
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

4-1-1985

Problems of Channel Correlation and Statistical
Bias in Photon-Correlation Spectroscopy
Richard C. Haskell
Harvey Mudd College

Gary L. Pisciotta

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Haskell, RC, Pisciotta, GL. Problems of channel correlation and statistical bias in photon-correlation spectroscopy. J Opt Soc Am B.
1985;2(5): 714-720.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


714 J. Opt. Soc. Am. B/Vol. 2, No. 5/May 1985

Problems of channel correlation and statistical bias in
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Correlation between channels of the normalized photocount-rate correlation function g(2)(T) becomes significant
at high count rates and leads to a number of data-analysis problems. We derive an expression for channel correla-
tion that is valid for a detector area of arbitrary extent and compare the theoretical predictions with measured val-
ues. A data-analysis procedure is demonstrated that employs the theoretical expression for channel correlation
and provides a rigorous test of an assumed fitting function. The procedure facilitates the use of the cumulant
method in determining the polydispersity of scatterers. An expression for the statistical bias of g(2 )(r) is also de-
rived and compared with measured values.

1. INTRODUCTION

The light-scattering technique of photon-correlation spec-
troscopy (PCS) is now 20 years old",2 and is employed in a wide
range of research programs in which frequency shifts of less
than 1 MHz are of interest. In PCS a measurement is per-
formed of the normalized photocount-rate correlation func-
tion g(2)(r) of light scattered from the sample. From the
measured g( 2 )(r) one can deduce the dynamics of the motion
of the scatterers or the time scale of polarizability fluctuations
in the scattering medium. In an increasing number of PCS
applications the average number of photocounts recorded in
a coherence time of the scattered optical field is quite large
(if >> 1). Examples of such applications include resting and
contracting skeletal muscle,3 macromolecules diffusing in
solution (e.g., the muscle protein F-actin4 ), studies of cell
motility,5 '6 and resting and contracting cardiac muscle.7

Indeed, the condition nT >> 1 is realized in the most common
PCS calibration procedure in which laser light is scattered
from a sample of uniform-diameter (e.g., 0.1-Am) spheres
executing Brownian motion in water. In most of these sit-
uations the coherence time of the scattered optical field is so
long that any attempt to reduce the photocount rate in order
to achieve Tc 1 results in a photocount rate that is unsatis-
factorily close to the dark-count rate of the photomultiplier.
Hence the condition if >> 1 often cannot be avoided.

Unfortunately, when no >> 1 the channels of g(2)(r) [the
measured values of g(M)(T) at different values of r] are corre-
lated, and two problems arise during data analysis. First,
when the measured g( 2 )(T) is fitted to some expected func-
tional form (e.g., a single exponential in the case of a Lorent-
zian light spectrum), a ridiculously low value for chi squared
per degree of freedom (X2/DF) is found. Second, the F-test
criterion frequently employed with the cumulant technique8

for determining the polydispersity of the scatterers is rendered
invalid by the erroneous values for X2/DF.

Saleh and Cardoso9 have investigated the problem of
chalnel correlation in the case of a stationary, cross-spectrally
pure, Gaussian scattered field with arbitrary spectral line
shape. Their treatment assumes that the detector area is

small compared with the coherence area of the scattered field,
that the sample time [width of a channel of g(

2
)(T)] is short

compared with the coherence time r,> and that the duration
of a measurement of g(2 )(i-) (correlator run duration) is long
compared with e,. They obtained an explicit expression for
channel correlation in the frequently occurring case of a Lo-
rentzian spectrum and estimated the statistical accuracy of
a measurement of the spectral parameter r,-j for various
photocount rates and measurement times. In the present
paper we shall be interested not only in the accuracy with
which regression techniques can extract a spectral parameter
but also in the values obtained for X2/DF that indicate
whether the assumed spectrum is appropriate and in the re-
sults of F tests that help to determine the polydispersity of
the scatterers. We shall extend the treatment of Saleh and
Cardoso9 to the case of an arbitrary detector area and shall
compare our calculated expression for channel correlation
with values measured by scattering laser light from latex
spheres in water. We shall then suggest a simple on-line
technique for taking account of channel correlation and for
removing the two data-analysis problems mentioned above.

In order to calculate the channel correlation we must first
discuss the statistical bias of g(2)(r), which becomes appre-
ciable when the duration of a measurement of g(

2
)(T) is less

than approximately 200 coherence times. Since the time
available for measurement can be quite limited in PCS mea-
surements performed on biological systems,3 the bias itself
can be of considerable interest. In Section 2 we calculate the
bias of g(2)(r) and compare the theoretical expression with
values measured by scattering laser light from latex spheres
in ethylene glycol. Section 3 contains a calculation of the
covariance of two channels of g(2)('r) and a comparison of the
theoretical predictions with measured values. In Section 4
the theoretical expression for the covariance is incorporated
into a procedure for fitting measured values of g(2)(i-) to some
expected functional form. The procedure is demonstrated
by analyzing data obtained with a range of photocount rates,
illustrating the transition from correlated channels (QT >> 1)
to uncorrelated channels ( S 1). A summary and discussion
of results are presented in Section 5.
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2. STATISTICAL BIAS OF g
2

) ()

In order to perform a measurement of g(
2

)('r), a digital corre-
lator divides a real-time interval called the correlator run
duration into a large number N of contiguous time intervals
of duration T called sample times. The th channel of the
normalized photocount-rate correlation function is then cal-
culated according to

g2(r= T) = (1/N) F_ n(m)n(m + 

N 2
(1/N) E n(m) 1 = 1, 2, 3, ... ,L,

(1)

where n(m) is the number of photocounts recorded in the mth
sample time and L is the number of channels calculated by the
correlator. Following the approach of Jakeman et al.'0 and
of Saleh and Cardoso,9 we define the random variables

N
i = (1/N) E n(m), (2)

m=1

N
G = (1/N) n(m)n(m + 1), (3)

m=1

= /(11)2 , (4)

where i is the estimator of the average number of photocounts
recorded in a sample time and 01 and go are the estimators of
the unnormalized and normalized photocount-rate correlation
functions, respectively. A single correlator run yields one
value for each of these three random variables. The proba-
bility distributions of 4, 0j, and RI can be calculated from the
results of a large number of statistically independent corre-
lator runs. Since the average of the ratio of two random
variables does not in general equal the ratio of the averages,
g1 is a biased estimator, and we define

(gl) = (1/(n)2) = (0 1 )/(A)2 + BIAS,, (5)

where the angle brackets denote an average over many mea-
surements (correlator runs). Introducing the notation ()
= i, ( U1) = Gi, and defininggI = G n-2,we can write

(gl) = G7/n2 + BIAS = g, + BIAS1 . (6)

Although the normalized estimator RI is biased, measure-
ments of RI have a distinct advantage: go depends only on the
spectral parameters of the scattered light, the detector area,
and the sample time T and not on the photocount rate or the
correlator run duration. For example, slow drifts in the in-
cident laser intensity do not affect measurements of RI if the
correlator run duration (NT) is chosen to be short compared
with the time scale of these drifts. However, if the correlator
run duration is too short, the bias of g can become apprecia-
ble; this, if unrecognized, would lead to an erroneous inter-
pretation of the spectrum. This last consideration is critical
in situations in which the stochastic process underlying the
dynamics of the scattering sample is stationary for limited
periods of time. This is often true of biological samples.3 It
should also be noted that the particular method of normali-
zation used in Eq. (1) has been shown to provide the best
statistical accuracy in measurements of g(

2
)(r) and of the

width of a Lorentzian spectrum."', 12

Since we shall need an expression for the bias of g1 in order

to calculate the channel correlation, we now calculate BIAS1
as a function of the photocount rate and the correlator run
duration. We shall employ the assumptions mentioned in
Section 1: (1) The scattered optical field is stationary,
cross-spectrally pure, and Gaussian and has a Lorentzian
spectrum; (2) the number of coherence times N, in a correlator
run duration is large (N, >> 1); and (3) the coherence time is
much longer than the sample time (r,/T >> 1). Under as-
sumption (2) (N, >> 1), the number of statistically indepen-
dent terms in the sums of Eqs. (2) and (3) is large. According
to the central-limit theorem, one can assume the probability
distribution of 01 and 4 to be a jointly Gaussian distribution.
This assumption is weakest when N, is smallest, which is when
BIASI is most appreciable. The shortest correlator run du-
ration that we shall consider corresponds to N, = 20, and we
found that even in this worst case the measured distributions
of 01 and were approximately normal. With the assump-
tion of a jointly Gaussian distribution for 01 and we have

(RI) = (0 1/(ii)2 ) = S, (Gj/n 2 )P(G, n)dGjdn, (7)

where P(GI, n) = (27r)-'1M-1/2 exp(-l/ 2 vtM'lv), v is the
column vector

[(G1 -G 1)1
I I,-) [(n - Mi

M is the covariance matrix of 01 and n, i.e.,

Ml = Var(01) = ((0 - C1)2),

M12 = M2 = Cov(0, ni) = ( - )(t - ),

M22 = Var(h) = (( -)2),

and Mi is the determinant of M. When the integration over
GI is performed, Eq. (7) becomes

(g) = [2irM22]-1/2 dn[(Ml2/M22)(n - )/n-2 + gl]

X [1 + (n - iT)/-n]-2 exp[-(n - jT)2/2M221. (8)

The second factor in the integrand can be expanded in a bi-
nomial series:

[1 + (n - H)/n]-2 = (-l)-(m + 1)[(n - )/nj]m, (9)
m=0

with the result that the integral in Eq. (8) can be expressed as
the sum of moments of . Equation (8) then become

(R - = BIASI

= E [(2m + 3)!!gl Var(i)/rV - (2m + 1)!!
m=0

X (m + 1)2 Cov(0, n)/n- 3][Var(4)/i 2 ]m, (10)

where we use the notation (2m + 1)!! = 1 X 3 X 5 ... (2m -
1)(2m + 1). For most cases of practical interest Var(h)/V2

< 10-3, and hence the first term (m = 0) in the asymptotic
series of Eq. (10) provides a satisfactory expression for
BIASI,

BIAS1(m = 0) = 3gl Var()/ n -2-2 Cov(0 1, i)/-n3. (11)

This is the expression used by Saleh and Cardoso.9 However,
in order to illustrate the effect of the bias of g(2)(r), we shall
consider correlator run durations as short as 20 r, for which
Var(4)/V2 = 0.04, and we find it necessary to keep terms
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Fig. 1. A, Measured values of g(

2
)(r)-1 are plotted for two values

of the correlator-run duration: NT = 20 r and NT = 1000 rc. A
He-Cd laser beam (10 mW, 441 nm) was scattered at 900 from 0.1-
,um-diameter spheres in ethylene glycol at 23.81C. The average
photocount rate was 10,000 counts/sec. The sample time T was 0.1
msec, and the coherence time T, was 4.65 msec. The solid lines are
drawn by hand through 50 data points. The error bars are 1 stan-
dard deviation. B, The data points are the measured bias of g(2)(r)
for N, = 20 calculated by taking the difference of the two curves in
A. The solid line is the theoretical calculation for BIASI with N, =
20 keeping terms through m = 4 in Eq. (10). The dashed line repre-
sents the term for m = 0 only; see Eq. (11).

through m = 4 in Eq. (10) in order to obtain an accuracy of
1%.

In the case of a Lorentzian spectrum and for Nc >> 1 >> y
= T/T, we find the following expressions:

Var )/1i2 = N,-'(1/n + a2 ), (12)

Cov(01, A)/-n3 = N,-lI(2/-n,)[1 + a2 exp(-2y1)]

+ 2a2 + 2a3 (1Y + 1)exp(-2y1)J. (13)

The a's account for integration of scattered light intensity over
the area of the detector. For a point detector, the a's = 1; for
a detector of finite size, 0 < a's < 1. A simple procedure for
determining the spatial-integration factors is presented in
Appendix A. For the experimental results presented in this
paper, a2 = 0.817, a3 = 0.740, and a4 = 0.645.

Using Eqs. (10), (12), and (13), we have calculated BIAS,
for a range of correlator run durations and have plotted the
results for NT = 20,r, in Fig. 1B. Note that the solid line
corresponds to the sum of terms through m = 4 in Eq. (10),
whereas the dashed line corresponds to the m - 0 term only
[Eq. (11)]. In order to check these theoretical predictions, we
scattered the 10-mW beam of a He-Cd laser (X = 441 nm)
from 0.1-Atm-diameter polystyrene latex spheres executing

Brownian motion in ethylene glycol. We measured g(2)(r) at
a photocount rate corresponding to if, = 50 and for correlator
run durations ranging from 20 r, to 20,000 r,. We found that
the measured values of g(2)(T) for NT > 200 -r differed from
those at NT = 20,000 -r by less than 2%. In other words, the
bias of g(2 )(r) was insignificant for NT > 200 r,. The mea-
sured values of g(2 )(r) for NT = 20 -r and NT = 1000 r, are
plotted in Fig. 1A, and the difference of the two curves, which
should be the bias of g1 for NT = 20 -r, is plotted in Fig. B.
The theoretical predictions and measured values are in rea-
sonable agreement.

3. COVARIANCE OF gk AND gl

We now calculate the covariance of two channels of g(
2

)(r)

using a procedure similar to that used in Section 2 to calculate
the bias of RI. Guided again by the central-limit theorem, we
assume that ok, 01, and A have a jointly Gaussian distribu-
tion. Therefore we can write

(gkgl) = (Mk6 /(I)4) = JfJf X (GkG/n4)

X P(Gk, GI, n)dGkdGldn, (14)

where P(Gk, GI, n) = (27r)-3 /2 1MI -1/2 exp(-'/ 2 vtM-lv), v is

the column vector

(Gk - 60
v= (GI - 7),

(n -n

and M is the covariance matrix, i.e.,

Ml = Var(k) = (k -k)2),

M12 = M21 = Cov(Gk, G1) = ((k - -Gk)(l - )),

M13 = M31 = Cov((Ok, i) = ((Ok -Gk)(n - )),

etc., and I M is the determinant of M. The integration over
Gk and G in Eq. (14) is lengthy but straightforward. The
integration over n can be performed in a manner similar to
that of Section 2 by expanding

[1 + (n - 7F)/n-]4 = (-1)'(m + 1)(m + 2)
m=0

X [(m + 3)/6][(n-7)/]m. (15)

The final result of the integration in Eq. (14) is

(gage ) = [(7T)-4 CoV((k, O1) + gkg9]

X a [(2m + 3)!!(2m + 2)/6][Var(A)/ 2 ]m
m=0

+ (Q)-6 Cov(Ok, f1)Cov(Gj, ii)]

m0X [(2m + 5)!!(2m + 2)(2m + 4)/6][Var(A)/n-2Jm
m=0

-(7)-3[gk COV(01, n + CV((Ok, nM91]

X L [(2m + 3)!!(2m + 2)(2m + 4)/6][Var()/ 2]m.
m=0

R. C. Haskell and G. L. Pisciotta
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Fig. 2. Measured values of Var(g1 ) and Cov(gk, RI) are plotted and
compared with the theoretical prediction (solid line) of Eq. (19). A
He-Cd laser beam (441 nm) was scattered at 90° from 0.1-Mim-di-
ameter spheres in water at 25.40C. The sample time T was 5 usec,
and the coherence time was 315 sec. Error bars represent 41
standard deviation. A, B, The average number of counts per coher-
ence time 7ii is 25, resulting in high correlation between channels of
g(2)(r). C and D, E and F, The count rate was successively reduced
so that no = 8 and K, = 1, respectively, with accompanying reductions
in the correlation between channels.

Keeping terms that are second order or lower in deviations of
estimators from their mean values, Eq. (16) reduces to

(901) = ()- 4 COV(Ok, G1) + g + 10gkgl Var(i!)/n2
-4()- 3 [gk Cov(01, ) + Cov(Ok, )g1]. (17)

Continuing to neglect terms of fourth order or higher in de-
viations of estimators from their means, and using the ex-
pression in Eq. (11) for BIASI, we have finally

F
4-

2

-2

COV(gk, g) = (gkgl) - ( (1)
= (k§l) - gkgl - gk BIAS1 - BIASkg
= (7n)-4 COV(k, Al) + 4gkgl Var(ri)/n2

- 2(7F)-3 [gk Cov(01, n) + Cov(Ok, )g1].
(18)

Equation (18) agrees with Eqs. (9)-(11) of Ref. 9. When k =
1, Eq. (18) reduces to Eq. (10) of Ref. 10. In the case of a Lo-
rentzian spectrum and for N >> 1 >> y = T/T, we find for k
< that
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COV(9k,91) = N'-((1/1nin)[1 + a2 exp(-2yl)]5a + (2/n-i)[a2 + 2a3 exp(-2yl)]bk1
+ (2/n-) a2 exp[-2y(l - k)] + 2a3 exp(-2y1)J(1 - 0

+ (2/n)(a 2 - 2a22 + 2a3) exp[-2y(l + k)] + a2
2 [y(l - k) + 1/2] expl-2'y(l - k)

+ 4a4[y(l - k) + 1]exp(-2y1) + (a22 + 2a 4 )[Y(l + k) + /2]exp(-2y(l + k))
+ 41a2

3 - a2a3[Y(l + k) + 2]}exp[-2y(l + k)]).

For a point detector the a's = 1, and Eq. (19) reduces to Eq.
(23) of Ref. 9. Notice that for n << S 1 the first term of Eq.
(19) dominates, and the channels of g(

2
)(r) are uncorrelated.

However, when ni >> 1 the off-diagonal terms of the co-
variance matrix are comparable to the diagonal terms, and the
channels of g(2)(r) are highly correlated. Also note that when
c >> if > 1 an increase in the photocount rate (increase in f

and nT) does little to improve the statistical accuracy of g(2)(r);
only an increase in the correlator run duration (increase in N,)
enhances the accuracy.

In order to compare the theoretical predictions of Eq. (19)
with measured values, we scattered the beam of a He-Cd laser
(X = 441 nm) from 0.1-Am spheres in water. The results are
presented in Fig. 2. Note that the decrease in Cov(gk, RI) as
n is reduced from 25 to 1. The agreement between the the-
oretical predictions and measured values is fair, although the
measured values tend to exceed the predictions slightly.
Extraneous effects such as laser-output fluctuations have not
been included in the theoretical calculations.

4. PROCEDURE FOR THE ANALYSIS OF
CORRELATED DATA

A typical PCS data-analysis procedure employs a least-
squares fit of g(

2
)(T) to some expected functional form f(r).

Depending on the choice of f(r), a linear or a nonlinear tech-
nique will be used to minimize x2 :

X2 = vtM'lv, (20)

where v is the column vector

V (g - )

(91 - f)

_(9L fL )_

and M is the L X L covariance matrix Mkl = ((k () )(RI
- ))). If the channels of g( 2 )(r) are uncorrelated, then the
covariance matrix M is diagonal, and x2 reduces to

L
X2 = (gj- f) 2 /yl2 , (21)

1=1

where the a, 2 are the variances M11 of the channels of g(2 ) (T).

PCS practitioners typically perform a number of correlator
runs and calculate sample variances for the aI2. If these
measured values of uj2 are used to calculate x2 according to
Eq. (21), and if the channels are unexpectedly (positively)
correlated, then clearly the minimum value of X2/DF will be
erroneously low since many significant (positive) terms in Eq.
(20) have been omitted. A simple way to correct this proce-
dure is to use measured values not only for the variances a 2

= M11 but also for the covariances Mkl (k 1). The matrix
M is then inverted and used in the complete expression for x2 ,

Eq. (20), and the correct minimum value for X2/DF is then

obtained. An alternative procedure would be to use the
theoretical predictions of Eq. (19) for Mki; after all, we dem-
onstrated in Section 3 that the predictions of Eq. (19) are re-
liable. We have tried both procedures and have found that
the time required to measure the Mkl with sufficient statistical
accuracy to use M-l as weighting in Eq. (20) is prohibitive. In
order to measure the spectral parameter r--1 to some desired
accuracy, the measurement time using theoretical values for
MkI is far less (roughly a factor of 10) than the time required
to employ measured values. We therefore suggest the fol-
lowing outline for a data analysis procedure: (1) Use Eq. (19)
to evaluate the covariance matrix, (2) invert the covariance
matrix, and (3) use a linear- or a nonlinear-regression tech-
nique to minimize x2 given by Eq. (20).

We shall now examine the performance of a data-analysis
procedure that utilizes the theoretical expression for the Mkl.
The data to be analyzed consist of 10 measurements (corre-
lator runs) of g(

2
)(r) at each of three photocount rates corre-

sponding to n-c = 1, 8, 25. The beam from a He-Cd laser (X
= 441 nm) was scattered from 0.109 ,um-diameter spheres in
water at 25.4°C, and the photocount rate of light scattered at
an angle of 900 was fed into a 128-channel 4-bit correlator
(Langley-Ford Instruments Model LFI-128). In all mea-
surements reported in this paper, the correlator yielded the
full (not scaled) photocount-correlation function. Data from
the correlator were transferred to a Digital Equipment Cor-
poration LSI-11 computer for analysis. The sample time T
was 5 sec, and the coherence time was approximately 315
,usec. Ten points from each correlator run (r = T; = 1, 8,
15, 22, .. ., 64) were chosen for the fitting procedure. The
fitting function was

f = 1 + c0 exp[-2(c 1l + C212 + c313 )], (22)

where co is the amplitude of g(
2

)(r) and is determined in these
measurements primarily by the detector area (co = 0.84), cl
is r, 1 in units of inverse sample times, and the significance
of c2 and C3 are discussed by Koppel.8 The elements of the
10 X 10 covariance matrix M were calculated using Eq. (19),
the matrix was inverted, and x2 was calculated using Eq. (20).
A common nonlinear-regression technique described by Be-
vington'3 (program CURFIT) was used to minimize x2.

The results of the data analysis at each value of 7ic are
presented in Table 1. For each value of Hc three methods of
analysis were used. First, the presumably "correct" procedure
described in the previous paragraph was used to fit each of the
10 correlator runs, and the resulting values for X2 /DF and
,rcj(c,) were averaged and are presented in Table 1. The
uncertainty listed for rc-1 is the sample standard deviation
of the mean for the 10 correlator runs. An F test13 was used
to determine whether the inclusion of each parameter in the
fitting function, Eq. (22), was justified. The term "linear"
in Table 1 means that only co and the coefficient c1 of the
linear term in the exponent of Eq. (22) were kept. Values for
the average number of photocounts recorded in a coherence

(19)

I
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Table 1. Data-Analysis Results
nTc Nc Method X2/DF F Test TC-1 (sec'1)

25 3.2 X 103 correct 1.17 10 of 10 linear 3176 ± 53 (1.7%)
25 3.2 X 103 naive 0.20 7 of 10 linear 3120 ± 57 (1.8%)
25 3.2 X 103 mixed 1.20 10 of 10 linear 3112 ± 43 (1.4%)

8 6.3 X 103 correct 1.07 10 of 10 linear 3140 1 53 (1.7%)
8 6.3 X 103 naive 0.59 10 of 10 linear 3132 ± 49 (1.6%)
8 6.3 X 103 mixed 1.15 10 of 10 linear 3126 42 (1.3%)

1 1.6 X 105 correct 0.86 10 of 10 linear 3i72 a 35 (1.1%)
1 1.6 X 1 naive 0.83 10 of 10 linear 3172 35 (1.1%)
1 1.6 X 105 mixed 0.89 10 of 10 linear 3172 i 40 (1.3%)

time (Q,) and the number of coherence times in each correlator
run duration (Nc) are also listed in Table 1.

A second procedure was used for data analysis and is labeled
"naive" in Table 1. In this procedure only the variances a 2

were evaluated using Eq. (19), and x2 was calculated according
to Eq; (21). It is not surprising to see correlated data (QT =
25) yield an erroneously low value for X2/DF. Consequently,
the F test results suggest that 3 of the 10 fits should keep the
coefficient c2 of the quadratic term in the exponent of Eq. (22).
The results of the naive and correct procedures are nearly
identical for uncorrelated data (nT = 1).

A third procedure used is labeled "mixed" in Table 1. For
each value of nT there are 10 correlator runs, and from each
run 10 channels were selected for fitting. From these 100
correlation function channels it is possible to form 10 mixed
correlation functions, which have one channel from each of
the 10 original correlator runs. When E, = 25 the 10 original
correlator runs represent 10 statistically independent mea-
surements of g(

2
)(), each measurement consisting of 10 cor-

related channels. However, each mixed correlation function
consists of 10 uncorrelated channels, although different mixed
correlation functions are not statistically independent. In
the "mixed" data-analysis procedure we used the theoretical
predictions for the variances al 2 = M11 and calculated x2 ac-
cording to Eq. (21) using the mixed uncorrelated channels for
the g1. This procedure should be valid, as is borne out by the
results listed in Table 1. The only problem occurs in aver-
aging the results of the 10 fits to the mixed correlation func-
tions, since it is not clear how to form a sample variance for
T-l from the 10 statistically dependent values. We have
ignored this problem for the purposes of Table 1 and have
formed the sample variance assuming the 10 values are un-
correlated. It is satisfying to see that the "correct" and
"mixed" procedures yield similar results.

The expected value of r,-1 can be calculated using nominal
values for the temperature and viscosity of the water and the
diameter of the spheres. Using the room temperature of 25.4
i 1.00 C, a corresponding water viscosity of 0.882 ± 0.020
centipoise, a refractive index for water of 1.3328, the sphere
diameter of 0.1090 ± 0.0027 um (Dow Chemical Company),
and a scattering angle of 900, a value for rj' is found of 3279
:1 75 sec'1. This expected value for -r- 1 is in reasonable
agreement with the values listed in Table 1.

The observed uncertainties in the measured values of r- 1

can be compared with theoretical predictions. Jakeman et
al. 10 estimate the uncertainty in rc 1 when the correlation
function channels are uncorrelated [see their Eq. (36)]. Saleh
and Cardoso9 estimate the uncertainty in r,- 1 in the case of

Table 2. Comparison of Estimated and Observed
Uncertainties in Tc'

Estimated Estimated
ifc Nc Observed (Correlated) (Uncorrelated)

25 3.2 X 103 1.7 1.4 1.1
8 6.3 X 103 1.7 1.4 1.2
1 1.6 X 105 1.1 1.4 1.4

correlated channels [see their Eq. (46)]. Following these two
references, we have calculated the expected uncertainties in

'e-1 for the three experimental situations treated in Table 1.
We have used Eq. (19) to calculate the covariance of channels
and have calculated the expected uncertainty in r-jl corre-
sponding to the sample standard deviation of the mean of 10
correlator runs. We compare the expected and observed
uncertainties in Table 2. Note that, when channel correlation
is appreciable, the estimated uncertainty is greater when
correlation is taken into account and that these estimates
agree somewhat better with the observed uncertainties then
do the estimates that do not account for channel correla-
tion.

5. SUMMARY AND DISCUSSION

We have calculated the statistical bias and channel correlation
of g(

2
)(T) for the case of a stationary, cross-spectrally pure,

Gaussian scattered field with a Lorentzian spectrum. Our
treatment is valid for a detector area of arbitrary extent but
assumes that the correlator run duration is much longer than
a coherence time that is much longer than a sample time.

Experimental results confirm our theoretical calculations,
which predict that the bias of g(2)(r) becomes significant when
the correlator run duration is less than approximately 200
coherence times. This result holds when the average counts
per coherence time (QT,) is greater than or equal to 1. When
H, 1 the bias is appreciable for even longer correlator run
durations. Intuitively, the uncertainty in the average counts
per sample time () becomes sufficiently large for short cor-
relator run durations that g(2)(-) (which is normalized by 7i2 )

becomes biased. The bias must be taken into account in order
to deduce an undistorted spectrum for the scattered light.

Experimental results also confirm our theoretical calcula-
tions of the channel correlation of g(2)(r). We observe a
transition from highly correlated channels when n-, = 25 to
uncorrelated channels when if = 1. Channel correlation can
be explained intuitively in the following way. When 7i is
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large, a burst of. photocounts (e.g., 25 to 100) lasting ap-
proximately a coherence time contributes to the values of
many channels of g(2)('r) [see Eq. (1)]. Since this burst of
photocounts corresponds to a single intensity fluctuation (a
single statistical event), it is clear that the final values of the
channels of g(2 )(T) are formed from many of the same statis-
tical events, and hence the channels are correlated. However,
when i, << 1 a burst of photocounts rarely contains more than
two counts, which can only contribute to the value of one
channel of g(2)(r). Hence the values of different channels are
determined by different statistical events, and the channels
are uncorrelated.

In the calculation of channel correlation we have accounted
for the integration of scattered light intensity over a detector
area of arbitrary extent. As a result, the theoretical calcula-
tions predict measured channel correlation for common ex-
perimental situations with sufficient accuracy to enable pre-
dicted values to be used as weighting in a least-squares data-
analysis procedure. The use of predicted values avoids
time-consuming measurements of channel correlation. Our
analysis of measured values of g( 2 )(T) has demonstrated that
reliable values of channel correlation must be used in regres-
sion procedures in order to evaluate meaningfully the assumed
fitting function and the extent of polydispersity of the scat-
terers.

APPENDIX A: THE SPATIAL-INTEGRATION
FACTORS

The effect of a finite detector area on the photocounting sta-
tistics of a stationary, cross-spectrally pure, Gaussian field has
been discussed by Cantrell and Fields1 4 and reviewed by
Saleh.15 We shall simply relate the spatial-integration factors
appearing in Equations (12)-(14) to the first four moments
of the number of photocounts recorded in a sample time: (n),
(n2), (n3), and (n4). These moments are easily measured.
Many commercially available correlators measure the pho-
tocount-distribution function P(n) from which the moments
can be calculated. We measured the moments with a scaler
interfaced to a computer. When the sample time is much less
than the coherence time (,y = T/TC << 1), we find that

a2 = ((n2) - (n))/(n)2 - 1,

a3 = (1/2)[((n) - 3(n2) + 2(n))/(n)3 - 1 - 3a2],

a4 = (1/6)[((n) - 6(n3) + 11(n2) -6(n))/(n)4
- 1 - 6a2 - 3a2

2
- 8a3].

It should be noted that the spatial factors (a's) depend only
on the size of the detector and the intensity distribution of the
scattering volume. For a point detector a2 = a3 = a4 = 1; for

a detector area of finite extent 0 < a's < 1. For the experi-
mental arrangement employed in our measurements we found
that a2 = 0.817, a3 = 0.740, and a4 = 0.645.
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