute_mus(int maxn);
int mu(int n);
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#endif

B.4 wreath.cc

Utility routines related to wreath products.

#include <assert.h>
#include <vector>
#include "wreath.h"

const int primes[] = {
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,
61,67,71,73,79,83,89,97,101,103,107,109,113,127,
131,137,139,149,151,157,163,167,173,179,181,191,
193,197,199

};

const int nprimes = sizeof(primes);
const int maxprime = 199;

static vector<int> mu_values;

void compute_mus(int maxn)
{

for (int n = mu_values.size(); n <= maxn; n++)
mu_values.push_back(compute_mu(n));

}

int mu(int n)
{

compute_mus(n);
return mu_values[n];

}

int compute_mu(int n)
{

assert(n <= maxprime);
int t = 0;
for (int i = 0; primes[i] <= n; i++)

{
if (n % primes[i] == 0)

{
n /= primes[i];
if (n % primes[i] == 0) // has two factors of primes[i]
return 0;

else
t++;

}
}

return (t % 2 == 0) ? 1 : -1;
}

bool isprime(int n)
{

switch (n) {
case 2:
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case 3:
case 5:
case 7:
case 11:
case 13:
case 17:
case 19:
case 23:
case 29:
case 31:
case 37:

return true;
default:

if (n % 2 == 0)
return false;

for (int i = 3; i*i <= n; i += 2) {
if (n % i == 0)

return false;
}
return true;

}
}

int gcd(int a, int b) {
if (b == 0)

return a;
else

return gcd(b, a % b);
}

int lcm(int a, int b) {
return a * b / gcd(a,b);

}

B.5 rtree.h

Header file for r-tree computation routines.

#ifndef RTREE_H
#define RTREE_H

#include <assert.h>

#include <string>
#include <iostream>
#include <vector>
#include <deque>
#include <set>

#include "wreath.h"

using namespace std;

#include <gmpxx.h>

inline ostream & operator<<(ostream &o, mpz_srcptr z)
{

char *s = mpz_get_str(NULL, 10, z);
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ostream& r = (o << s);
free(s);
return r;

}

template<class It> ostream& dump_range(It i, It end, ostream& os)
{

for (; i != end; ++i)
os << *i << ’ ’;

os << endl;
return os;

}

template<class Cont> ostream& dump(const Cont& c, ostream& os)
{

return dump_range(c.begin(), c.end(), os);
}

// number of r-trees

typedef mpz_class bint;

inline bint bpow(const bint& b, unsigned int e)
{

bint r;
mpz_pow_ui(r.get_mpz_t(), b.get_mpz_t(), e);
return r;

}

bint count_rtrees(int n, int r);

// rtree stuff

struct rtree {
int r;
vector<rtree *> kids;
mutable int d;
int root;
mutable bint dim;

rtree (int r_) : r(r_), kids(r_, (rtree *)0), d(0), root(0), dim(0) { };

bool isleaf () const { return !kids[0]; }

void makeleaf (int root_) { assert(isleaf()); root = root_; dim = 1; }

friend bool rpequal(const rtree *a, const rtree *b);
int get_d () const;
const bint& get_dim () const;
ostream& print(ostream&) const;
ostream& print_parsetree (ostream&) const;
int get_height() const {

if (isleaf())
return 0;

else
return kids[0]->get_height() + 1;

}
};

bool rpequal (const rtree* a, const rtree* b);
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inline bool operator== (const rtree& a, const rtree& b)
{

return rpequal(&a, &b);
}

inline bool operator!= (const rtree& a, const rtree& b)
{

return !(a == b);
}

inline ostream& operator<< (ostream& os, const rtree& rt) {
return rt.print(os);

}

extern const int max_depth;

extern vector<rtree> all_rtrees[];

extern int all_r; // all_rtrees depends on r, so it only makes sense for r to be fixed

void clear_all_rtrees(void);

void generate_all_rtrees(int depth, int r);

bint wr_order(int n, int r);

#endif

B.6 rtree.cc

Computes all r-trees of desired height and r.

#include <assert.h>

#include <string>
#include <iostream>
#include <vector>
#include <deque>
#include <set>

#include "wreath.h"
#include "rtree.h"

using namespace std;

#include <gmpxx.h>

bint count_rtrees(int n, int r)
{

if (n == 0)
return r;

bint lastk = count_rtrees(n-1, r);
bint sum;
for (int c = 1; c <= r; c++)

{
if (r % c != 0)

continue;
for (int d = 1; d <= c; d++)

{
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if (c % d != 0)
continue;

sum += bpow(lastk, r/c) * (mu(c/d)*d*d);
}

}
return sum / r;

}

bool rpequal (const rtree* a, const rtree* b)
{

if (a == b)
return true;

if (!a || !b)
return false; // one is null, hence other is not

if (a->r != b->r || a->root != b->root)
return false;

for (int i = 0; i < a->r; i++)
{
if (!rpequal(a->kids[i], b->kids[i]))

return false;
}

return true;
}

int rtree::get_d () const
{

if (d)
return d;

for (int i = 1; i < r; i++)
{
if (r % i != 0)

continue;
// attempt to cycle by i
bool ok = true;
for (int j = 0; j < r - i; j++)

{
if (!rpequal(kids[j], kids[j+i]))
{

ok = false;
break;

}
}

if (ok)
{

// the subgroup of Z/rZ generated by i is isomorphic to Z/(r/i)Z
d = r/i;
return d;

}
}

// Z/1Z ˜= <1> trivially stabilizes, and no other one worked.
d = 1;
return d;

}

const bint& rtree::get_dim () const
{

if (dim != 0)
return dim;

if (isleaf())
{
dim = 1;
return dim;

}
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dim = 1;
for (int i = 0; i < r; i++)

{
assert(kids[i]);
dim *= kids[i]->get_dim(); // tensored

}
// induce: index of G wr Z_d in G wr Z_r is r/d
dim *= (r/d);
return dim;

}

ostream& rtree::print(ostream& os) const
{

if (isleaf())
os << "(" << root << ")";

else
{
os << "(" << root;
for (int i = 0; i < r; i++)

{
assert(kids[i]);
os << " ";
kids[i]->print(os);

}
os << ")";

}
return os;

}

ostream& rtree::print_parsetree (ostream& os) const
{

if (isleaf())
os << " ." << root << ". ";

else
{
os << "( ." << root << ". ";
for (int i = 0; i < r; i++)

{
assert(kids[i]);
os << " ";
kids[i]->print_parsetree(os);

}
os << ") ";

}
return os;

}

// want to iterate over all length l vectors of {0,1,...,n-1} which are not
// cyclic permutations of each other.

typedef deque<int> cvec;

template<class T> static void cycle_right(T& v)
{

v.push_back(v.front());
v.pop_front();

}

template<class T> static void cycle_left(T& v)
{

v.push_front(v.back());
v.pop_back();

}
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class cvec_gen {
int n;
int len;
bool alldone;
cvec v;
set<cvec> seen;

public:
cvec_gen (int n_, int len_)

: n(n_), len(len_), alldone(false), v(len,0) { };

˜cvec_gen () { };

const cvec& get (void) const
{

return v;
}

bool done (void) const
{

return alldone;
}

public:
void next (void);

};

// return true if overflow
static bool incv (cvec::iterator i, cvec::iterator end, int base)
{

if (i == end)
return true;

assert(*i < base);
if (++*i >= base)

{
*i = 0;
return incv(++i, end, base);

}
else

return false;
}

void cvec_gen::next (void)
{

// save what we’ve seen
seen.insert(v);

while (!(alldone = incv(v.begin(), v.end(), n)))
{
cvec v1(v);
bool ok = true;
for (int i = 0; i < len; i++)

{
if (seen.find(v1) != seen.end())
{

ok = false;
break;

}
cycle_left(v1);

}
if (ok)

break;
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}
}

size_t estimate_rtree_size(int r) {
return sizeof(rtree) + r * sizeof(rtree *);

}

// rtree generation

const int max_depth = 10;

vector<rtree> all_rtrees[max_depth];

int all_r; // all_rtrees depends on r, so it only makes sense for r to be fixed

void clear_all_rtrees(void)
{

for (int i = 0; i < max_depth; i++)
all_rtrees[i].clear();

}

#if 0
// base r addition. lsb stored first
// return true if carry out

bool inc_base_r(int *num, int len, int base)
{

assert(len >= 1);
assert(base >= 2);
int carry = 1;
for (int i = 0; i < len && carry; i++)

{
assert(num[i] < base);
num[i] += carry;
if (num[i] == base)

{
num[i] = 0;
carry = 1;

}
else

carry = 0;
}

return carry;
}
#if 0
bool inc_base_r(int *num, int len, int base)
{

assert(base >= 2);
if (len == 0)

return true;
else

{
assert(*num < base);
if (++*num >= base)

return inc_base_r(num+1, len-1, base);
else

return false;
}

}
#endif
#endif
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void generate_all_rtrees(int depth, int r)
{

if (r != all_r)
{
clear_all_rtrees();
all_r = r;

}
if (!all_rtrees[depth].empty())

return; // already done
if (depth == 0)

{
for (int i = 0; i < r; i++)

{
rtree rt(r);
rt.makeleaf(i);
all_rtrees[depth].push_back(rt);

}
}

else
{
generate_all_rtrees(depth - 1, r);

bint needed = count_rtrees(depth, r);
bint done = 0;

cerr << "Generating " << needed << " rtrees with n=" << depth
<< ", r=" << r << endl;

cerr << "This will take about " << needed * estimate_rtree_size(r)
<< " bytes" << endl;

int n_subtrees = all_rtrees[depth - 1].size();
for (cvec_gen cvg(n_subtrees, r); !cvg.done(); cvg.next())

{
rtree rt(r);
const cvec& v = cvg.get();
for (int i = 0; i < r; i++)
rt.kids[i] = &all_rtrees[depth - 1][v[i]];

int d = rt.get_d();
for (int j = 0; j < d; j++)
{

rt.root = j * (r/d);
all_rtrees[depth].push_back(rt);
if (++done % 100 == 0)

cerr << "Done with " << done << " of " << needed << " \r";
}

}
cerr << endl;

}
}

bint wr_order(int n, int r)
{

if (n == 1)
return r;

else
return bpow(wr_order(n-1, r), r) * r;

}
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B.7 gen rtrees.cc

Driver program to generate and print out rtrees.

// FIXME: indexing here sucks

#include "rtree.h"

int main(int argc, char *argv[])
{

assert(argc >= 3);
int n = atoi(argv[1]);
int r = atoi(argv[2]);
generate_all_rtrees(n-1, r); // n is 1-based but depth is 0-based
for (int i = 0; i < n; i++)

{
cout << all_rtrees[i].size() << " rtrees of height " << i

<< " (should be " << count_rtrees(i, r) << ")" << endl;
bint dimsum = 0;

for (unsigned j = 0; j < all_rtrees[i].size(); j++)
{

all_rtrees[i][j].print(cout);
const bint& dim = all_rtrees[i][j].get_dim();
cout << " [dim=" << dim << "]" << endl;
dimsum += dim * dim;

}
bint real_dim = wr_order(i+1, r);
cout << "Total dimension is " << dimsum << " (should be "

<< real_dim << ")" << endl;
}

return 0;
}

B.8 conjclasses.cc

Computes conjugacy class representatives and sizes for corresponding r-trees.

#include <sstream>
#include <iostream>
#include <string>
#include "rtree.h"
#include "conjclasses.h"

// hack: string(n, ’A’ + i) doesn’t work
static inline string dup_char(int n, char c)
{

return string(n,c);
}

// Compute a representative of the conjugacy class corresponding
// to the given rtree. Returns a string giving a product of
// generators A..Z and their inverses a..z.
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string class_rep(const rtree& rt) {
assert(isprime(rt.r)); // for now
int n = rt.get_height();
int r = rt.r;
int d = rt.get_d();
if (n == 0)

return dup_char(rt.root, ’A’ + 0);
else

{
string s;

if (rt.root == 0) {
for (int i = 0; i < r; i++) {

// look at kids. Conjugate each to shift it into position.
s += dup_char(i, ’A’ + n)
+ class_rep(*rt.kids[i])
+ dup_char(i * (r-1), ’A’ + n); // inverse

// really dup_char(i, ’a’ + n);
// for non-prime case we’d have something
// involving dup_char((r/d)*root % r, ’A’ + n)

}
} else {

assert(d == r);
// all kids are the same. Take one copy, in first position,
// and zˆk is tacked on the back
s = class_rep(*rt.kids[0]) + dup_char(rt.root, ’A’ + n);
// non-prime case again will have r/d

}
return s;

}
}

bint class_size(const rtree& rt) {
assert(rt.r == 2);
if (rt.get_height() == 0) // i.e. an element of W_1,r

return 1;
if (rt.root == 0) {

const rtree kid0 = *(rt.kids[0]), kid1 = *(rt.kids[1]);
if (kid0 == kid1) {
bint k0size = class_size(kid0);
return k0size * k0size;

} else {
return 2 * class_size(kid0) * class_size(kid1);

}
} else {

assert(rt.root == 1);
// all kids are same
return class_size(*rt.kids[0]) * wr_order(rt.get_height(), rt.r);

}
}

static string gen_to_cycle(char c) {
ostringstream ost;
int n = c - ’A’;
int ts = (1 << n); // leaves on this subtree
for (int i = 1; i <= ts; i++) {

ost << "(" << i << "," << (i + ts) << ")";
}
return ost.str();

}

string gens_to_cycle(const string& gens) {
ostringstream ost;
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for (string::const_iterator i = gens.begin(); i != gens.end(); ++i) {
if (i != gens.begin())
ost << "*";

ost << gen_to_cycle(*i);
}
return ost.str();

}

B.9 conjclasses main.cc

Driver program to print out conjugacy class representatives.

#include <string>
#include <iostream>
#include "conjclasses.h"
#include "rtree.h"

int main(int argc, char *argv[]) {
assert(argc >= 2);
int n = atoi(argv[1]);
generate_all_rtrees(n-1, 2);
vector<rtree>& treelist = all_rtrees[n-1];
for (vector<rtree>::iterator i = treelist.begin();

i != treelist.end(); ++i) {
#if 1

cout << " & \\begin{parsetree} ";
i->print_parsetree(cout);
cout << "\\end{parsetree} \\quad \\quad \\\\ \\hline" << endl;

#endif
#if 0

cout << ": " << gens_to_cycle(class_rep(*i))
<< " [size=" << class_size(*i) << "]" << endl;

cout << gens_to_cycle(class_rep(*i)) << ", ";
#endif

}
cout << endl;
return 0;

}
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