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Abstract

Fluid Drop Coalescence in a Hele-Shaw Cell

by Daniel Gianotti

May 2003

A fluid drop in a Hele-Shaw cell moves due to surface tension-driven potential

flow. Using equations for the pressure and the Green’s function for the Laplace

Equation, we can formulate an integral equation that determines the motion of the

boundary of the drop. By discretizing the boundary contour and following the

motion of boundary nodes, the time evolution of the drop can be determined from

initial conditions. Results of a numerical simulation show the movement of a drop

relaxing from coalescence and the motion of a drop undergoing electrowetting.
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Chapter 1

Introduction

Coalescence is a ubiquitous natural occurrence, ranging in physical scales from

lakes and seas to droplets of water vapor. In a laboratory environment as well,

fluid coalescence can play an important role in the forms of mixing, emulsifica-

tion, and rheology. In a Hele-Shaw cell, drop evolution can be studied within the

context of two-dimensional potential flow to gain insight into the fundamentals of

coalescence.

By reformulating Laplace’s Equation for pressure into a boundary integral equa-

tion, we can articulate a fluid’s attributes in terms of local curve geometry. This al-

lows us to numerically model the behavior of a drop or region purely in terms of a

single boundary curve. Through proper choice of simulated initial conditions, we

can recreate the moment immediately following two-drop coalescence and follow

the drop through its relaxation process.

In addition to changing initial conditions, we can change the properties of the

Hele-Shaw cell to effect the motion of the contained fluid. An electric potential

across a fluid drop can change the local surface tension and pressure, causing a

drop to move through electrowetting. Some researchers are making use of this

method to create nanolaboratories in which nanoliter-sized drops of different com-

position are combined on small chips.

Starting from the work of Nadim, Borhan, and Haj-Hariri [12], we study the

motion of droplets as they move and coalesce under wetting methods. We be-
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Figure 1.1: The three-dimensional coalescence process

gin by investigating the basics of two-dimensional potential flow in Chapter 2. In

Chapters 3 and 4 we formulate an integral equation for the normal velocity of a

drop boundary in terms of the local boundary curvature. We then convert our

integral equations into a corresponding matrix equation in Chapter 5, in order to

computationally model the drop’s motion. Results of a numerical simulation are

presented in Chapter 6.



Chapter 2

Potential Flow in a Hele-Shaw Cell

This chapter discusses certain key properties of Hele-Shaw cells and the fluid

mechanical equations which govern them. Section 2.1 explains the basic defini-

tion of a Hele-Shaw cell, and Section 2.2 shows how the Hele-Shaw equation is

formulated, leading into the idea of potential flow.

2.1 Hele-Shaw Cells

A Hele-Shaw cell is comprised of two parallel plates of rigid, clear material with

spacers placed between them to create a thin gap. The gap is constant in height

throughout the cell and is generally much smaller than the dimensions of the

plates. If the edges of the plates are sealed, the interior of cell can be partially

evacuated to establish a non-atmospheric base pressure. In this situation, a fluid

reservoir can be connected to a gap in the edge of the cell and will drain into the

gap, filling the volume between the plates. At atmospheric or greater pressures, a

fluid is generally introduced to the cell by means of injection through the cell wall.

Often multiple fluids are injected into a cell to allow an experimenter to observe

the physical or chemical interactions they display [15].

The Hele-Shaw cell offers two primary forms of assistance to experimental re-

searchers. The first is visibility. The indicators of many quantifiable dynamic pro-

cesses are evident primarily within the interior of a region of reacting fluid, pre-

venting easy observation. By minimizing the volume of such a region, the pro-

cesses take place closer to the visible surface, allowing access to the information
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Figure 2.1: A drop within a Hele-Shaw cell

contained within.

The second general function of the Hele-Shaw cell is to create an environment

for approximating the two-dimensional behavior of fluids. Many thin films are

well-modeled by the two-dimensional equations of fluid mechanics, as are many

fluid bodies with two exceptionally large orthogonal length scales1. When the pla-

nar interactions of fluids in a Hele-Shaw cell take place on a significantly larger

scale than the gap spacing, � , the effect from motion perpendicular to the cell be-

comes negligible in effect, and the material properties can often be averaged over

the perpendicular (denoted as �� ) direction.

2.2 Potential Flow

In the specific case of an incompressible fluid with no outside rotational forcing,

we can find an equation describing � -averaged velocity in a Hele Shaw cell. For

a collection of fluid “particles”2 with no sinks or sources, the continuity equation

requires that 	�
	����������� 
���� (2.1)

1The Earth’s oceans (although up to 11,000 m deep) are perhaps the most commonly modeled
case of two-dimensional potential flow in all of mathematics!

2Although we will treat the fluid as a continuous medium, we wish to account for all infinitesi-
mal regions within some larger collection.
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If the fluid is incompressible,



is spatially invariant and can be removed from the

divergence term. Conserving mass then sets ������ to zero, and so��� �  ��!
 	�
	��  � (2.2)

The restriction of Equation 2.2 onto Cauchy’s equation of motion yields the preva-

lent Navier-Stokes Equations [1]:
#" �" �  ���%$'& 
)( &+*,�.- � (2.3)��� �  � (2.4)

By averaging over one dimension with fixed boundary conditions, neglecting in-

ertia, and requiring that �0/ 1 2436587 , we obtain Darcy’s law3:�%$9 � !;: *� - �=< (2.5)

where * is the fluid’s viscosity and � is again the plate spacing of the Hele-Shaw

cell. The constant >�?@ - is known as the permeability of the Hele-Shaw cell4 [19]. Com-

bining the continuity result, Equation 2.2, with Equation 2.5 shows that the pres-

sure in a region of the Hele-Shaw cell must obey Laplace’s equation,�.-A$B�� * C ��� �  � < (2.6)

and so the fluid behaves according to the properties of potential flow.

2.3 Flow in Bounded Regions

We have not yet discussed the idea of boundaries for our fluid. In fact, since the

previous result is derived without any reference to the form of the region, it holds

3Darcy’s law is often referred to as the Hele-Shaw equation.
4The permeability derives its name from the study of porous media and is equal to the per-

meability of a two-dimensional porous lattice with the same bulk properties as the Hele-Shaw
cell.
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true for all points in any continuous fluid in the Hele-Shaw cell. This means that for

a fluid with defined boundary curve enveloped by a second fluid (with potentially

different properties), each will evolve according to potential flow. This provides

the necessary framework in which to analyze the behavior of a single drop in the

Hele-Shaw cell.

In the study of two-dimensional fluid evolution and coalescence, the drop prop-

erty of greatest qualitative interest is the shape of the drop boundary. Because of

this, our approach will focus on the boundary elements of drops and their local

properties. As we explore these properties, we will try to maintain a standard no-

tation. The plane of the Hele-Shaw cell will in all cases be the � � <EDF� Cartesian plane

or the � 3 <HGI� polar plane with normal vector �� . Unit normal vectors, �J , of the bound-

ary contour in the plane will be outward-pointing, and the normal velocity, K in

the direction of �J , will have magnitudeL K L  �J � �NM � � -!8: * 	 $	 �JPO (2.7)



Chapter 3

Curvature

We are interested in properties of the surface of the drop, and so it will be useful

to define certain geometric values associated with curves and surfaces.

3.1 Curvature in the Plane of the Cell

For a contour in Q � , a Frenet frame consists of the following three vector quantities:

�R �AS �  S8TL S T L (3.1)�J �AS �  �R TL �R T L  S8T TL S T T L (3.2)�U �AS �  �RPV �J (3.3)

These unit vectors are called the tangent, normal, and binormal vectors respectively

for the position vector, S , along the boundary curve. Since we are studying the

properties of a planar curve, notice that
U

never changes (except in sign) and points

always in the direction perpendicular to the plane of the Hele-Shaw cell.

It will sometimes be convenient to deal with Cartesian coordinates, while at

other times cylindrical polar coordinates may prove more useful. In either of these

systems, we will define the positive �� -direction as the upward or out-of-the-page

direction perpendicular to the plane of the plates of the cell.



8

b

n

r

t

x

y
z

Ω

dΩ

Figure 3.1: The vectors of the Frenet frame at a point along a contour

3.1.1 Parameterization by Arclength

For our tangent vector to be consistent, we need to select a direction along the

curve WYX to parameterize by. We choose the counter-clockwise direction so that�R9V �� points along the outwards normal vector. Now, since we wish to confine

ourselves to WYX , we can parameterize by arclength, Z , so that Z is the distance along

the curve counter-clockwise from some arbitrary Z8[  � , and S\]S^� Z � . If our curve

has length _ , then S`� Z � aS`� Z & _ � and b;c�d4WYZ  _ .

We can also write S`� Z �  � � Z �fe & D � Z �hg and SiTj� Z �  � Tk� Z �fe & D Tj� Z �hg  �R � Z � . Since

we defined the normal vector as �J � Z �  lmonqpsrutv lm n psrut v , we may be interested in the quantityL �R T � Z � L , called the curvature of WYX . We will denote it as wFx � Z � We can calculate the

value of the curvature from the definitions of our Frenet frame vectors.

� T T � Z �fe & D T T � Z �yg  �R T � Z �  w^x � Z � �J � Z � (3.4) w^x � Z �{z �U � Z � V �R � Z �}| (3.5) w^x � Z ��~ � T e � D T gh� (3.6)

Since �J is a unit vector, taking the dot product with �J of both sides yields

w^x � Z ��~ � T e � D T gh� � ~ � T e � D T g��  ~ � T T e & D T T g�� � ~ � T e � D T gh� (3.7)
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Figure 3.2: The profile of a drop between the plates of a Hele-Shaw cell

w^x � Z �  � T D T T � � T T D T (3.8)

3.2 Curvature in the � -direction

Although we approximate the boundary in the � - � plane as cylindrical about the� -axis, there is in fact a nonzero curvature between the plates of the Hele-Shaw cell,

shown in Figure 3.2.

If the capillary number, ��� ��;�� is small, then surface tension properties domi-

nate, and so the boundary will minimize its surface area by forming circular curves.

The radius of curvature, � , of a contour is the inverse of its curvature, w . Thus, by

solving for the radius of the circular arc in Figure 3.3 we can find the axial curva-

ture, wf� (as opposed to the radial curvature, wFx , defined previously).

The contact angle, � , in Figure 3.3 is the angle formed between the solid and

fluid interfaces. If we draw a line from the center of the circle to the point of contact,

the angle formed, � will just be � ��� - .�  �:��H��� �  �:��H���.� � ��� -I� �� �:������ � < (3.9)

so the curvature is just wf� ���:������ �� (3.10)

If wf����� , then � � � - . This is known as a wetting condition. Likewise, if w������ ,
the drop is not wetting.
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Figure 3.3: Radius of curvature of a drop in the plane perpendicular to the cell

The total curvature of the drop is just �a ¡�f¢`£¤�F¥ , so from Equations 3.8 and

3.10, �¦ a§�¨ª©�¨ ¨�«¬§�¨ ¨s©�¨«�®°¯y±6²Y³´ (3.11)

3.3 Curvature-Driven Motion

The curvature plays an important role in determining the time-evolution of a drop.� is directly proportional to the pressure difference across the drop’s boundary, and

the ratio µf¶· is the surface tension, ¸ , of the boundary interface. Thus, in regions

of high curvature, the surface tension-induced forces on the drop are particularly

high relative to the forces in regions of low curvature. This leads to potential prob-

lems in modeling drop evolution near the point of coalescence, since not only does¹
becomes singular at the cusp, but the surface tension force is locally infinite.

For drops with constant curvature in both dimensions (planar circles with con-

stant contact angle), we expect constant surface tension forces, and thus radially-

symmetric motion. For incompressible fluids, however, the area of a drop must
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remain constant, and so the boundary curve should remain static.

3.3.1 Electrowetting

The contact angle for a fluid/fluid/solid interface is an empirically-determinable

constant under equilibrium conditions1. However, since surface tension is very

dependent upon induced electric polarity, a voltage across the medium can signif-

icantly change the contact angle [6]. This can be easily taken advantage of to drive

the motion of drop by applying differing potentials across different regions of the

Hele-Shaw cell in a process called electrowetting. Electrowetting is becoming a com-

mon practice in the field of micro-fluidics and is easily implemented in a model of

drop behavior by simply allowing variation in the contact angle.

1The contact angle for the water-air boundary on a Teflon sheet is º�ºE»½¼ , (non-wetting for water)
due to the relatively high surface tension, ¾%¿ÁÀyÂÄÃ�ÅPºE»iÆ�ÇIÈÉ [11].



Chapter 4

Formulating an Integral Equation

In this chapter we create integral equations for the normal velocity of a drop in

terms of pressure and the Green’s function for Laplace’s equation. In Section 4.2

we look at the case where the pressure outside the drop is a constant. We extend

this in Section 4.3 to potential flow outside the drop as well.

4.1 Preliminaries

We begin with Green’s second identity for two differentiable functions, Ê and Ë , in

a region X representing our drop [see Appendix A for a more thorough discussion]:Ì c�dÎÍ Ë 	 Ê	 �J � Ê 	 Ë	 �J�Ï W^Ð �Ñ�Ñ d � Ë �.- Ê � Ê �.- Ë � W�2 O (4.1)

This will prove very useful in determining the motion of boundary elements,

given the proper functions Ê and Ë . Since the impetus for the drop’s motion is the

pressure difference across the boundary, it is reasonable to think that one of these

functions may be $FÒªÓ4��$FÔoÕ � , where $FÒªÓ is the pressure inside the drop and $YÔoÕ � is the

constant pressure outside the drop.

4.2 Equation for constant external pressure

Since we hope that Equation 4.1 will be strictly in terms of this pressure difference,

one might recognize the benefit of defining the other function as the Green’s func-

tion for the pressure [see Appendix B]. The pressure satisfies Laplace’s equation,
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and so the corresponding Green’s function isÖ �×S < SiØ �  !:jÙ9Ú � L SÛ�ÜSiØ L < (4.2)Ý �ßÞ�à � - Ö �×S < SiØ �  áâ�AS < SiØ � ]ã`� � < ��[ � ã`� D½<äD [ � O (4.3)

In Cartesian coordinates, Ö  !:jÙ Ú �Bå � � � ��[ � - &]� D � D [ � -Eæ (4.4)	 Ö	 �J èçJ �k� Ö  � T×� D � D [ � � D T×� � � ��[ �:jÙ ~ � � � �F[ � - &]� D � D [ � - � (4.5)Ý àféyêHé �  � � Z �ë< ��[  � � Zy[ ��< D  D � Z ��< D [  D � Zy[ �
If we now set Ê ì$FÒªÓâ�¦$�ÔoÕ � M $#�×S � and Ë  Ö �AS < SkØ � , we notice that Equation 4.1

becomesÌ c�d¬í Ö �AS < SiØ � 	 $	 �J ��$ 	 Ö	 �J\î W^Ð  Ñ�Ñ d å Ö �AS < SiØ � �.-A$0�Á$ï��- Ö �AS < SiØ � æ W�2 (4.6) � � Ñ�Ñ d $Ûáâ�ASÛ�ÜSiØ � W�2 (4.7) !: $#�ASiØ �½< (4.8)

for our point SiØ on the contour WYX . If we parameterize by arclength as in Sec-

tion 3.1.1, Equation 4.8 becomes!: $#� Zy[ �  Ñ [�ð í $#� Z � 	 Ö	 �J � Ö � Z < Zy[ � 	 $	 �J`î W�Z O (4.9)

We recall from Section 3.3 that the difference in pressure across the boundary of

the drop is $ñ� Z � ¬$�ÒòÓY� Z � ��$FÔoÕ � ]ó w � Z � . Making use of our notation for the normal

velocity, K � Z � �� > ?@ - � �õô� lö , we findó : w � Z;[ �  Ñ [�ð í ó w � Z � 	 Ö	 �J & !8: *� - Ö � Z < Zy[ � K � Z � î WYZ < (4.10)

which can be rearranged into!;: *� - ó Ñ [�ð Ö � Z < Zy[ � K � Z � W�Z  !: w � Zy[ � �÷Ñ [�ð w � Z � 	 Ö	 �J WYZ O (4.11)

This is an integral equation of the first kind for K � Z � .
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4.3 Equations for non-constant pressure

In a similar fashion, if the pressure outside the drop is not a constant, but rather

a function satisfying Laplace’s Equation, we can formulate an integral equation

for both the interior and the exterior of the drop. The two equations are coupled

through the normal velocity and the pressure at the boundary. If the barred (–)

demarcation corresponds to properties inside the drop, then!:.øù � Zy[ �  Ñ [�ð í Ö � Z < Zy[ � !8: ø*� - K � Z � & øù � Z � 	 Ö	 �J î W�Z (4.12)ú � W !: ù � Zy[ �  � Ñ [�ð í Ö � Z < Zy[ � !8: *� - K � Z � & ù � Z � 	 Ö	 �J î W�Z (4.13)

By adding these equations together and subtracting the second from the first we

get a new pair of integral equations,!:½û � Zy[ �  Ñ [�ð í !8: � ø*ü�Ü* �� - Ö � Z < Zy[ � K � Z � &+ó w � Z � 	 Ö	 �J\î WYZ (4.14)ó : w � Zy[ �  Ñ [�ð í !8: � ø*.&+* �� - Ö � Z < Zy[ � K � Z � & û � Z � 	 Ö	 �J\î WYZ < (4.15)

where ó w � Z � has been substituted for øù � Z � � ù � Z � , and û � Z � has been substituted

for øù � Z � & ù � Z � . The simultaneous solution of Equations 4.14 and 4.15 allows us to

solve for the drop boundary motion for an incompressible two-fluid system.



Chapter 5

Discretization

Both of the integrals in Equation 4.11 become weakly singular at the point Z Zy[ . To avoid infinite-valued intervals, we can regularize the two terms and remove

singular points. Upon regularization [see Appendix C], Equation 4.11 becomes_:jÙüÚ � Í _:kÙ Ï K � Zy[ � &ýÑ [ ð ~ � Ö � Z < Zy[ � �+þ�� Z < Zy[ �H� K � Z �ÿ� & ~ þ�� Z < Zy[ � � K � Z � � K � Z;[ �H�}�& ó � -!8: * í 	 Ö	 �J � w � Z � � w � Zy[ �E� î WYZ  � < � � O��
�

where the function þ�� Z < Z;[ � is the Green’s function for a circular region of circum-

ference _ .

To discretize this equation in its simplest form, we view the integral as a sum

of trapezoidal areas. If the boundary of the drop is broken into � segments by �
nodes spaced evenly by arclength, we get a “summation equation”:����� @ í	� K Ó & � Ö ��
 Ó%�÷þ ��
 Ó � K � &÷þ ��
 ÓY� K � � K Ó � & ó � -!8: * 	 Ö	 �J ��
 Ó � w � � w Ó � î  � (5.1)

where the subscript notation represents nodal values, the constant � is equal to@- � Ú � � ð- � � , and the arbitrary source point, Z8[ , is now denoted by the node � .

Since the singularities at   � are removed in the regularized equation, we can

make use of new functions, �Ö ��
 Ó < �þ ��
 Ó , and ����� lö ��
 Ó that are identical to
Ö ��
 Ó < þ ��
 Ó ,

and ���� lö ��
 Ó , respectively, except that they are equal to zero when   � .����� @ � �Ö ��
 Ó K � &�� � � �þ ��
 Ó�� K ÓÛ& ó � -!8: *��	 Ö	 �J ��
 Ó � w � � w Ó ���  � (5.2)
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To solve for the normal velocity at any node, we want to collect all K terms

under a single index. K Ó can be rewritten asK Óâ �� Ò � @ ãëÓhÒ K Ò < (5.3)

where ã is Kronecker’s delta, so that����� @ z � � � �þ ��
 Ó � K Ó |  ����� @ � � � � �þ ��
 Ó ��� �� Ò � @ ãëÓhÒ K Ò�� � (5.4) �� Ò � @ � ã�ÓyÒ�� � � ����� @ �þ ��
 Ó � K Ò � (5.5)

A similar treatment of the w Ó term allows us to write����� @ � �	 Ö	 �J ��
 Ó w Ó �  �� Ò � @ � ã�ÓyÒ � ����� @ �	 Ö	 �J ��
 Ó � w Ò � (5.6)

In Equations 5.5 and 5.6,  is now clearly a dummy index, as it is in the remaining

two terms of 5.2, �Ö � K � and ����� lö � w � . Summing over  makes both �þ and ����� lö
dependent only on � , so we denote� Óâ ����� @ �þ ��
 Ó and  Óâ ����� @ �	 Ö	 �J ��
 Ó

We can use Einstein summation notation (summing over repeated indices) to

repose this in a suggestive manner. We change the remaining  indices to ! ’s and

the dummy � ’s to " ’s and combine Equations 5.2, 5.5, and 5.6 to find�Ö$# Ò K Ò�&+ã # Ò^� � � � # � K Ò�& ó � -!8: * � �	 Ö	 çJ # Ò w Òï�Üã # Ò  # w Ò �  � < (5.7)

or
z �Ö%# ÒF&+ã # Òf� � � � # �}| K Ò, ó � -!;: * � ã # Ò  # � �	 Ö	 çJ # Ò � w Ò (5.8)

Since Equation 5.2 should hold true for any arrangement of equally-spaced

nodes, the terms of the summation must each be identically zero for every node,!'& ~ ! < � � . Furthermore, since node " is arbitrary, each of the � nodal equations

must hold independently, and thus we have a linear matrix equation relating the

nodal velocities and curvatures.



Chapter 6

Simulated Results

This chapter discusses the implementation of a routine to model a drop’s evo-

lution in time using the governing equations of Chapter 5. Section 6.1 discusses the

basic structure of the program used, and Section 6.2 presents the numerical results

of the simulation.

6.1 Computational Model

A numerical routine written in Octave/Matlab was used to model a drop’s evolu-

tion in time [see Appendix D]. Under the routine “evolution”, a drop was initial-

ized as a set of � � <äD�� coordinate pairs. The points were then redistributed equally

by arclength, both to better model a continuous boundary curve and to meet the re-

strictions required in Chapter 5. The redistribution process simulated the physical

drop boundary through a twice-differentiable cubic spline with periodic boundary

conditions ( !)(+* and :-, c derivative matching).

During each iteration of the drop’s evolution, matrix equation 5.8 was solved

for the normal velocity, K Ò , the nodes were advanced by a distance K Òy�	. � in the nor-

mal direction, and the points were redistributed by arclength along a new spline

representing the drop boundary.

The contact angle, � , could be assigned different values for different regions of

the � - D plane, corresponding to voltages applied across the plane of the Hele-Shaw

cell. The initial conditions of the drop could also be easily changed, including

the area of the drop, the number of boundary nodes, the shape of the initial drop
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Figure 6.1: 100 timesteps of a drop’s evolution from initial conditions with a near-singularity

boundary, and the placement of the drop in the plane.

6.2 Numerical Results

For suitable timestep values, a drop could easily be observed to evolve in time

under the summed actions of the local curvature. Drops with constant curvature

remained stable with slight changes in relative node positions due to the node re-

distribution process, and drops with initially elliptical boundaries would compress

along the major axis and expand along the minor axis, as desired.

Figure 6.2 shows the unforced progression in time of a drop from a nearly sin-

gular initial state to an increasingly smooth contour as it returns to a circular state.

The timestep was constant throughout the /10�0 iterations and was constructed so
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Figure 6.2: A drop subject to 243 voltage in the 26587 half-plane

that the maximum nodal perturbation on the first iteration was 99	:;:<:>= ? @ for drop

area A. This condition was commonly used so that after the first timestep, no node

would have moved more than /BA>/1040�0DCFE the radius of the drop, were the drop a

perfect circle.

Figure 6.2 shows an initially circular drop moving in the «$G direction under

the influence of a voltage across the left Cartesian half-plane. The effective voltage,

and thus the change in the contact angle, ³ increased with the cube of § and led to

more volatile boundary behavior than linear or quadratic voltages.

Figure 6.2 shows three plots of a single drop’s progression from an initial state

representing a close approximation of two-drop coalescence. The initial drop is

simply a circular drop with the points at Hý  @ I and JK@I moved very near to the
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Figure 6.3: A drop evolving shortly after simulated unification of two semicircular drops (vertical
axis represents time)
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Figure 6.4: Drop evolution with variable-length time-stepping immediately following simulated
drop unification (Vertical axis represents time)

drop’s center, and the two adjacent points for each moved very slightly towards

the center of the circle. This is a simple approximation to the boundary curve

shape that would be found immediately following the thin-film rupture of two

identical drops with high surface tension or low collision velocity. The vertical

axes of Fig. 6.2a and Fig. 6.2b represent time or iteration number.

Figure 6.2 depicts the time-evolution of the same initial conditions as in Fig-

ure 6.2, but with a variable time step which ensures that with each iteration, one

node will move exactly !BL^! �6�I� *NM the radius of the equivalent circular drop. This

fixed-distance stepping generally had fewer associated undesirable discontinuities

than the constant timestep method.

6.3 Associated Problems and Solutions

There appear to be errors in the implemented method for calculating the second

derivatives of the � and
D

coordinates from the boundary spline. Even for constant
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curvature circular drops, � T T and
D T T fluctuate in value for nodes near the endpoints.

A second routine1 for calculating periodic splines and derivatives taken from the

octave-forge distribution yields similar results.

The irregularity caused by the inaccuracies in knowledge of the second deriva-

tives leads to occasional problems in the simulated behavior of the drop. The rip-

ples which are visible in Figure 6.2 in the third quadrant are the direct product of

boundary oscillations near nodes ! and � . For large timestep values or particularly

dynamic drop conditions, nodes sometimes appear to cross paths, leading to neg-

ative or complex values for the area inside the boundary. When this happens, the

tridiagonal matrix solver which calculates the second derivatives generally fails,

but, occasionally, the nodes are instead propelled dramatically away from their

original position, leading to significant changes in the drop’s apparent behavior.

The most prevalent problem in the routine, however, is the loss of area of a drop.

This seems to stem primarily from the same issue regarding second derivatives.

The ideal solution to this problem would be to scale the nodal distances from the

centroid of the drop during each timestep. Unfortunately, since most calculations

of the centroid depend on either first or second derivative values, the centroid

tends to magnify the errors in the simulation rather than dampen them.

The most beneficial solution to any current errors in “evolution” seems to be

the constant-distance timestep. Although program errors are currently the source

of most of the inaccuracy in the model, the precision errors and discretization prob-

lems which are the ultimate hurdle for numerical simulations manifest themselves

in regions of high curvature and large velocity as well. By maintaining the same

maximum normal velocity value at each step, we are more likely to overcome these

obstacles as they arise.

1csape.m, c
O

Kai Habel,2001



Chapter 7

Summary and Conclusions

Apart from the numeric implementation, the aspects of this research which

presently need the most development are the pre-coalescence processes. Modeling

the boundary evolution of a drop from initial conditions seems to be quite feasible

on its own. Determining exactly how the coalescence process is begun is far more

challenging. At present, this model is not far from being able to properly simulate

the physical interactions between two non-rupturing drops upon collision. Re-

searching thin film rupture or other surface interactions would likely prove useful

in more properly modeling the entire coalescence process.

To further explore the post-coalescence behavior of drops, an investigation into

curvature-dependent node distributions might be beneficial. Since the normal ve-

locity is lower in areas of low curvature, fewer nodes are needed to maintain the

same accuracy as compared to areas of high curvature. Also, since electrowetting

forces are bounded and can be easily dwarfed by the planar curvature forces, a

model does not have to trade accuracy in wF� -driven behavior directly for its gains

in w^x -driven behavior.

The other interesting off-shoot of this project is, of course, electrowetting re-

search. Very few of the simulated test cases thus far have been purely electrically

driven since the curvature-based effects often dominate the forcing. By altering

the larger length-scales of the drops under investigation, the relative influence of

an applied voltage on the fluid will change.

Many of the experimental projects currently underway in two-dimensional elec-

trowetting deal with mixing and other “internal” aspects of a drop of fluid which
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Figure 7.1: Electrowetting research from Nanolytics Inc. [13] ( c
O

2001, Nanolytics)

are difficult to probe using only boundary elements. The nanolaboratory research

currently in progress at Nanolytics, Inc., for example, seeks to replace micropipette-

based chemial assays with microchip-based mixing procedures. The relationship

between an electrically-driven drop and its inner mixing behavior will likely be-

come applicably relevant in the near future as nanolaboratories become more lo-

gistically viable.

One final area with a lot of room for both theoretical and applied research in

electrowetting is control theory. Creating either physical or mathematical fluid

feedback systems would be relatively simple and could easily have an important

impact on developing microtechnology. For more information on developing tech-

nologies in electrowetting, see [13, 8, 22].



Appendix A

Potential Functions and Green’s Second Identity

Consider two twice-differentiable functions, Ê and Ë , in a region X bounded by

a contour WYX . The chain rule allows us to write����� Ë � Ê � ]� Ë �k� Ê & Ë � - Ê (A.1)����� Ê � Ë � ]� Ê �k� Ë & Ê �.- Ë (A.2)

Subtraction of Equation A.2 from Equation A.1 yields��� ~ Ë � Ê � Ê � Ë �  Ë � - Ê � Ê � - Ë (A.3)

By taking advantage of this formulation and applying the divergence (Gauss’)

theorem, we can create an integral equation for Ê and Ë [18]:Ì c�d �J ��� Ë � Ê � Ê � Ë � W^Ð �Ñ�Ñ d � Ë � - Ê � Ê � - Ë � W�2 < (A.4)

Using our earlier notation for the directional derivative, �QP� lö M �J �k� � ,Ì c�dÎÍ Ë 	 Ê	 �J � Ê 	 Ë	 �J�Ï W^Ð  Ñ�Ñ d � Ë �.- Ê � Ê �.- Ë � W�2 (A.5)

Equation A.5 is commonly known as Green’s second identity. Applying the diver-

gence theorem to Equation A.1 or A.2 directly yields the first identity which is often

used as an intermediate to the second1.

1For an alternate derivation of Green’s second identity, see Power & Wrobel



Appendix B

Formulation of Green’s Function

We will define the time-independent Green’s function,
Ö � Z < Z8[ � , as it is most

often thought of – as the “response at Z due to a concentrated source” at Zi[ , subject

to boundary conditions 7 and R [7].S ~ Ö � Z < Zy[ �ÿ� ]ã�� Z � Zy[ � (B.1)

Now, consider a general linear partial differential equation with an arbitrary linear

differential operator,
S

: S �UT � WV½� Z ��< (B.2)

The general form of
S

of order $ in � variables is [20]S  �X;Y[Z]\ ô_^ Y � �
�]` Y  �XKY[Za\ ô_^ Y � �

� 	 Ycb�dfege e dhY<i	 � @ Yab OyOyO 	 � Ó Y i < (B.3)

where the ^ Y � �
�

are arbitrary

C
-valued functions of � variables. The traditional

Green’s formula, Ñ d �kj �.-cT0�lT½��- j � WF� �Ñnm �J ��� j �'T0�oTï� j � W û < (B.4)

generalizes for arbitrary
S

to the full Green’s formula [20]:Ñ d � j S T0�lT Sqp j � WF� �Ñ>m �J �sr ��T < j � W û O (B.5)

With one-dimensional boundary conditions,Ñ �)t � j S T0�oT S p j � WYZ  C Í j W TW j �lT W jW T Ï � t � < (B.6)
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If we set j  Ö � Z < Z;[ � , then

Í Ö � Z < Zy[ � W TW Ö � Z < Zy[ � �lT W Ö � Z < Zy[ �W T Ï � t �  � (B.7)

since both
Ö � Z < Z;[ � and T satisfy the same boundary conditions. Thus,

� �Ñ �)t � Ö � Z < Z;[ � V½� Z � �oTñ� Z � ã^� Z � Zy[ �H� WYZ �Ñ �ut Ö � Z < Zy[ � V½� Z � WYZ �oTñ� Zy[ � O (B.8)

Exchanging Z and Zy[ yields

Tñ� Z � �Ñ ��t Ö � Zy[ < Z � V½� Z;[ � WYZy[ < (B.9)

the solution to equation B.2. This result is what leads us to be able to reformulate

a partial differential equation (Eq. 2.5) into a more manageable boundary integral

equation (Eq. 4.11).

B.0.1 Symmetry of the Green’s Function

1 Making use of the one-dimensional Green’s formula again, Equation B.6, this

time letting T  Ö � Z < Z @ � and j  Ö � Z < Z - � , the right hand side again vanishes since

both
Ö � Z < Z @ � and

Ö � Z < Z - � satisfy the same homogeneous boundary conditions.

�  Ñ �)t � Ö � Z < Z @ � S Ö � Z < Z - � � Ö � Z < Z - � Sqp Ö � Z < Z @ �H� WYZ (B.10) Ñ � t � Ö � Z < Z @ � ã^� Z � Z - � � Ö � Z < Z - � ã^� Z � Z @ �H� WYZ (B.11) Ö � Z - < Z @ � � Ö � Z @ < Z - �ë< (B.12)

and so the Green’s function is symmetric under exchange of its arguments.Ö � Z @ < Z - �  Ö � Z - < Z @ � (B.13)

1This argument follows nearly directly from the discussion of Maxwell’s reciprocity in Haber-
man [7].
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This, of course, holds relevance for our interpretation of
Ö � Z < Zi[ � . By our own def-

inition, we find that the response at Z “due to a concentrated source” at Zi[ is the

same as the response at Z;[ “due to a concentrated source” at Z ! This symmetry

proves problematic, however, as the source of the singularity in both
Ö � Z < Zi[ � and

our function ���� lö .



Appendix C

Integral Equation Regularization

The functions
Ö � Z < Zy[ � and ���� lö are both singular at the point Z  Z;[ in Equa-

tion 4.11 below.

!;: *� - ó Ñ [�ð Ö � Z < Zy[ � K � Z � W�Z  !: w � Zy[ � �÷Ñ [�ð w � Z � 	 Ö	 �J WYZ O ��v O !I! �
To evaluate the integrals, we first need to remove any singularities from the inte-

grals themselves. For the first integral,Ñ [�ð Ö � Z < Z;[ � K � Z � WYZ �Ñ [�ð ~ Ö � Z < Zy[ � �+þ�� Z < Zy[ �}� K � Z � W�Z &ýÑ [�ð þ�� Z < Zy[ � K � Z � WYZ (C.1)

where þ�� Z < Z;[ � is any well-defined function over
~ � < _ � . If we choose þ specifically

so that it is singular in the same manner as
Ö

, then the first term of the right side

of Equation C.1 will no longer diverge at Z;[ .
We let þ be the Green’s function of a circular region of circumference _ :þ�� Z < Zy[ �  !:jÙ Ú �xw S^� Z � �ÜS^� Z;[ � w  !:jÙ Ú �zyyyy _ Ù �H��� Í Ù

� Z � Zy[ �_ Ï yyyy
<

(C.2)

so that Ñ [ ð þ�� Z < Zy[ � WYZ  _:jÙ Ú � Í _:jÙ Ï (C.3)

Since as Z|{ Z;[ , �H��� � � psr;}^rU~õtð � { �ð � Z � Zy[
�
, and w S^� Z � �¬S^� Zy[ � w { W S\� W SB W�Z - , the

asymptotic behavior of both þ and
Ö

is!:jÙ9Ú �xw Z � Z;[ w & !:kÙüÚ ��w S T � Z;[ � w &��B� Z � Zy[ � (C.4)

and so
Ö � Z < Zy[ � �÷þ�� Z < Zy[ � { � .
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Of course, in removing the singularity from Equation C.1 we have simply cre-

ated another singular integral, but of þ rather than
Ö

. However, since þ is analyt-

ically integrable, we can writeÑ [�ð þ�� Z < Zy[ � K � Z � WYZ  Ñ [�ð þ�� Z < Z;[ �y~ K � Z � � K � Zy[ �}� W�Z & K � Zy[ � Ñ [�ð þ�� Z < Zy[ � WYZ (C.5) Ñ [�ð þ�� Z < Z;[ �y~ K � Z � � K � Zy[ �}� W�Z & _:kÙ9Ú � Í _:jÙ Ï K � Zy[ � (C.6)

For the second integral of Equation 4.11, we recall thatÌ c�d 	 Ö	 �J W�Ð  !:
and so the right side of 4.11 becomes

w � Z;[ � Ñ [�ð 	 Ö	 �J WYZ � Ñ [�ð w � Z � 	 Ö	 �J WYZ  Ñ [�ð 	 Ö	 �J ~ w � Z;[ � � w � Z �ÿ� W�Z (C.7)

By substituting these results into Equation 4.11, we obtain a regularized integral

equation,_:kÙüÚ � Í _:jÙ Ï K � Zy[ � & Ñ [�ð ~ � Ö � Z < Zy[ � �+þ�� Z < Zy[ �H� K � Z �}� & ~ þ�� Z < Z;[ � � K � Z � � K � Z;[ �E�}�& ó C* í 	 Ö	 �J � w � Z � � w � Zy[ �H� î WYZ  � <
(C.8)

which we can discritize without creating elements with infinite values.



Appendix D

Simulation Source Files

All files were written by Daniel Gianotti and last modified between 1/29/03

and 5/6/03. The simulation was performed in Octave version 2.1.47 with installed

packages octave-ci and octave-forge, and the image files were created in Matlab6

using output Octave datafiles.

evolution.m

% Written by Daniel Gianotti for Octave. Commenting would need

% to be changed for Matlab functionality, as would some non-user-defined

% m-files (most notably the octave-forge splines package). All are

% freely available and used under the terms of the GNU Public Liscense.

global dT;

dT=0;

global h_scale; %spacing between plates

h_scale=.01;

global contactang;

contactang=110*pi/180;

global new_xy;

global iteration;

iteration=0;

global N;

global dds_xy;

global Area;

global rad_scale;

global dxy;

%%%

%Some diagnostic variables...

%%%

global curvature;
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global dGdn;

global input_xy;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The initialization process (pre-evolution)%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

input_xy = build_xy; % vector of (x,y) pairs

% asks for user input to create

% initial drop shape (currently elipse)

N=length(input_xy); % N is the number of nodes we have

%debug="xy has been built for the first time"

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The drop evolution process%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function evolve(old_xy)

global dT;

global h_scale;

global contactang;

global N;

global input_xy;

global iteration;

global new_xy;

global dds_xy;

global Area;

global rad_scale;

global dxy;

iteration++

old_s = build_s_vector(old_xy); % s_vector is the vector of arclengths to

% each x,y point

[xy, s] = redistribute(old_xy, old_s); % redistrbute places N nodes

% at equal s positions along

% cubic splines representing

#xy=old_xy; % the perimeter of the drop. It calls the

#s=old_s; % functions build_K, build_b, arclength, and

% extend_nodes
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L=s(N);

% After the initial construction and redistribution, we calculate the normal

% velocities of each node by solving the matrix equation (matA)(nVel)= solution

% admittedly, solution is not the greatest name for the vector that leads to a

% nonhomogeneous matrix equation, but I’m still trying to think of a better

% one. "b" is already taken...

K = build_K(s,N);

%d2ds2_xy is an Nx2 matrix of 2nd derivatives of x and y wrt the arclength

d2ds2_xy = \

[trisolve(K(1:(N-1),2),K(:,1),K(1:(N-1),2),build_b(xy(:,1),s,N),K(N,2),K(N,2)), \

trisolve(K(1:(N-1),2),K(:,1),K(1:(N-1),2),build_b(xy(:,1),s,N),K(N,2),K(N,2))];

#d2ds2_xy=take_der2(s,xy);

#plot([1:N]’, dds_xy(:,1),[1:N]’,d2ds2_xy(:,1))

%trisolve solves a matrix equation for tridiagonal matrix with the

%first column of K on the diagonal and the second column of K on the \

%1st sub and super diagonals ( K(N,2) is actually the corner values).

dds_xy = (shift(xy,-1)-shift(xy,1))/2 + (shift(d2ds2_xy,1)-shift(d2ds2_xy,-1))/12;

%splined first derivatives of xy

%the old d2ds_xy.....

%d2ds2_xy = [inverse(K)*build_b(xy(:,1),s,N), inverse(K)*build_b(xy(:,2),s,N)];

%Second derivatives of x&y (from cubic splines)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%rad_scale is the radius of a circular drop with the same area as ours. We %

%are using rad_scale as one of the length scales for the nondimensionalized%

%form of our equations. The other is h_scale, the spacing between the %

%cell plates. Area is, not suprisingly, the area of the drop. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Area = (s(N)/(2.0*N)) * sum( \

((xy(:,1).*dds_xy(:,2))-(xy(:,2).*dds_xy(:,1)))./ \

(((dds_xy(:,1)).ˆ2 + (dds_xy(:,2)).ˆ2).ˆ.5) );

rad_scale = sqrt(Area/pi);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Build the normal velocity: nVel%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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solution = build_solution(xy,dds_xy,d2ds2_xy,contactang,(rad_scale/h_scale));

matA = build_matA(xy,s);

nVel = inverse(matA)*solution;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%the new positions are just the old ones plus nVel * normal vectors%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

normal = [dds_xy(:,2), -dds_xy(:,1)]./ (sqrt( sum( (dds_xy.*dds_xy)’ )’ )*ones(1,2));

#centroid=(L/(2*N))*sum(xy.*xy.*normal)

dxy = (nVel*ones(1,2)).*normal;

dT = rad_scale/(100* max(max(dxy)) ); %take a time-step that is

%not constant in time, but

%rather changes to make the largest step 1/100th the radius of the drop

new_xy = dT*dxy + xy;

axis([-4,4,-3,3]);

if (mod(iteration,1)==0) %plot every 10 times

plot(input_xy(:,1),input_xy(:,2),new_xy(:,1),new_xy(:,2))

%plot(1:N, dxy, "+")

% plot(new_xy(:,1),new_xy(:,2))

end

endfunction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%End of the evolve function%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

evolve(input_xy);

Area1=Area;

%dT=.1;

%dT = rad_scale/(100* max(max(dxy)) );

#DATA=[input_xy, zeros(N,1);

# new_xy, ones(N,1)];
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while (((isreal(Area)==1) & (iteration<301)) )

evolve(new_xy)

# DATA=[DATA;new_xy, iteration*ones(N,1)];

end

%save 2stabcircle3.dat DATA #data collection

build xy.m

% This function creates and initializes the points of the boundary

function xy = build_xy

% This build function creates an elipse with number N points determined

% by the user

%N = input(’\nWe are going to look at points along the boundary of an elipse. \nPoints are originally defined at equal angular spacing.\n\nHow many points would you like to look at?\n’)

N=100

%theta is vector of angles, evenly-spaced up to 2pi

theta = 2*pi*(1/N:1/N:1)’;

%define axis lengths for elipse

a=2;

b=2;

xy = [a*cos(theta), b*sin(theta)];

xy(24,2)=1;

xy(25, :)=[0, .2];

xy(26,2)=1;

xy(74,2)=-1;

xy(75,:)=[0,-.2];

xy(76,2)=-1;

#

#theta1=2*pi*[2/(N+2):2/(N+2):1-2/(N+2)]’;
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#theta2=2*pi*[4/(N+2):2/(N+2):1]’;

#xy = [cos((2*pi/N)*[1:N]’).ˆ3,(cos((2*pi/N)*[1:N]’)).ˆ2.*sin((2*pi/N)*[1:N]’)];

build K

function K = build_K(s, N)

% the new, imporved K is an Nx2 matrix with the diagonal elements in the

% first column and the off-diagonal elements in the second column

% (the corner elements are K(N,2) )

K = [(shift(s,-1)-shift(s,1))/3, (shift(s,-1)-s)/6];

K(1,1)=s(2)/3; %need to properly deal with node

K(N,1)=( s(1)+s(N)-s(N-1) )/3; %zero (not == node N!!)

K(N,2)=s(1)/6; %and nodes > N

%OLD K FUNCTION(SLOOOOOOOW)

% s is the s_vector of arclengths

% K is the tridiagonal (with corners) matrix for gettin’ the 2nd derivatives

% Let’s define K now...

%

%K=zeros(N,N);

%for i=2:(N-1)

% K(i,i)=(s(i+1)-s(i-1))/3;

% K(i-1,i)=(s(i)-s(i-1))/6;

% K(i,i-1)=(s(i)-s(i-1))/6;

%end

%

%

%K(1,1)=s(2)/3;

%K(N,N)=(s(1)+s(N)-s(N-1))/3;

%

%K(N,1)=(s(1))/6;

%K(N-1,N)=(s(N)-s(N-1))/6;

%

%K(1,N)=(s(1))/6;
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%K(N,N-1)=(s(N)-s(N-1))/6;

%

build b.m

function b = build_b(x, s, N)

%nonhomogeneous vector for spline 2nd derivative calculation

%used for function redistribute.m

b = (shift(x,-1)-x)./ (shift(s,-1)-s) - (x-shift(x,1))./ (s-shift(s,1));

arclength.m

% returns arclengths for values other than [1,N]

% the input s is the "s_vector" of arclengths for

% nodes 1 through N, and the input "i" is the index

% for which you want the arclength

function q = arclength(s, i)

N = length(s);

if (i < 1)

q = s(N+i)-s(N);

elseif (i > N)

q = s(N)+s(i-N);

else

q = s(i);

end

build matA.m

function G = build_matA(xy, s)

%this function builds the matrix which operates on the velocity

%vector in our matrix equation. We call it "matA" for no good reason

global N;

s_cols=s*ones(1,N); %matrix of N identical column vectors
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F = (1.0/(2.0*pi))*log(abs( eye(N) + (s(N)/pi)*sin( pi*(s_cols-s_cols’)/s(N)) ));

Gdiags=sum(F’)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%first make the G‘ function, ie the matrix w/o diagonals%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x_cols=(xy(:,1)*ones(1,N));

y_cols=(xy(:,2)*ones(1,N));

G = ( (1.0/(2.0*pi)) *log(sqrt( eye(N) + (x_cols-x_cols’).ˆ2 + (y_cols-y_cols’).ˆ2 )) ) + diag(Gdiags);

build s vector.m

% at the moment, the arclengths are calculated by using linear

% approximations... kinda crappy, eh?

function s= build_s_vector(xy)

global N;

%s = sum(tril( ones(N,1)*sqrt(sum( (diff([xy(N,:);xy]).ˆ2)’ )) )’)’;

%this is faster!

s = zeros(N,1);

s(1) = sqrt((xy(1,1)-xy(N,1))ˆ2+(xy(1,2)-xy(N,2))ˆ2);

for i=2:N

s(i) = sqrt((xy(i,1)-xy(i-1,1))ˆ2+(xy(i,2)-xy(i-1,2))ˆ2) + s(i-1);

end

build solution.m

function b = build_solution(xy,der1,der2,angl,a_over_h)

%Handy diagnostics

global curvature;

global dGdn;
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N=length(xy(:,2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%define the curvature vector (nondimensionalized)%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%find where xy is in the left half-plane

left_xy = (xy(:,1) < 0);

curvature=der1(:,1).*der2(:,2)-der1(:,2).*der2(:,1);# - 2*a_over_h*cos(angl);

#curvature=der1(:,1).*der2(:,2)-der1(:,2).*der2(:,1) - 2*a_over_h*cos(angl + (50*pi/180)*xy(:,1).*left_xy);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%define the dG‘dn matrix (remember, no diagonal components!)%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xcols=(xy(:,1)*ones(1,N));

ycols=(xy(:,2)*ones(1,N));

xrows=xcols’;

yrows=ycols’;

dGdn_nodiag = \

((ones(N,1)*der1(:,1)’).*(yrows-ycols) -

(ones(N,1)*der1(:,2)’).*(xrows-xcols))./ (2*pi*((xrows-xcols).ˆ2 \

+ \

(yrows-ycols).ˆ2) \

+ realmin);

%by adding in the value "realmin" to the denominator, you no longer

%run into divide-by-zero problems. As a matter of fact, the numerator

%is zero on the diagonal, so dividing by realmin automatically sets

%those entries to zero... ready and awaiting addition of dGdn_diag

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%define the diagonals of our matrix: I*Gamma, first as a vector%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dGdn_diag=sum(dGdn_nodiag,2); %the 2 argument of sum means to

%sum along the rows rather than columns

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%and now the real matrix dGdn, with the diagonals...%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dGdn = dGdn_nodiag + diag(dGdn_diag);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%and the "solution vector" is the product of dGdn and %

%the curvature with our length scale parameter in front%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

b = (1/a_over_h) * (dGdn*curvature);

mod.m

function m = mod(a,b)

% What?! Octave doesn’t have a modulus function?!

% Fuck this open-source shit...

m = a;

c = abs(b);

if (a >= 0)

while (m >= c)

m=m-c;

end

else

n=m;

while (n < -c)

n=n+c;

end

m=c-n;

end

redistribute.m

function [newxy, news] = redistribute(oldxy, olds)

my_spline = csape(olds, oldxy, ’periodic’); %this should be

%in the "pp", or piece-wise polynomial structure format.

N=length(olds);
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news=[olds(N)/N:olds(N)/N:olds(N)]’;

%hopefully no reason for this, since I assume it wouldn’t work

%my_spline=csape(new_s, ppval(my_spline, new_s), ’not-a-knot’);

newxy=ppval(my_spline, news);

#der1=[ppval(splder(csape(olds,oldxy(:,1), ’periodic’),1), news), ppval(splder(csape(olds,oldxy(:,2), ’periodic’),1), news)];

#der2=[ppval(splder(csape(olds,oldxy(:,1), ’periodic’),2), news), ppval(splder(csape(olds,oldxy(:,2), ’periodic’),2), news)];

oldredistribute.m

function [new_points, new_s_vector] = redistribute(old_points, old_s, N)

K = build_K(old_s, N); % Banded matrix K (w/corners)

old_x = old_points(:,1);

old_y = old_points(:,2);

b_x = build_b(old_x, old_s, N);

b_y = build_b(old_y, old_s, N);

%der2old_y is the vector of second derivatives of y at the nodes

der2old_x = trisolve(K(1:(N-1),2),K(:,1),K(1:(N-1),2),b_x,K(N,2),K(N,2));

der2old_y = trisolve(K(1:(N-1),2),K(:,1),K(1:(N-1),2),b_y,K(N,2),K(N,2));

%der2old_x=inverse(K)*b_x;

%der2old_y=inverse(K)*b_y;

% Now, to redistribute the nodes so that they are equidistant in arclength

% new_s is an Nx2 matrix where the first column is the values

% {L/N, 2L/N, 3L/N, ... L} and the second column shows where between the old

% nodes the equidistant values lie. If new_s(i,2) = j, that means that all of

% the old nodes up to (and including) node j have arclength less than iL/N,

% so the new node i lies between old nodes j and j+1

L=old_s(N);

avgL = L/N;
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%%%new_s = [[1:N]’, [1:N]-ceil([1:N]-old_s/avgL)]; hmm... that’s not right...

%%try floor(old_s)-shift(floor(old_s),-1) and then get a vector that

%%records jumps

new_s=zeros(N,2);

new_s(:,1)= [avgL:avgL:N*avgL]’;

j=0; % if j = 0, then

for i=1:N % we must be sure to define s(0) as 0

while ( arclength(old_s,j+1) <= new_s(i,1) )

j++;

end

new_s(i,2)=j;

j--;

end

new_s_vector=new_s(:,1);

nnz_s = find( new_s(:,2) ); %vector of indices of non-zero components of new_s

s_zrs = length(nnz_s); %number of non-zero elements of new_s(:,2)

nnz_s_noN = nnz_s(1:(s_zrs-1));

if (s_zrs != N)

xsi_zros = new_s(1:(N-s_zrs) ,1)/old_s(1);

else

xsi_zros = [];

end

xsi = [xsi_zros; (new_s(nnz_s_noN, 1 ) - (old_s( new_s(nnz_s_noN,2) ) ))./ \

(old_s( new_s(nnz_s_noN,2) + 1) - old_s( new_s(nnz_s_noN,2) )); 0 ];

%xsi = (new_s(:,1) - (old_s(new_s(:,2) ))./ (shift(old_s,-1) - old_s);

xsi(N) = (new_s(N,1) - old_s(new_s(N,2)))/ old_s(1);

tmp_x=[old_x(N)*ones((N-s_zrs),1); old_x(new_s(nnz_s,2))]; %this would just be

%tmpx=oldx(news(:,2))

tmp_y=[old_y(N)*ones((N-s_zrs),1); old_y(new_s(nnz_s,2))]; %except for those pesky zeros

new_points = \

[tmp_x.*(1-xsi)+shift(tmp_x,-1).*xsi+((shift(old_s,-1)-old_s).ˆ2).*(der2old_x.*(1-xsi).*(xsi.ˆ2-2*xsi)/6+shift(der2old_x,-1).*xsi.*(xsi.ˆ2-1)/6), \

tmp_y.*(1-xsi)+shift(tmp_y,-1).*xsi+((shift(old_s,-1)-old_s).ˆ2).*(der2old_y.*(1-xsi).*((xsi.ˆ2)-2*xsi)/6+shift(der2old_y,-1).*xsi.*((xsi.ˆ2)-1)/6)];



43

new_points(N,:) =[old_x(N), old_y(N)];

%

%new_points = zeros(N,2);

%

% These new points are made so as to lie along a cubic spline between old

% nodes k and k+1

%

%%%%%%%%%%%%% Time to play hardball, eh?

%

%for i=1:N

% k=new_s(i,2);

%

% xsi = \

% (new_s(i,1)-arclength(old_s,k))/(arclength(old_s,k+1)-arclength(old_s,k));

%

% new_points(i,1) = extend_nodes(old_x,k)*(1-xsi) + extend_nodes(old_x,k+1)*xsi + (arclength(old_s,k+1)-arclength(old_s,k))ˆ2 * [extend_nodes(der2old_x,k)*(1-xsi)*(xsiˆ2-2*xsi)/6 + extend_nodes(der2old_x,k+1)*xsi*(xsiˆ2-1)/6];

%

% new_points(i,2) = extend_nodes(old_y,k)*(1-xsi) + extend_nodes(old_y,k+1)*xsi + (arclength(old_s,k+1)-arclength(old_s,k))ˆ2 * [extend_nodes(der2old_y,k)*(1-xsi)*(xsiˆ2-2*xsi)/6 + extend_nodes(der2old_y,k+1)*xsi*(xsiˆ2-1)/6];

%end

%

%new_s_vector = new_s(:,1);

extend nodes.m

function q = extend_nodes(x,i)

% returns node values other than [1,N]

% the input x is the "x_vector" of nodal x-values for

% nodes 1 through N, and the input "i" is the index

% for which you want the x-value

N = length(x);

q = x(xtnd_mod(i,N));

take dds.m

function dxds_dyds = take_dds(xy, s)
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N = length(s);

dxds_dyds = zeros(N,2);

dxds_dyds(1,1) = (xy(2,1)-xy(N,1))/s(2);

dxds_dyds(1,2) = (xy(2,2)-xy(N,2))/s(2);

dxds_dyds(N,1) = (xy(1,1)-xy(N-1,1))/(s(N)-s(N-1)+s(1));

dxds_dyds(N,2) = (xy(1,2)-xy(N-1,2))/(s(N)-s(N-1)+s(1));

for i=2:(N-1)

dxds_dyds(i,1) = (xy(i+1,1)-xy(i-1,1))/(s(i+1)-s(i-1));

dxds_dyds(i,2) = (xy(i+1,2)-xy(i-1,2))/(s(i+1)-s(i-1));

end

take der2.m

function c = take_der2 (x, y)

n = length(x);

a = y;

b = c = zeros (size (y));

h = diff (x);

idx = ones (columns(y),1);

h = [h; h(1)];

## XXX FIXME XXX --- the following gives a smoother periodic

##transition:

a(n,:) = a(1,:) = ( a(n,:) + a(1,:) ) / 2;

##a(n,:) = a(1,:);

tmp = diff (shift ([a; a(2,:)], -1));

g = 3 * tmp(1:n - 1,:) ./ h(2:n,idx)\

- 3 * diff (a) ./ h(1:n - 1,idx);

# if (n > 3)

# dg = 2 * (h(1:n - 1) .+ h(2:n));
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# e = h(2:n - 1);

# c(2:n,idx) = trisolve(dg,e,g,h(1),h(1));

# elseif (n == 3)

A = [2 * (h(1) + h(2)), (h(1) + h(2));

(h(1) + h(2)), 2 * (h(1) + h(2))];

c(2:n,idx) = inverse(A) * g;

# endif

c(1,:) = c(n,:);

# b = diff (a) ./ h(1:n - 1,idx)\

# - h(1:n - 1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n - 1,:));

# b(n,:) = b(1,:);

# d = diff (c) ./ (3 * h(1:n - 1, idx));

# d(n,:) = d(1,:);

# d = d(1:n-1,:); c=c(1:n-1,:); b=b(1:n-1,:); a=a(1:n-1,:);

# coeffs = [d(:), c(:), b(:), a(:)];

# pp = mkpp (x, coeffs);

#der2=6*c./h;

endfunction

xtnd mod.m

function m = mod(a,b)

% What?! Octave doesn’t have a modulus function?!

% Fuck this open-source shit...

m = a;

c = abs(b);

if (a > 0)

while (m > c)

m=m-c;

end

elseif (a = 0)

m = c;

else
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n=m;

while (n < -c)

n=n+c;

end

m=c-n;

end

octsplines.m

%try csape(X, Y, ’not-a-knot’, ’periodic’)

%it should create the pp-form of the cubic spline

## x: sample points

## P: polynomial coefficients for points in sample interval

## P(i,:) contains the coefficients for the polynomial over

interval i

## ordered from highest to lowest. If d > 1, P(r,i,:) contains the

## coeffients for the r-th polynomial defined on interval i.

However

## octave does not support 3-dimensional matrices, so define:

## c = reshape (P(:, j), n, d);

## Now c(i,r) is j-th coefficient of the r-th polynomial over the

## i-th interval.

## n: number of polynomial pieces

## k: order of the polynomial + 1

## d: number of polynomials defined for each interval

function [x, P, n, k, d] = unmkpp(pp)

#csape body......

function pp = csape (x, y, cond, valc)

x = x(:);

n = length(x);

transpose = (columns(y) == n);

if (transpose) y = y’; endif

a = y;

b = c = zeros (size (y));
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h = diff (x);

idx = ones (columns(y),1);

if (nargin < 3 || strcmp(cond,"complete"))

# specified first derivative at end

point

if (nargin < 4)

valc = [0, 0];

endif

dg = 2 * (h(1:n - 2) .+ h(2:n - 1));

dg(1) = dg(1) - 0.5 * h(1);

dg(n - 2) = dg(n-2) - 0.5 * h(n - 1);

e = h(2:n - 2);

g = 3 * diff (a(2:n,:)) ./ h(2:n - 1,idx)\

- 3 * diff (a(1:n - 1,:)) ./ h(1:n - 2,idx);

g(1,:) = 3 * (a(3,:) - a(2,:)) / h(2) \

- 3 / 2 * (3 * (a(2,:) - a(1,:)) / h(1) - valc(1));

g(n - 2,:) = 3 / 2 * (3 * (a(n,:) - a(n - 1,:)) / h(n - 1) -

valc(2))\

- 3 * (a(n - 1,:) - a(n - 2,:)) / h(n - 2);

c(2:n - 1,:) = trisolve(dg,e,g);

c(1,:) = (3 / h(1) * (a(2,:) - a(1,:)) - 3 * valc(1)

- c(2,:) * h(1)) / (2 * h(1));

c(n,:) = - (3 / h(n - 1) * (a(n,:) - a(n - 1,:)) - 3 * valc(2)

+ c(n - 1,:) * h(n - 1)) / (2 * h(n - 1));

b(1:n - 1,:) = diff (a) ./ h(1:n - 1, idx)\

- h(1:n - 1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n - 1,:));

d = diff (c) ./ (3 * h(1:n - 1, idx));

elseif (strcmp(cond,"variational") || strcmp(cond,"second"))

if ((nargin < 4) || strcmp(cond,"variational"))

## set second derivatives at end points to zero

valc = [0, 0];

endif

c(1,:) = valc(1) / 2;

c(n,:) = valc(2) / 2;
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g = 3 * diff (a(2:n,:)) ./ h(2:n - 1, idx)\

- 3 * diff (a(1:n - 1,:)) ./ h(1:n - 2, idx);

g(1,:) = g(1,:) - h(1) * c(1,:);

g(n - 2,:) = g(n-2,:) - h(n - 1) * c(n,:);

dg = 2 * (h(1:n - 2) .+ h(2:n - 1));

e = h(2:n - 2);

c(2:n - 1,:) = trisolve (dg,e,g);

b(1:n - 1,:) = diff (a) ./ h(1:n - 1,idx)\

- h(1:n - 1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n - 1,:));

d = diff (c) ./ (3 * h(1:n - 1, idx));

elseif (strcmp(cond,"periodic"))

h = [h; h(1)];

## XXX FIXME XXX --- the following gives a smoother periodic

transition:

## a(n,:) = a(1,:) = ( a(n,:) + a(1,:) ) / 2;

a(n,:) = a(1,:);

tmp = diff (shift ([a; a(2,:)], -1));

g = 3 * tmp(1:n - 1,:) ./ h(2:n,idx)\

- 3 * diff (a) ./ h(1:n - 1,idx);

if (n > 3)

dg = 2 * (h(1:n - 1) .+ h(2:n));

e = h(2:n - 1);

c(2:n,idx) = trisolve(dg,e,g,h(1),h(1));

elseif (n == 3)

A = [2 * (h(1) + h(2)), (h(1) + h(2));

(h(1) + h(2)), 2 * (h(1) + h(2))];

c(2:n,idx) = A \ g;

endif

c(1,:) = c(n,:);

b = diff (a) ./ h(1:n - 1,idx)\

- h(1:n - 1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n - 1,:));

b(n,:) = b(1,:);
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d = diff (c) ./ (3 * h(1:n - 1, idx));

d(n,:) = d(1,:);

elseif (strcmp(cond,"not-a-knot"))

if (n > 4)

dg = 2 * (h(1:n - 2) .+ h(2:n - 1));

dg(1) = dg(1) - h(1);

dg(n - 2) = dg(n-2) - h(n - 1);

ldg = udg = h(2:n - 2);

udg(1) = udg(1) - h(1);

ldg(n - 3) = ldg(n-3) - h(n - 1);

elseif (n == 4)

dg = [h(1) + 2 * h(2), 2 * h(2) + h(3)];

ldg = h(2) - h(3);

udg = h(2) - h(1);

endif

g = zeros(n - 2,columns(y));

g(1,:) = 3 / (h(1) + h(2)) * (a(3,:) - a(2,:)\

- h(2) / h(1) * (a(2,:) - a(1,:)));

if (n > 4)

g(2:n - 3,:) = 3 * diff (a(3:n - 1,:)) ./ h(3:n - 2,idx)\

- 3 * diff (a(2:n - 2,:)) ./ h(2:n - 3,idx);

endif

g(n - 2,:) = 3 / (h(n - 1) + h(n - 2)) *\

(h(n - 2) / h(n - 1) * (a(n,:) - a(n - 1,:)) -\

(a(n - 1,:) - a(n - 2,:)));

c(2:n - 1,:) = trisolve(ldg,dg,udg,g);

c(1,:) = c(2,:) + h(1) / h(2) * (c(2,:) - c(3,:));

c(n,:) = c(n - 1,:) + h(n - 1) / h(n - 2) * (c(n - 1,:) - c(n - \

2,:));

b = diff (a) ./ h(1:n - 1, idx)\

- h(1:n - 1, idx) / 3 .* (c(2:n,:) + 2 * c(1:n - 1,:));

d = diff (c) ./ (3 * h(1:n - 1, idx));

else

msg = sprintf("unknown end condition: %s",cond);
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error (msg);

endif

d = d(1:n-1,:); c=c(1:n-1,:); b=b(1:n-1,:); a=a(1:n-1,:);

coeffs = [d(:), c(:), b(:), a(:)];

pp = mkpp (x, coeffs);

endfunction

%!shared x,y,cond

%! x = linspace(0,2*pi,15)’; y = sin(x);

%!assert (ppval(csape(x,y),x), y, 10*eps);

%!assert (ppval(csape(x,y),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’),x), y, 10*eps);

%!assert (ppval(csape(x,[y,y]),x), \

%! [ppval(csape(x,y),x),ppval(csape(x,y),x)], 10*eps)

%!test cond=’complete’;

%!assert (ppval(csape(x,y,cond),x), y, 10*eps);

%!assert (ppval(csape(x,y,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x), y, 10*eps);

%!assert (ppval(csape(x,[y,y],cond),x), \

%! [ppval(csape(x,y,cond),x),ppval(csape(x,y,cond),x)], 10*eps)

%!test cond=’variational’;

%!assert (ppval(csape(x,y,cond),x), y, 10*eps);

%!assert (ppval(csape(x,y,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x), y, 10*eps);

%!assert (ppval(csape(x,[y,y],cond),x), \

%! [ppval(csape(x,y,cond),x),ppval(csape(x,y,cond),x)], 10*eps)

%!test cond=’second’;

%!assert (ppval(csape(x,y,cond),x), y, 10*eps);

%!assert (ppval(csape(x,y,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x), y, 10*eps);
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%!assert (ppval(csape(x,[y,y],cond),x), \

%! [ppval(csape(x,y,cond),x),ppval(csape(x,y,cond),x)], 10*eps)

%!test cond=’periodic’;

%!assert (ppval(csape(x,y,cond),x), y, 10*eps);

%!assert (ppval(csape(x,y,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x), y, 10*eps);

%!assert (ppval(csape(x,[y,y],cond),x), \

%! [ppval(csape(x,y,cond),x),ppval(csape(x,y,cond),x)], 10*eps)

%!test cond=’not-a-knot’;

%!assert (ppval(csape(x,y,cond),x), y, 10*eps);

%!assert (ppval(csape(x,y,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x’), y’, 10*eps);

%!assert (ppval(csape(x’,y’,cond),x), y, 10*eps);

%!assert (ppval(csape(x,[y,y],cond),x), \

%! [ppval(csape(x,y,cond),x),ppval(csape(x,y,cond),x)], 10*eps)
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