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Abstract

The Conformal Center of a Triangle or a Quadrilateral

by Andrew Iannaccone

May 2003

Every triangle has a unique point, called the conformal center, from which a ran-

dom (Brownian motion) path is equally likely to first exit the triangle through each

of its three sides. We use concepts from complex analysis, including harmonic

measure and the Schwarz-Christoffel map, to locate this point. We could not ob-

tain an elementary closed-form expression for the conformal center, but we show

some series expressions for its coordinates. These expressions yield some new hy-

pergeometric series identities.

Using Maple in conjunction with a homemade Java program, we numerically

evaluated these series expressions and compared the conformal center to the known

geometric triangle centers. Although the conformal center does not exactly coin-

cide with any of these other centers, it appears to always lie very close to the Sec-

ond Morley point. We empirically quantify the distance between these points in

two different ways.

In addition to triangles, certain other special polygons and circles also have

conformal centers. We discuss how to determine whether such a center exists, and

where it will be found.
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Chapter 1

Introduction

When a particle moves according to Brownian motion, its direction changes

randomly at every instant. If we release such a particle inside a polygon, it will

eventually exit the polygon. For each of the polygon’s sides, we can determine the

probability that the particle will first exit the polygon through that side. This prob-

ability is a function of the particle’s starting point. For certain special polygons,

there is a unique starting point, which we call the conformal center, from which

the particle is equally likely to exit through any of the sides of the polygon. We

formalize this definition in Chapter 2.

In Chapter 3, we show that this probability function is harmonic. In fact, it is

given by the well-studied harmonic measure function. This equivalence allows our

problem to be studied in the context of complex analysis. We show some immedi-

ate results of this equivalence in Chapter 4.

In Chapter 5, we introduce the Schwarz-Christoffel Transformation, a confor-

mal mapping that maps the upper half of the complex plane to a polygon. Because

conformal maps preserve harmonic functions, we can use the Schwarz-Christoffel

Transformation to find the conformal center of a polygon. First we find the con-

formal center in the half-plane, then we map it to the desired polygon using the

appropriate Schwarz-Christoffel Transformation. This allows us to determine the

existence and uniqueness of the conformal center, and gives an integral expression

for the conformal center in a polygon.
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This much about the conformal center was known before we began our re-

search. During Summer of 2002, we began analyzing the conformal center in tri-

angles. In Chapter 6, we investigate whether the conformal center of a triangle

coincides with any known triangle center. We can rule out many of the known

centers by considering limiting cases, such as the half-strip obtained by allowing

one vertex of an isosceles triangle to go to infinity. Unfortunately, this is not a

reasonable way to compare the conformal center to the more than 1000 known

geometric triangle centers.

In Chapter 7, we explain how to reduce the integral expression for the confor-

mal center of a triangle to a quickly-converging series. We show that the conformal

center fits the definition of a triangle center, and find a series expression for its tri-

angle function.

Using this series, we wrote a Java program to plot the conformal center for

any given triangle (Chapter 8). This program can be used, in conjunction with an

online index of triangle centers, to show that the conformal center does not exactly

coincide with any known geometric triangle center. It does, however, lie very close

to the Second Morley point. This marks the end of the work we did during Summer

2002. During the academic year, 2002-2003, we formulated various descriptions of

the closeness of these two points. We present these in Chapter 9.

We also consider the conformal center in polygons other than triangles. In

Chapter 10, we establish a criterion for determining whether a general polygon

has a conformal center. In Chapter 11, we specifically consider quadrilaterals. We

prove that every symmetric quadrilateral has a conformal center, and find a series

expression for its coordinates.

In Chapter 12, we consider the conformal center of a circle. We divide its cir-

cumference into arc segments and define the conformal center to be a point from

which a Brownian path is equally likely to first exit the circle through any of these

arcs. When we divide the circumference with exactly three points, the circle has
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a conformal center that coincides with the First Isodynamic center of the trian-

gle with vertices at these points. We also show a simple criterion for determining

whether a circle has a conformal center when exactly four points divide its circum-

ference.

Finally, in Chapter 13, we show an application of this work to evaluating hyper-

geometric series. In the conclusion, we summarize the paper, give some resources

for hypergeometric series, and discuss a generalization of the conformal center.



Chapter 2

Definitions

A Brownian-motion path is obtained by taking infinitesimal steps in random

directions. We can approximate this motion as follows. First, choose some step

size s > 0. Now repeatedly choose a random angle from [0, 2π] with uniform

probability, and move a distance s in the direction of the angle chosen. The path

obtained as we make the step size smaller and smaller (s → 0) is a Brownian path

[4].

Consider a Brownian path that starts at a point on the interior of a polygon.

Over time, the probability that it has exited the polygon goes to one [4]. Since the

path is certain to exit the polygon eventually, let us consider which side it exits

through first. If the starting point is near a particular side, the path is more likely

to exit through that side than if the starting point is far away. For some starting

points, a Brownian path may be equally likely to exit from any of the sides of the

polygon. Formally, we define the conformal center as follows.

Definition. Let q be a point on the interior of a polygon P. Then q is the conformal center

of P if a Brownian-motion path starting at q is equally likely to first exit P from any of its

sides.

Notice that not every polygon has a conformal center. A square has a conformal

center, the center point, but a non-square rectangle does not, as shown in Fig. 2.1.

Here the lines L1 and L2 divide the rectangle in half. If the Brownian path starts

above the line L1, it will be more likely to first exit through side A than through

side C, and vice-versa. Consequently, the conformal center, if it exists, must lie on



5

Figure 2.1: A non-square rectangle has no conformal center.

the line L1. Similarly, it must lie on the line L2. Thus, only q, which lies on both

of these lines, can possibly be a conformal center. However, a path from q is more

likely to first exit through A or C than through B or D. Consequently, a path from

q is not equally likely to first exit through any of the four sides. We conclude that

this rectangle does not have a conformal center. This argument can be formalized

using harmonic measure, which we introduce in the next chapter.



Chapter 3

Brownian Motion and Harmonic Measure

In an n-sided polygon, a Brownian path starting at the conformal center has a

1/n probability of first exiting through any of the sides. To find this point, it would

be helpful to determine the probability that a path from a given point z exits first

through a given side S. Fortunately, this probability is completely determined by

harmonic measure, a concept from complex analysis. This result, shown by Shizuo

Kakutani [6], makes our analysis of the conformal center much easier. We can

motivate the result as follows.

Suppose a polygon P and one of its sides S is given. Let us place the polygon

in the complex plane. For each interior point z, we denote the probability that a

Brownian path from z exits first through S as the “probability function,” p(z).

Figure 3.1: The probability p(z) is the average of the probabilities p(x) over the circumference of the
circle.
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If we draw a circle around the point z, as in Fig. 3.1, then a Brownian path

from z is equally likely to first exit this circle through any arc of the circumference

of some fixed length. It seems plausible, therefore, that p(z) is the average of p(x)

over the points x on the circumference of the circle. Formally, for a circle with

radius r,

p(z) =
1

2π

∫ 2π

0

p(z + reiθ)dθ

This Mean Value Property of the function p holds for all choices of z and r where

the circle generated is entirely contained within the polygon. As the reader may

recall from complex analysis, this is a property of harmonic functions [8]. In fact,

it is a defining property of harmonic functions [1]. We therefore conclude that p is

a harmonic function. Note that any path starting at a point on S necessarily first

exits though S, so p = 1 on S. Similarly, p = 0 at all other boundary points ∂Ω \ S.

Fortunately, the function p is actually a better-known function in disguise, namely

the harmonic measure function. Recall that the Dirichlet problem attempts to find a

harmonic function on a complex domain Ω for a given set of values on the bound-

ary ∂Ω. The standard method for solving this problem is the Perron process, which

yields a harmonic function with the correct boundary values, except possibly at

very small set of boundary points (a set of capacity zero) [1]. In the specific case

with boundary values 1 on some subset E ⊂ ∂Ω and 0 on ∂Ω \ E, the harmonic

measure at z, denoted ω(z, E, Ω), is the value of this function at z. If we fix Ω and

E, then we can treat the harmonic measure as a harmonic function defined at the

points z ∈ Ω.

Kakutani showed that the harmonic function obtained by the Perron process

with these boundary values equals the probability that a Brownian motion path

first exits ∂Ω through E on all interior points. That is, the harmonic measure is

equal to our Brownian probability p at all interior points of Ω.
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Figure 3.2: The harmonic measure is 1 on E, 0 on ∂Ω \ E, and is harmonic on the interior of Ω.

Theorem (Kakutani, 1944). The probability that a Brownian path from z will first exit

Ω through E is the harmonic measure ω(z, E, Ω) [6].

This fact allows us to turn the problem of finding the conformal center into a set

of Dirichlet problems with boundary values 0 and 1. Fortunately, we often do not

need to use the Perron process to find interior values of the harmonic measure. The

boundary values of a bounded harmonic function uniquely determine the interior

values of that function, so any way we calculate this function will yield the same

result at the Perron process. For the domains we are interested in, there are fairly

simple ways to calculate such a harmonic function.

To illustrate this technique, suppose we wish to find the conformal center of a

given triangle. We place the triangle in the complex plane, and label the interior Ω

and the three sides S1, S2, and S3. The conformal center, if it exists, is a point q ∈ Ω

where all three harmonic measures are equal:

ω(q, S1, Ω) = ω(q, S2, Ω) = ω(q, S3, Ω) =
1

3
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For an arbitrary n-sided polygon, the condition satisfied by the conformal cen-

ter is:

ω(q, Sk, Ω) =
1

n

for k = 1, 2, . . . , n. Thus, to find the conformal center, we need to find a point where

these conditions hold. Since we have reduced our Brownian motion problem to a

set of Dirichlet problems, we will be able to employ powerful tools from complex

analysis.



Chapter 4

Some Immediate Results

Even before applying more sophisticated tools from complex analysis, we can

already gain an intuitive sense of where a polygon’s conformal center is. For exam-

ple, suppose our polygon is a triangle, and and assume for now that the triangle

has a unique conformal center (we will prove this formally later).

In general, we expect the harmonic measure for any side to be close to 1 near

that side, and close to 0 near to the other sides. For a long pointy triangle, as in the

figure, we therefore expect the harmonic measure of the short side to drop quickly

as z moves away from it. The points where this harmonic measure is 1/3 must

therefore be fairly close to the short side. That is, the conformal center should be

nearer x than y, as in Fig. 4.1. Similarly, for a flat triangle with one long side, the

Figure 4.1: The conformal center of a pointy triangle will be close to the short side S, nearer x than
y.

conformal center will be close to the other sides, as in Fig. 4.2.

These intuitive arguments could have been made using only the original Brownian-

motion definition of the conformal center. We can make more sophisticated argu-

ments using harmonic measure.
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Figure 4.2: In a triangle with one long side S, the conformal center will be closer to the other sides,
nearer x than y.

Theorem. Suppose a line L bisects an angle of a triangle at vertex C, as in Fig. 4.3. If

the triangle is not isosceles, then L divides the side opposite C into two segments. The

conformal center lies on the side of the smaller segment.

Proof. Let a triangle be given, with an angle bisected by a line L, as shown in Fig.

4.3-1, and segment A shorter than B. Define ω1 to be the harmonic function on the

Starfleet-symbol shaped region, with boundary values −1, 0, 1, as shown in Fig.

4.3-2. By symmetry, ω1 = 0 on the dashed line, and by the Maximum Principle,

ω1 < 0 on segment A. Next, let ω2 be the harmonic function with boundary values

equal to zero on all parts of the boundary except on A, where ω2 = −ω1, as in Fig.

4.3-3. Notice that ω2 > 0 along the dashed line. Finally, let ω = ω1 + ω2. Since ω1

and ω2 are harmonic, so is ω. By summing the boundary values for ω1 and ω2, we

conclude that ω is the solution to the boundary value problem with the values in

Fig. 4.3-4. Since ω > 0 along the dashed line, Brownian paths from such points

are more likely to first exit by the right side than by the left side. The conformal

center must be equally likely to first exit through either of these sides, so it must

lie within the shaded region to the left of the dashed line, as desired.

Another harmonic measure argument shows the barycentric coordinates of the

conformal center are bounded above by the value, 2/3. Recall that the barycentric
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Figure 4.3: Illustration of proof

coordinates express a point inside a triangle as a weighted average of the triangle’s

vertices. That is, if a point z can be expressed as the weighted average of the three

points xi,

z = ax1 + bx2 + cx3,

with a, b, c ∈ R and a + b + c = 1, then we say that z has barycentric coordinates

(a : b : c) with respect to the triangle x1x2x3. Notice that z is in the interior of the

triangle if and only if a, b, c > 0.
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Figure 4.4: Illustration of Proof.

Theorem. The barycentric coordinates of the conformal center are all less than 2/3.

Proof. Let a triangle with points A, B, C be given, oriented in the complex plane

with side AB along on the real axis. If we normalize the triangle so that vertex C

has imaginary part 1, then the corresponding barycentric coordinate of any point

C is the imaginary part of that point. Define a harmonic function ω1 on the infinite

strip with boundary values 0 above and 1 below, as shown in Fig. 4.4-1. Solving the

Dirichlet problem gives us ω1(z) = Im(z). Therefore, ω1 = 1/3 on the dashed line

with imaginary part 2/3, and has smaller values above and greater values below.

Define another harmonic function ω2, with ω2 = 0 on side AB and ω2 = −ω1 on

the other sides of the triangle, as in Fig. 4.4-2. Again by the Maximum Principle,

ω2 < 0 along the dashed line. Finally, set

ω = ω1 + ω2,



14

so that ω is harmonic, and has the boundary values shown in Fig. 4.4-3. Notice

that ω < 1/3 along the dashed line, so ω = 1/3 only at points below this line. Since

the conformal center q has ω(q) = 1/3, it must lie below the dashed line. Thus, its

barycentric coordinate corresponding to vertex C is less than 2/3. We can similarly

show the other two barycentric coordinates are also less than 2/3.



Chapter 5

The Schwarz-Christoffel Transformation

These immediate results are nice, but we can be more precise by making use

of a powerful complex analysis tool, the Schwarz-Christoffel Transformation. For

any given polygon, we can create a Schwarz-Christoffel Transformation from the

upper half of the complex plane to the polygon, as in the example shown in the

figure:

Figure 5.1: Schwarz-Christoffel Transformation f maps the upper half-plane to an arbitrary poly-
gon.

We create this map in the following manner, as described in the appendix of

Saff and Snider [8]:

1. Enumerate n vertices of the polygon as vi in counterclockwise order.

2. Enumerate the corresponding interior angles πai.
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3. Select n− 1 distinct points on the real line xi, so that xi < xi+1.

4. Define the Schwarz-Christoffel Transformation to be

f(z) =

∫ z

0

n−1∏
i=1

(ζ − xi)
ai−1dζ.

This function maps each xi to the corresponding vertex of the polygon vi with

interior angle ai. The point at infinity maps to the last vertex, vn. Only certain

selections of points xi will suffice, but there always exists a possible selection [8].

The Schwarz-Christoffel Transformation is also conformal [8]. Recall that a com-

plex map is conformal if it is analytic with non-zero derivative throughout its do-

main. We also know that harmonic functions are invariant under conformal map-

ping. Formally

Theorem. If ω : T → R is a harmonic function, and g : S → T is a conformal map, then

ω ◦ g : S → R is also a harmonic function [1].

By this theorem, the Schwarz-Christoffel Transformation f , and its inverse f−1,

preserve harmonic measure. Thus, for any side S of a polygon Ω, we have

ω(z, S, Ω) = ω(f−1(z), f−1(S), H+),

at all points z ∈ Ω (Here H+ indicates the upper half of the complex plane). Con-

sequently, if wish to find the the harmonic measure in a polygon, it suffices to find

the values in the half-plane, then apply the appropriate Schwarz-Christoffel Trans-

formation.

To demonstrate this technique, let us suppose a triangle is given. After selecting

one side S, we wish to find the points in the triangle where the harmonic measure

of S is 1/3. For clarity, denote the values of the harmonic measure ω(z, S, Ω) by the

shorter notation ω(z). Note that ω(z) is a harmonic function of z. We now map the

triangle to the half-plane using an inverse Schwarz-Christoffel Transformation, as

in Fig. 5.2.
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Figure 5.2: The inverse Schwarz-Christoffel Transformation f−1 maps a triangle to the half-plane.

We similarly define the function ω∗(x) according to the harmonic measure in

the half-plane, so that

ω∗(x) = ω
(
x, f−1(S), H+

)
.

Because f preserves ω, we have

ω∗
(
f−1(z)

)
= ω(z)

for all points z inside the triangle. Now ω∗(x) is harmonic, so finding its values at

all points in the half-plane is a simple Dirichlet problem. We find that ω∗(x) = t on

the points x2 − reiπt for all r > 0 [8]. Thus, ω∗(x) = 1/3 on the line L in Fig. 5.3.

If we repeat this analysis for side T , we find ω (x, f−1(T ), H+) = 1/3 for points x

on the line M. Thus, at the point q, both these harmonic measures equal 1/3. Since

a Brownian path from any point x ∈ H+ must eventually cross the real axis with

probability 1,

ω
(
x, f−1(S), H+

)
+ ω

(
x, f−1(T ), H+

)
+ ω

(
x, f−1(U), H+

)
= 1

Consequently, we have

ω
(
q, f−1(U), H+

)
= 1− 1/3− 1/3 = 1/3.
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Figure 5.3: The ω∗ = 1/3 on the line L.

Thus, all three harmonic measures equal 1/3 at q in the half-plane. Since f pre-

serves harmonic functions, the harmonic measures of sides S, T , and U all equal

1/3 at f(q), so f(q) is the conformal center of the triangle Ω.

Theorem. Every triangle has a conformal center.

Proof. Let a triangle v1v2v3 be given, as in Fig. 5.4. For x1 = −1, x2 = 1, there

exists a Schwarz-Christoffel Transformation f with f(x1) = v1, f(x2) = v2, and

f(∞) = v3. According to the previous analysis, for q =
√

3i,

ω
(
q, f−1(S), H+

)
= ω

(
q, f−1(T ), H+

)
= ω

(
q, f−1(U), H+

)
= 1/3.

Because f is conformal, it preserves harmonic measure, so that f(q) = f(
√

3i) is

the conformal center of v1v2v3.

Specifically, for a triangle with angles πa, πb, πc, we can choose x1 = −1, x2 = 1,

and use the following Schwarz-Christoffel Transformation:

f(z) =

∫ z

0

(ζ + 1)a−1(ζ − 1)b−1dζ
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Figure 5.4: We can map the conformal center from the half-plane to locate it within the triangle.

As shown in the proof, the conformal center of the triangle is located at

f(
√

3i) =

∫ √
3i

0

(ζ + 1)a−1(ζ − 1)b−1dζ.

As we will show in a later chapter, similar analysis can be performed for poly-

gons other than triangles. However, for an arbitrary n-sided polygon, there is no

analogous guarantee to our claim that the lines L and M intersect, as in Fig. 5.3. For

a quadrilateral, there are three such lines. Only for certain choices of xi will these

lines all intersect at the conformal center. Our procedure for creating a Schwarz-

Christoffel Transformation does not give us complete freedom to choose the points

xi, so there may not be a transformation that maps the desired points to the desired

vertices. Consequently, a polygon with more than three sides does not generally

have a conformal center.



Chapter 6

Geometric Triangle Centers

We have now shown that every triangle has a conformal center. This much was

known before we began our work. However, before our research, the conformal

center had only appeared as an incidental point in the discussion of conformal

maps, never as the focus of attention as a triangle center. We would like to know

how it relates to known triangle centers. A vast amount of work has been done in

this field. A website called the “Encyclopedia of Triangle Centers,” maintained by

Clark Kimberling at the University of Evansville, lists 1114 known geometric tri-

angle centers [7]. One natural question is, “Is the conformal center merely another

of these known triangle center in disguise?”

Without knowing the precise location of the conformal center, this question is

difficult to answer. Fortunately, we can exactly determine the location of the con-

formal center in two special limiting cases. By comparing its behavior to that of

other triangle centers, we can distinguish the conformal center from many known

triangle centers.

The first extremal case we consider is a very flat isosceles triangle, shown in

Fig. 6.1. As we “squish” an isosceles triangle, making it infinitely flat and long, the

barycentric coordinates of the conformal center (corresponding to vertices z1, z2, z3)

approach

C =

(
2

3
:
1

6
:
1

6

)
.

The barycenter, on the other hand, remains at

B =

(
1

3
:
1

3
:
1

3

)
,
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as shown in Fig. 6.1. We therefore conclude that the conformal center is distinct

from the barycenter, since they diverge in this limiting case.

Figure 6.1: In a flat isosceles triangle, the barycenter B converges to a different point than the
conformal center C.

The other limiting case is an infinitely tall isosceles triangle. As the height of the

triangle increases, its interior approaches a semi-infinite strip, and the conformal

center converges to a point. To find this point, note that the inverse sine function

maps the half-plane to the semi-infinite strip, as shown: Since the sine function is

Figure 6.2: The inverse sine function maps the half-plane to the semi-infinite strip.

conformal, it preserves the conformal center. Therefore, the conformal center of
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the this strip is located at

sin−1
(√

3i
)

= i sinh−1
(√

3
)

= i ln
(
2 +

√
3
)

This extremal case can also be used to rule out various geometric centers. For

example, the barycenter diverges to infinity in the half-strip, so it clearly can’t be

the conformal center. The incenter occurs at the intersection of the angle bisectors,

so it lies at πi/2, and it also cannot be the conformal center. This technique is

effective, but checking each triangle center individually is very time consuming.

Fortunately, we can use triangle functions along with a tool provided by the

Encyclopedia of Triangle Centers to check all 1114 known centers at once [7]. First

we need a few definitions.

Definition. A triangle with angles (πa, πb, πc) is said to have normalized angles (a, b, c).

Notice that a + b + c = 1 [7].

Definition. If a point p and triangle ABC are given, and p lies a distance x from the side

BC, y from the side CA, and z from the side AB, then the trilinear coordinates of p can

be written as (kx : ky : kz) for any non-zero constant k [7].

Definition. A point z is a triangle center if there exists some triangle function f(x, y, z)

defined for x, y, z ∈ [0, 1] with x+y+z = 1, such that in a triangle with normalized angles

(a, b, c), the barycentric coordinates of z are (f(a, b, c) : f(b, c, a) : f(c, a, b)) [7].

Actually, Kimberling’s definition requires that f be a function of the side lengths.

Our definition is equivalent, and better for our purposes. To illustrate this defini-

tion, notice that the barycenter is a triangle center with triangle function f(a, b, c) =

1/3 for all values of a, b, c. The incenter has f(a, b, c) = k csc a, where k is a normal-

izing constant. Notice that each coordinate of the incenter is proportional to the

length of the opposite side. In Chapter 7 we determine the triangle function for the

conformal center.



Chapter 7

Triangle Function of the Conformal Center

In this chapter we show how to convert the integral expression for the confor-

mal center derived in Chapter 5 into a triangle function f(a, b, c). This analysis is

taken from our forthcoming paper, The Conformal Center of a Triangle [5], so we give

only an outline of the steps here.

We begin with the integral expression for the conformal center, from Chapter 5:

f(
√

3i) =

∫ √
3i

0

(ζ + 1)a−1(ζ − 1)b−1dζ

By changing variables by ζ = tan θ, we obtain:

f(
√

3i) = ieπi(b−1)

∫ π/3

0

ei(a−b)θ cosc−1 θdθ

Now barycentric coordinates can be expressed as a ratio of areas. That is, the co-

ordinate of the point P corresponding to vertex A in Fig. 7.1 is the ratio Area(PBC)
Area(ABC)

[7]. Using this technique, and the previous equation, we obtain the following tri-

angle function f(a, b, c) for the conformal center. Recall that this function gives the

barycentric coordinates of the conformal center in terms of the normalized angles

a, b, c.

f(a, b, c) =
2aΓ(1− b)Γ(1− c)

πΓ(a)

∫ π/3

0

cos ((b− c)θ) cosa−1 θdθ

By expanding the cosines into exponentials and applying the binomial theorem,

we obtain a convergent series in the integrand. We evaluate the integral for each

term, which turns our integral expression into the following summation.

f(a, b, c) =
Γ(1− b)Γ(1− c)

πΓ(a)

∞∑
m=0

(
a− 1

m

)(
sin
(

2π
3

(m + b)
)

m + b

)
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Figure 7.1: The barycentric coordinate of P for vertex A is Area(PBC)
Area(ABC) .

After further rearrangement, we discover the following recurrence relation:

f(a, b, c) =
B(1− b, 1− c)

π
sin
(π

3
(b− c− 1)

)
+ f(a + 1, b− 1, c)

Using the fact that f(a, b, c) = f(a, c, b), we can obtain a similar result. By combin-

ing the two expressions, we get a recurrence for f(a, b, c) in terms of f(a + 2, b −

1, c − 1). It can be shown that f(a, b, c) converges to 1 as a → ∞ and b, c → −∞.

Therefore, by repeatedly applying this recurrence and telescoping, we obtain

f(a, b, c) = 1 +

(
∞∑

k=0

B(1− b + k, 1− c + k)

1 + a + 2k

)(
b− c

2π

)
sin
(π

3
(b− c)

)
−

(
∞∑

k=0

B(1− b + k, 1− c + k)

)(√
3

2π

)
cos
(π

3
(b− c)

)
.

We can clean this up a bit by defining

Φ(x, y) =
∞∑

k=0

B(x + k, y + k)
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Ψ(x, y) =
∞∑

k=0

B(x + k, y + k)

x + y + 2k
,

If we insert these definitions, use the fact that a + b + c = 1, and apply some

trigonometric identities, we obtain

f(a, b, c) =
sin(πa)

π sin(πb)

[
sin

(
π

3

(
b− c +

1

2

))(√
3

2

)
Φ(1− a, 1− c)

+ cos

(
π

3

(
b− c +

1

2

))(
c− a

2

)
Ψ(1− a, 1− c)

]
.

This last expression converges like 1/4k after k terms. This allows the Java program

described in Chapter 8 to operate much more quickly than if it had to numerically

evaluate the original integral expression, or sum the earlier series expressions.



Chapter 8

Java Program

To experiment with the conformal center, we built a Java program that allows

a user to visually manipulate the vertices of a triangle, then plot various triangle

centers for that triangle. The interested reader can experiment with this program

online at www.math.hmc.edu/∼aiannaccone. A screen shot is shown in Fig. 8.1.

Figure 8.1: The user can move the triangle’s vertices, and the Java program displays the selected
triangle centers along with their barycentric coordinates.

Here the user has displayed the conformal center, Fermat point, and Second

Morley point. The user can observe how close the points are, and how their dis-

tance changes for different triangles.

Using this program along with the Encyclopedia of Triangle Centers [7], we
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were able to compare the conformal center to many other geometric triangle cen-

ters. The Encyclopedia of Triangle Centers has a list of the first trilinear coordinate

of each center for a triangle with side lengths 6, 9, 13. That is, it has an ordered

list of the first trilinear for the incenter, barycenter, etc. This means that if we can

calculate the first trilinear for a point of interest in the 6, 9, 13 triangle, we can see

if it coincides with any known triangle center, thus checking against all 1114 listed

centers at once. Using the formula from Chapter 7, we calculated the first trilinear

coordinate of the conformal center for the 6, 9, 13 triangle. By then checking our

value with those in the Encyclopedia of Triangle Centers list, we discovered that

the conformal center does not coincide with any of those 1114 triangle centers.

While experimenting with the Java program, we observed that the conformal

center generally lies fairly close to the incenter. Now the incenter is the center with

barycentric coordinates proportional to the lengths of the opposite sides, which

we call the “side-weighted center.” Another known center is the “angle-weighted

center” (also known as the Hofstadter Zero point [7]), which has barycenter coor-

dinates proportional to the corresponding angles. We observed that this point and

the incenter tend to flank the conformal center, with the conformal center roughly

two-thirds of the way from angle-weighted center to the incenter. We calculated

the first trilinear coordinate for this third point, and used the Encyclopedia of Tri-

angle Centers to determine it was the Second Morley point. Further experimen-

tation revealed that the Second Morley point always lies close to the conformal

center.



Chapter 9

Closeness to the Second Morley Point

The Second Morley point is an interesting triangle center. Its construction,

which is relatively simple among the less well-known triangle centers, is shown

in Fig. 9.1. The trisectors of the three angles meet at A′, B′, and C ′. These three

points make an equilateral triangle, whose center is the first Morley point. The

lines AA′, BB′, CC ′ all coincide at a point, called the Second Morley point.

Figure 9.1: Construction of the Second Morley point (from the Encyclopedia of Triangle Centers
[7]).

The Java program suggested to us that the Second Morley point and the con-

formal center were often very close. Using Maple, we calculated these points for a

wide range of triangles. We found that for every triangle we considered, the points

were strikingly close together.
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To better quantify the distance between the two points, we introduced the fol-

lowing metric for the distance between two points p and q in a triangle:

d(p, q) =

√
δ(p, q)2

A

where δ(p, q) is the Euclidean distance between the points, and A is the area of the

triangle. Note that this distance is area-normalized, and therefore does not change

when we dilate, translate, or rotate the triangle. Over the range of triangles we

computed, the area-normalized distance between the two points was never greater

than .016.

Another expression of this closeness comes from drawing lines from a vertex to

the two points, and determining the angle between them. To make our expressions

simpler, we’ll use the Fermat point as a reference. Recall that the Fermat point of

a triangle is the point from which line segments to each vertex meet at angles of

2π/3. Let us draw a line from vertex C to the Fermat point, then draw a line from

C to the conformal center, as in Fig. 9.2. Call the difference in these angles ηc.

Similarly, we may draw a line from C to the Second Morley point, and define the

angle difference between that point at the Euler point as λc.

In The Conformal Center of a Triangle [5], we show that:

tan ηc =
(b− a)Ψ(1− a, 1− b)√

3Φ(1− a, 1− b)

tan λc =
sin
(

π
3
(b− a)

)
cos
(

π
3
(b− a)

)
+ 2 cos

(
π
3
(1− c)

)
Notice that bound on the difference ηc−λc defines a wedge-shaped region in which

both points must be located, and vice-versa. Since the points lie close together, we

expect this wedge-shaped region to be a small fraction of the angle πc. Indeed, we

observe

|ηc − λc| < .0157(πc)

over the same range of triangles considered above.
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Figure 9.2: Here ηc and λc measure the angles between the Fermat point F and the conformal
center Q and Second Morley point M , respectively. For clarity, this is not drawn to scale. For a more
accurate representation, see Fig. 8.1



Chapter 10

Polygons with Conformal Centers

As we showed in Chapter 5, all triangles have a conformal center, but other

polygons generally do not. Which special polygons have a conformal center? In

this chapter, we use the Schwarz-Christoffel Transformation to answer this ques-

tion. We begin by establishing some terminology.

Definition. We call an ordered set S = (x1, x2, . . . , xm) an m-point partition of the

upper half-plane if xi ∈ R and xi < xi+1.

Definition. We say q is the conformal center of H+ with the partition S = (xi) if a

Brownian path starting at q is equally likely to first exit H+ through any of the segments

(−∞, x1), (x1, x2), . . . , (xn,∞).

Lemma. For m ≥ 2, there is exactly one m-point partition that has a conformal center,

subject to translation and dilation.

Proof. For existence, let q = i, and for k = 1 . . . n, let

xk = − cot

(
πk

m + 1

)
.

Now for k = 1, . . . ,m, define the interval Ik = (−∞, xk). Because of our choice of

xk, the line from xk to the conformal center q makes an angle of 2π/(m + 1) with

the real line, as seen in Fig. 10.1. It follows, then, that

ω(q, Ik, H+) =
1

m + 1
.
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Figure 10.1: The line from xk to the conformal center at i makes an angle kπ
m+1 .

That is, the probability that a Brownian path starting at q first exits the half-plane

through the interval I1 = (−∞, x1) is 1/(m+1). The probability that it exits through

(x1, x2) is therefore

ω(q, I2 \ I1, H+) = ω(q, I2, H+)− ω(q, I1, H+)

=
2

m + 1
− 1

m + 1

=
1

m + 1
.

For all k, the reasoning is similar and the result is the same. Thus, by the definition

above, q is the conformal center of the H+ with the partition S = (xk).

To show uniqueness, suppose two partitions S = (xi) and S ′ = (x′i) are given,

and that H+ has conformal centers q and q′ with these partitions, respectively. Let

us scale and translate S ′ so that q = q′. Assume for contradiction that x1 6= x′1. Then

the harmonic measures for the intervals I1 = (−∞, x1) and I ′1 = (−∞, x′1) are not

equal. That is, we have

ω(q, I1, H+) 6= ω(q′, I ′1, H+)

It follows that one of these points cannot be a conformal center, which is a con-

tradiction. Our assumption must therefore be false, so x1 = x1’. By the same
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reasoning, we can successively show xi = x′i for i = 1, . . . ,m. This means that

S = S ′, subject to scaling and translation, as desired.

Suppose we create a Schwarz-Christoffel Transformation f that maps the points

xi to the vertices vi of a polygon. Because f is conformal, it preserves harmonic

measure. Therefore, the polygon has a conformal center if and only if the half-

plane has a conformal center with partition (xi). This fact yields the following

theorem.

Theorem. Let S = (ai) be an ordered set of n ≥ 3 angles such that
∑

ai = (n−2)π. Then

there is exactly one polygon, with has angles ai in clockwise order, that has a conformal

center.

Proof. First we show existence of such a polygon. By the previous theorem, there is

exactly one (n−1)-partition for which the half-plane has a conformal center. Recall

that the construction of the Schwarz-Christoffel Transformation from Chapter 5

allows us to choose the interior angles of the polygon. Therefore, by applying a

Schwarz-Christoffel Transformation to this partition, we obtain one polygon with

the desired angle set. (Notice, however, that we have no control over the side

lengths in this polygon).

To show uniqueness, suppose there are two such polygons. Again by the con-

struction of the Schwarz-Christoffel Transformation in Chapter 5, we can find two

partitions which the Schwarz-Christoffel Transformations will map to these poly-

gons. Both of these partitions have a conformal center, so by the above lemma,

they are identical, subject to translation and dilation. The polygons produced by

applying the Schwarz-Christoffel Transformation to these partitions are therefore

identical. That is, if two polygons each have a conformal center, then they are

identical, subject to translation and dilation.

This result implies that by considering every angle set, we can use the Schwarz-

Christoffel Transformation to numerically obtain all the polygons with conformal
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centers. However, given any set of angles, the determination of the polygon’s side

lengths must be made using the unpleasant integrals generated by the Schwarz-

Christoffel Transformation. Thus, although we know the angles of a polygon with

a conformal center, we may not be able to determine a closed-form solution for its

side lengths and coordinates.



Chapter 11

The Conformal Center of a Quadrilateral

For every set of angles that can form a closed polygon, there is a polygon with

those angles and a conformal center. It would be nice, however, if we could lo-

cate the conformal center within such a polygon. Using the Schwarz-Christoffel

Transformation, we can find an integral expression for its coordinates, as we did

with the triangles. In the case of triangles, this expression was manageable enough

to turn into a series expression, and from it we were able to deduce some inter-

esting series. The general case for a polygon is much more challenging, but if we

restrict ourselves to quadrilaterals, the formula is somewhat manageable. For cer-

tain special quadrilaterals, we can express the location of the conformal center with

a convergent series.

First consider the general case, where our quadrilateral has an angle set (a, b, c, d)

and there is no known relationship between these angles, other than a+b+c+d = 2.

We may generate the desired polygon by using the Schwarz-Christoffel Transfor-

mation on the half-plane with the partition S = (−1, 0, 1). With this partition, the

half-plane has conformal center at i. This appropriate transformation is

f(z) =

∫ z

0

(ζ + 1)a−1ζb−1(ζ − 1)c−1dζ.

This transformation maps the partition points to the four vertices:

f(−1), f(0), f(1), f(∞),

and the conformal center maps to

f(i) =

∫ i

0

(ζ + 1)a−1ζb−1(ζ − 1)c−1dζ.
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This expression can be simplified by the substitution u = −iζ , which yields

f(i) =

∫ 1

0

(iu + 1)a−1(iu)b−1(iu− 1)c−1

=

∫ 1

0

(u2 + 1)
a−1
2

+ c−1
2

(
iu + 1√
u2 + 1

)a−1(
iu− 1√
u2 + 1

)c−1

ibub−1du

We can simplify this using
iu + 1√
u2 + 1

= ei tan−1(u)

iu− 1√
u2 + 1

= ei(π−tan−1(u))

Next, we substitute θ = tan−1 u to obtain

f(i) = eiπ(c+b/2−1)

∫ π/4

0

cosd−1 θ sinb−1 θei(a−c)θdθ

Notice that the vertex in the quadrilateral opposite the point at 0 is mapped

from the point at infinity in the half-plane. We can therefore find it, using a similar

analysis, to be

f(i∞) = eiπ(c+b/2−1)

∫ π/2

0

cosd−1 θ sinb−1 θei(a−c)θdθ.

11.1 Symmetric Quadrilaterals

As shown in Chapter 10, we know that for each angle set, there is exactly one poly-

gon with a conformal center. However, there are infinitely many polygons with

such an angle set, so we can’t yet identify the quadrilaterals that have a confor-

mal center. For instance, both the quadrilaterals shown in Fig. 11.1 have angle set

(q, p, q, r). We can’t yet determine which, if either, has a conformal center. The fol-

lowing theorem, however, shows that every symmetric quadrilateral has a confor-

mal center. These symmetric quadrilaterals look like kites and Starfleet-symbols,

as shown in Fig. 11.2.
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Figure 11.1: Distinct quadrilaterals with the same angle set (q, p, q, r).

Theorem. If a quadrilateral has two of its vertices on a line, and is symmetric about that

line, then it has a conformal center.

Proof. Let x, y be the vertices on the axis of symmetry. Denote the sides adjacent

to x as A1 and A2, and the sides adjacent to y as B1 and B2, as in Fig. 11.2. By

symmetry of the harmonic measure, for every point z on the axis of symmetry

(dotted line), we have

ω(z, A1, Ω) = ω(z, A2, Ω)

ω(z, B1, Ω) = ω(z, B2, Ω)

Let us parameterize this axis as z(t) = x + t(y − 1), so that z(0) = x and z(1) = y.

Also let A = A1 ∪ A2 and B = B1 ∪B2. For t ∈ [0, 1], define a function

f(t) = ω (z(t), B, Ω)− ω (z(t), A, Ω)

Notice, then, that

f(0) = ω (x, B, Ω)− ω (x, A, Ω) = −1
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Figure 11.2: Illustration for proof. Symmetric quadrilaterals look like kites and Starfleet-symbols.

f(1) = ω (y, B, Ω)− ω (y, A, Ω) = 1.

Now f(t) is continuous in t because z(t) is continuous in t, and the harmonic mea-

sure functions are continuous in z. We may invoke therefore invoke the Intermedi-

ate Value Theorem. This means there is some c ∈ (0, 1) such that f(c) = 0. For this

value, we have

ω (z(c), A, Ω) = ω (z(c), B, Ω) ,

and since z(c) is on the axis of symmetry, we also have

ω (z(c), A1, Ω) = ω (z(c), A2, Ω)

ω (z(c), B1, Ω) = ω (z(c), B2, Ω)

Consequently, the harmonic measure at z(c) is equal for all four sides, and so z(c)

is the conformal center.

Thus, every symmetric quadrilateral has a conformal center. In fact, we can

locate this center, because the general quadrilateral integral simplifies in this case.

Using the expression from the previous section with

a = q, b = p, c = q, d = r,
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we obtain the following expressions for the conformal center and the vertex at

angle d:

f(i) = iq−1+ p
2

∫ π/4

0

cosr−1 θ sinp−1 θdθ

f(i∞) = iq−1+ p
2

∫ π/2

0

cosr−1 θ sinp−1 θdθ

Note that the constant coefficients are the same. Since the Schwarz-Christoffel

Transformation the vertex with angle b to 0, this means that the f(i) and the vertices

of angles b and d are collinear. The actually value of the coefficients is unimpor-

tant, since it merely indicates a rotation of the polygon. We are truly concerned

only with the lengths |f(i)| and |f(i∞)|.

The first of these integrals is just a Beta function. That is,

|f(i∞)| = B
(p

2
,
r

2

)
The second integral is more difficult, but can be expressed as a series as follows.

Let G(a, b) be defined as

G(a, b) =

∫ π/4

0

sina u cosb udu

Then we can differentiate with respect to u in two different ways to obtain the

following two expressions:

d

du
G(a, b) = sina π

4
cosb π

4
= 2−

a+b
2 ,

and

d

du
G(a, b) =

∫ π/4

0

a sina−1 u cosb+1 udu +

∫ π/4

0

(−b) sina+1 u cosb−1 udu

= aG(a− 1, b + 1)− bG(a + 1, b− 1).

Combining these expressions yields the recurrence

G(a− 1, b + 1) =
1

a

(
2−

a+b
2 + bG(a + 1, b− 1)

)
,
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which we rewrite as

G(a, b) =
1

a + 1

(
2−

a+b
2 + (b− 1)G(a + 2, b− 2)

)
.

We would like to use this recurrence to obtain a series expression for G(a, b). To

do this, we must first show that limk→∞G(a + k, b − k) converges. We do this as

follows:

Notice that, for u ∈ (0, π/4), tan u < 1. In the limit, then,

lim
k→∞

sink u cos−k u = 0.

This limit for the integrand in G(a, b) gives us a limit on G(a, b) itself, since the

integration is performed over a compact domain:

lim
k→∞

G(a + k, b− k) =

∫ π/4

0

lim
k→∞

(
sina+k u cosb−k u

)
du =

∫ π/4

0

0 · du = 0

Thus, we may use the recurrence to obtain a series expression, as follows:

G(a, b) =
1

a + 1

(
2−

a+b
2 + (b− 1)G(a + 2, b− 2)

)
=

1

a + 1

(
2−

a+b
2 + (b− 1)

1

a + 3

(
2−

a+b
2 + (b− 3)G(a + 4, b− 4)

))
=

1

a + 1
2−

a+b
2 +

b− 1

(a + 1)(a + 3)
2−

a+b
2 +

(b− 1)(b− 3)

(a + 1)(a + 3)
2−

a+b
2 G(a + 4, b− 4)

...

= 2−
a+b
2

(
1

a + 1

)(
1 +

∞∑
k=1

(b− 1)(b− 3) . . . (b + 1− 2k)

(a + 3)(a + 5) . . . (a + 1 + 2k)

)

Thus, in this special symmetric case, we can find the position of the conformal

center within a quadrilateral as a series expression. There may also be other special

cases where the elliptic integral simplify, such as trapezoids.



Chapter 12

The Conformal Center of a Circle

Thus far, we have only considered the conformal center in the context of poly-

gons. But for any complex region that is bounded by a Jordan curve, we can divide

the boundary into segments and speak of the probability that a Brownian path first

exits the domain through that segment. For example, suppose a Brownian path

starting at q is equally likely to exit Ω through any of the segments A, B, or C.

Then we call q the conformal center of Ω with the 3-point partition (x, y, z). As

before with triangles, it can be shown that such a conformal center must exist.

Figure 12.1: A Brownian path from q is equally likely to exit Ω through sides A, B, or C. We call q
the conformal center of Ω with the partition (x, y, z).
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12.1 Circles with 3-point Partitions

Suppose the domain is a circle, and the partition has three points. The reader

may recall that for any two sets of three distinct points, (z1, z2, z3) and (z′1, z
′
2, z

′
3),

there exists a Möbius transformation that maps each zi to the corresponding z′i.

Furthermore, it is known that Möbius transformations are conformal, and that they

map circles and lines to circles and lines [8]. Consequently, for any three points on

the circle, there exists a Möbius transformation to the three roots of unity, 1, ω, ω̄.

Since the three original point lie on a circle, as do the three new points, the Möbius

transformation sends the entire old circle to the entire new circle. The final map f

is as shown:

Figure 12.2: A Möbius transformation maps the three points on the left circle to the three points on
the right.

Since the 3-point circle with partition (1, ω, ω̄) has a conformal center at 0, and

f is conformal, the original 3-point circle must have a conformal center q. Further-

more, there is a relatively simple way to find the point q. The cross-ratio of four
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points (a, b, c, d) is defined as follows:

a : b : c : d =
(a− b)(c− d)

(a− d)(b− c)
.

Now Möbius transformations preserve cross-ratios [8], so for any conformal map

f , we have

a : b : c : d = f(a) : f(b) : f(c) : f(d).

In our case, this implies

q : z1 : z2 : z3 = 0 : 1 : ω : ω̄

Evaluating both sides of this expression, we obtain

(q − z − 1)(z2 − z3)

(q − z3)(z2 − z1)
= −ω̄

To locate the conformal center q with respect to the triangle z1z2z3, we now find

its trilinear coordinates. Using the cross-ratio expression, we can determine that

the trilinears are proportional to(
sin
(
πa +

π

3

)
: sin

(
πb +

π

3

)
: sin

(
πc +

π

3

))
By computing the first trilinear coordinate for this point in the 6, 9, 13 triangle, we

were able to compare it to the collection of known triangle centers in the Encyclo-

pedia of Triangle Centers. We found that this first trilinear coordinate equals the

corresponding coordinate for the First Isodynamic point. We looked up the triangle

function for the First Isodynamic point and found it matched the trilinears above.

That is, the conformal center of a circle with a 3-point partition coincides with the

First Isodynamic point of the triangle whose vertices are those three points.

12.2 Circles with 4-point Partitions

In the case of a 4-point circle, we find the circle does not always have a conformal

center. The analysis used in the 3-point case does not hold because we cannot
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necessarily find a Möbius transformation that maps for four partition points to

(1, i,−1,−i), as we would desire. We can, however, use the cross-ratio to determine

whether a given 4-point partition has a conformal center. This analysis yields the

following result:

Theorem. A circle with partition (z1, z2, z3, z4) has a conformal center if and only if

z1z3 + z2z4

2
=

(
z1 + z3

2

)(
z2 + z4

2

)
.

That is, the midpoint of the product of opposite points equals the product of the midpoints

of opposite points.

Proof. The circle with partition (1, i,−1,−i) has a conformal center. Therefore, a

circle (z1, z2, z3, z4) has a conformal center if and only if

z1 : z2 : z3 : z4 = 1 : i : −1 : −i

That is, we have:
(z1 − z2)(z3 − z4)

(z1 − z4)(z3 − z2)
=

(1− i)(−1− (−i))

(1− (−i))(−1− i)

The right side evaluates to −1. Expanding the left yields

z1z3 − z2z3 − z1z4 + z2z4 = −z1z3 + z3z4 + z1z2 − z2z4

Consolidating terms, we arrive at

2z1z3 + 2z2z4 = (z1 + z3)(z2 + z4),

which is the desired result.



Chapter 13

Applications

In a forthcoming paper The Conformal Center of a Triangle [5], we discuss how

to manipulate the expressions from Chapter 7 to create some new series identities.

The series identities we obtain are:

sin πa sin πbΦ(1− a, 1− b) + sin πb sin πcΦ(1− b, 1− c) + sin πc sin πaΦ(1− c, 1− a)

=
π√
3

[
cos

(
2π

3
(b− a)

)
+ cos

(
2π

3
(c− b)

)
+ cos

(
2π

3
(a− c)

)]

(b− a)Ψ(1− a, 1− b) + (c− b)Ψ(1− b, 1− c) + (a− c)Ψ(1− c, 1− a)

= π

[
sin

(
2π

3
(b− a)

)
+ sin

(
2π

3
(c− b)

)
+ sin

(
2π

3
(a− c)

)]
In the special case where c = 0, these identities eventually yield the following

expressions:

1 +
1− t2

4 · 2!
+

(1− t2)(32 − t2)

42 · 4!
+

(1− t2)(32 − t2)(52 − t2)

43 · 6!
+ ... =

2√
3

cos

(
πt

6

)

1 +
1− t2

4 · 3!
+

(1− t2)(32 − t2)

42 · 5!
+

(1− t2)(32 − t2)(52 − t2)

43 · 7!
+ ... =

1

t
sin

(
πt

6

)
These identities, which can be written as hypergeometric series, are actually related

to Chebyshev polynomials. They can be derived by evaluating the Chebyshev

polynomials of the first and second kind at π/6 [9].



Chapter 14

Conclusion

Before we began our research, it was known that a point with the properties

of our conformal center existed in a triangle. It was also known that it could be

found using harmonic measure and the Schwarz-Christoffel Transformation. Our

innovation was to think of this point in the context of geometric triangle centers.

We named this point the conformal center, because it is the only triangle center that

is invariant under conformal maps.

By analyzing the Schwarz-Christoffel transformation of this point, we found a

series expression for its barycentric coordinates. Using the Encyclopedia of Trian-

gle Centers, we compared this point to all known triangle centers, and found that it

does not coincide with any of them. It does, however, lie very close the conformal

center, as we verified numerically.

Turning to regions other than triangles, we determined a general criterion for

finding polygons with conformal centers. In the specific case of quadrilaterals,

we were able to find a fairly clean integral expression of the conformal center. In

the special case of a symmetric quadrilateral, we found a series expression for the

location of the conformal center.

Next, we considered circular domains. We found that every circle with a 3-

point partition has a conformal center, and that this point coincides with the First

Isodynamic center of the triangle with vertices on these partition points. While a

4-point circle does not generally have a conformal center, we established a sim-

ple criterion for finding the special 4-point circles that do. Finally, we discussed

the application of this material to evaluating series expressions. We obtained two
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hypergeometric series identities that appear to be new.

All the series in this paper can be written more concisely as hypergeometric

functions, a generalization of geometric series. For simplicity, we have largely

avoided their use in this paper, but a reader who is interested in the conformal cen-

ter should familiarize himself or herself with the basics of hypergeometric series.

Both the Wolfram Research website [9] and Special Functions [3] contain extensive

collections of hypergeometric identities, which are very useful in these analyses.

The Appell function, which can be found on Wolfram Research, is a particularly

useful hypergeometric series, which we make use of in our forthcoming paper to

shorten the derivation in Chapter 7.

It is possible to generalize the concept of a conformal center for quadrilaterals.

We saw that a non-square rectangle does not have a conformal center. It does,

however, have a unique point from which a random path is equally likely to first

exit through either of a pair of opposite sides. That is, in Fig. 2.1, if we call the

region bounded by the rectangle Ω, then we have

ω(q, A, Ω) = ω(q, C, Ω),

ω(q, B, Ω) = ω(q, D, Ω).

Since this point is defined by Brownian probability, or harmonic measure, it is also

preserved by conformal maps. Also, although many quadrilaterals lack a confor-

mal center, every quadrilateral has a point like this. That is, it can be shown that

every quadrilateral maps conformally onto some rectangle [2]. Only those that

map to the square have a conformal center, but even the quadrilaterals that map

onto a rectangle with side length ratio A/B 6= 1 have the point described here.

Using the concepts of modulus and extremal length [2], we can determine the ra-

tio A/B of the rectangle that a given quadrilateral maps to. If I had more time to

work on this topic, I would explore this point, and its analogues for higher-order

polygons.
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